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ABSTRACT
This paper develops an integrated production inventory model with
an aim to minimize the cost of production per unit of the product
and maximization of profit without compromising the quality of
the product. In this model we consider two plants, two secondary
warehouses (SWs) and two showrooms (SRs) those are adjacent to
the respective plants. For the purpose, we assume to be erected by a
firm two plants: Plant-I and Plant-II. Plant-I is situated in an urban
area with a lower production capacity in comparison to its product
demand where the demand meets through SR-I. On the other hand,
Plant-II is situated in a rural area with higher production capacity in
comparison to its product demand where the demand meets through
SR-II. The excess production in Plant-II meets the current market
demand in the area of Plant-I. Here, demand is assumed to be stock
dependent in both the showrooms (SR-I and SR-II). Average profit
in the integrated model is calculated and global optimum is ob-
tained through a descriptive-cum-analytical review. The inventory
parameters are taken as fuzzy numbers. The fuzzy numbers are first
transformed into corresponding interval numbers and then follow
the interval mathematics, the objective function for average profit
is converted into respective multi-objective functions. Furthermore,
the objective functions are being maximized and solved for a
Pareto-optimum solution by interactive fuzzy decision-making pro-
cedure. The model also illustrates graphically and numerically.
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Two-plants, Two-warehouse,

Keywords:
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1. INTRODUCTION
The works of Urban[34], Pal et.al.[30], Giri et.al.[11], Padmanab-
han and Vrat [28], Sarkar et al[32], Giri and Chaudhuri[12] and
others were developed for a single warehouse under the basic as-
sumption that the available warehouse has unlimited storage capac-
ity. However, this assumption is not realistic. Any warehouse has fi-

nite storage capacity. On the other hand, inventory management is
generally attracted for large stock for several reasons - an attractive
price discount for bulk purchase; the replenishment cost including
transportation cost is higher than the inventory related cost; the de-
mand of an item is very high and so on. Therefore, due to space
limitation of showroom (SR), one (or sometimes more than one)
warehouse(s)are hired on rental basis to store the excess items.
The secondary warehouse (SW) may be located away from or
nearer to SR. The actual service to the customer is done at SR
only. As the holding cost in SW is greater than in SR, the stocks
of SW are emptied first transporting the stocks from SW to SR by
continuous or bulk release patterns in order to reduce the holding
cost. Hartely [17]first introduced the basic two warehouse problem
in his book ”Operations Research - A Managerial Emphasis”. In
his analysis, he ignored the cost of transportation for transferring
the items from SW to SR and proposed a heuristic procedure for
determining the optimal order quantity. After Hartely[17], a num-
ber of research papers have been published by the different authors.
Among them, the works done by Sarma[33], Dave[8],Goswami and
Chaudhuri[13], Pakkala and Achary[29], Bhunia and Maiti[3,5] ,
Benkherouf[2], Zhou[37] and Kar et. al.[19] are worth mentioning.
However, all these models were based on an assumption that the
rented warehouse has unlimited (infinite) storage capacity. Chung
and Huang[7]proposed a two-warehouse inventory model for
deteriorating items under a permissible delay in payments, but
they assumed that the deterioration rate of the two warehouses
were the same. Dey et al.[10] considered a finite time horizon
inventory problem for a deteriorating item having two separate
warehouses with interval-valued lead-time under inflation and
a time value of money. Niu and Xie[27] modified Pakkala and
Achary’s[29]model (last-in-first-out) where inventory in the SW
was stored last but would be consumed before those in the SR.
Hsieh et al.[18] developed a deterministic inventory model for
deteriorating items with two warehouses allowing for shortages
and assuming the inventory costs in the SW to be higher than those
in the SR. Lee and Hsu [20] extended the Lee and Ma[21],’s model
using an approach which permitted variable production cycle times
instead of equal production cycle times. Chung et al.[6] extended
a two-warehouse inventory model with an imperfect quality
production processes. Liao and Huang[24] studied an order-level
inventory model for deteriorating items with two-storage facilities
and a permissible delay in payment. Hariga[16] proposed an EOQ
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model with multiple storage facilities where both owned and rented
warehouses had limited stock capacity. Liang and Zhou[23] inves-
tigated a two-warehouse inventory model for deteriorating items
under conditionally permissible delay in payments. They assumed
the rented warehouse had higher unit holding costs than the own
warehouse but offered better preservation resulting in a lower rate
of deterioration for the goods than in the own warehouse. In reality
there are many situations in business sector where the demand
rate is not constant but varies. It may depend on time, initial or on
hand inventory levels, selling price, advertisement expenditure, the
frequency of advertisement etc. There are certain types of items
(like consumer goods, fashionable items etc.) for which, according
to market research, customers are motivated by the display of the
items in the showrooms i.e., the demand rate is dependent on the
displayed inventory level. For these items, the consumption goes
up if the inventory level is high and vice versa. Many researchers
like Levin et al.[22] have observed that the presence of greater
quantity of the same item tends to attract more customers. This
implies that holding higher inventory level will probably make
the retailer sell more items. Under this situation, the demand
rate should depend on the inventory level. Such type of demand
was considered by Urban[34], Gupta and Vrat[15], Mondal and
Phaujdar [25,26], Urban [34,35], Bhuina and Maiti[4] etc. Zhou
and Yang[38] presented a two-warehouse inventory model with
stock-level-dependent demand rate.

In this study, we considered a production inventory model of two
production plants (plant-I and plant-II), two secondary warehouses
(SW-I and SW-II) and two showroom-cum-retail outlets (SR-I and
SR-II). Production plant-I is situated in an urban area where the
density of population is considerably high and thereby there is a
high market demand of the product produced in plant-I. The cost
of the factors of production in plant-I viz., raw-materials, labour,
power, water supply, rent of the factory building etc. is very high
and thereby the cost of the production per unit of the output is also
very high. In this plant, the rate of production is less in comparison
to the market demand of the output produced in plant-I. The plant-I
has been erected in the area concerned, where there is a scarcity
of the factors of production albeit the locational and other advan-
tages for industrial output are prevalent in the area concerned. In
order to minimize the total cost of production per unit of the output
produced in both the plants and at the same time to meet the high
market demand of the product exits in the area of plant-I, another
plant-II has been erected in a rural area where the factors of pro-
duction required in plant-I is less costly albeit the market demand
of the output in the area of plant-II is less than that of the market
demand in the area of plant-I. So, the cost of production per unit of
output produced in Plant-II is less than that of the cost of produc-
tion per unit of output produced in plant-I. It is mentioned here that
the quality standard of the products produced in both the plants are
maintained.
There is a large volume of literature on the ’two warehouse inven-
tory model’. The literature suggests that the holding cost of sec-
ondary warehouse per unit is more than that of the holding cost
per unit of showroom cum-outlet. Furthermore, the literature sug-
gests that the holding cost per unit in the secondary warehouse is
high due to the preservation cost for maintaining the quality of
the product and other costs related to handling large quantity of
the product in the secondary warehouse. In the present model it
is presumed that the holding cost of secondary warehouses is less
than the holding cost of showrooms cum-outlets inasmuch as the
nature of the output/product produced in both the plants are non-
deteriorating and without having any preservation cost. But it is

important to mention here that both the secondary warehouses are
located adjacent to the corresponding showroom-cum-retail out-
lets and the transportation cost from both the warehouses to show-
rooms is insignificant, and hence avoided. Furthermore, the product
stored in SW-II is transferred to SW-I through bulk-release-pattern
and corresponding transportation cost between two warehouses has
been taken into account in the model. This apart, output trans-
ferred from both the plants to the showrooms-cum-retail outlets
in a continuous-release-pattern. The customer service made from
the both the showrooms and the products of both the plants trans-
formed on a regular basis / constantly from both the warehouses
to both the showrooms to fulfil the demand (as the demand of the
product is stock-dependent) even though the holding cost per unit
is higher than in showrooms than that of warehouses.
Average profit of the integrated model has been calculated and
global optimum was obtained analytically. Here inventory cost pa-
rameters are taken imprecise i.e, fuzzy in nature. The said parame-
ters are expressed by fuzzy numbers, Which are then converted into
appropriate interval numbers following Grzegorzewski[14] and us-
ing the concepts of interval arithmetic, we have constructed an
equivalent multi-objective deterministic model corresponding to
the original problem. This equivalent problem has been solved
by using interactive fuzzy decision making procedure. The Opti-
mum and Pareto-optimum solutions are derived by using a gradient
non-linear optimization technique-Generalized Reduced Gradient
(GRG) method.

2. THE NEAREST INTERVAL APPROXIMATION
OF A FUZZY NUMBER

According to Grzegorzewski[14], the nearest interval approxi-
mation of a Triangular fuzzy number(TFN) Ã = (a1, a2, a3)
is (a1+a2

2
, a2+a3

2
) and the nearest interval approximation

of a Parabolic fuzzy number(PFN) Ã = (a1, a2, a3) is
( 2a1+a2

3
, a2+2a3

3
).

3. ASSUMPTIONS AND NOTATIONS
Following are the assumptions and notations to develope the model:

3.1 Assumptions

(i) Model is developed for single item product.
(ii) Lead time is negligible.
(iii) Demand of customers in the showrooms SR-I and SR-II is

stock dependent.
(iv) Shortage are allowed only in SR-I.
(v) Idle costs are taken into account.
(vi) Production capacities of two plants are different.

3.2 Notations
q1s(t) = Inventory level of SR-I at time t.
q1r(t) = Inventory level of SW-I at time t.
q2s(t) = Inventory level of SR-II at time t.
q2r(t) = Inventory level of SW-II at time t.
P1 = Constant production rate of plant-I

(P1 < a1, a1 > 0).
P2 = Constant production rate of plant-II.
W1 = Capacity of SR-I.
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W2 = Capacity of SR-II.
D1(t) = Demand rate of SR-I,where

D1(t) =

{
a1 when 0 ≤ t < t1
a1 + b1W1 when t1 ≤ t < t2 + k

′

a1 + b1q1s(t) when t2 + k
′ ≤ t ≤ Tp1

a1, b1 are constant.
D2(t) = Demand rate of SR-II, where

D2(t) =

{
a2 when 0 ≤ t < t

′
1

a2 + b2W2 when t
′
1 ≤ t < t3

a2 + b2q2s(t) when t3 ≤ t ≤ Tp2

a2, b2 are constant.
S1 = Shortage amount in SR-I at time t1.
c1s = Shortage cost per unit per unit time in SR-I of plant-I.
h1s = Holding cost per unit per unit time of SR-I.
h1r = Holding cost per unit per unit time of SW-I.
h2s = Holding cost per unit per unit time of SR-II.
h2r = Holding cost per unit per unit time of SW-II.
cp1 = Production cost per unit item for plant-I.
cp2 = Production cost per unit item for plant-II.
s1 = Selling price per unit item in SR-I.
s2 = Selling price per unit item in SR-II.

p
′
1 = Transfer rate of produce items from SW-I to SR-I during
(t1, tp1).

p
′′
1 = Transfer rate of produce items from SW-I to SR-I during
(tp1 , t2 + k

′
).

k = Time duration of shifting the amount kp
′
1 from SW-II to SW-I

during (t1, tp1).

k
′

= Time duration of shifting the amount k
′
p
′′
1 from SW-II to SW-I

during (tp1 , t2).
t1 = Time where SR-I received of amount(S1 +W1).
tp1 = Time where plant-I stop its production.
tp2 = Time where plant-II stop its production.
Tp1 = Time where items are exhausted from SR-I.
Tp2 = Time where items are exhausted from SR-II.
t2 = Time of shifting last lot from SW-II to SW-I.
t3 = Time where items are exhausted from SW-II.
A1s = Ordering cost for SR-I.
A2s = Ordering cost for SR-II.
A1r = Ordering cost for SW-I.
A2r = Ordering cost for SW-II.
id1s = Idle cost per unit time of SR-I.
id2s = Idle cost per unit time of SR-II.
id1r = Idle cost per unit time of SW-I.
id2r = Idle cost per unit time of SW-II.

n = Number of times to shifting the amount p
′
1k in each time from

SW-II to SW-I during [t1, tp1 ].

r = Number of times to shifting the amount p
′′
1k
′
in each time from

SW-II to SW-I during [tp1 , tp2 ].

m− r = Number of times to shifting the amount p
′′
1k
′
in each time

from SW-II to SW-I during [tp2 , t2].

4. MODEL DESCRIPTION AND DIAGRAMMATIC
REPRESENTATION

The production plants (i.e plant-I and plant-II), starts their produc-
tion at time t = 0 and produced items are selling through the show-
rooms(i.e SR-I and SR-II). In plant-I, the production rate is lower
than the demand rate of SR-I and thus shortages occurs at SR-I for
time period (0, t1). In plant-II, the production rate is higher than
demand rate of SR-II, so excess items are stored in the secondary
ware house SW-II at the rate P2−D2 in continuous release pattern.
At time t1, for one time, the items of amount (S1 +W1 + kp

′
1) are

transferred from SW-II to fulfill the shortage amounts S1 at SR-I,
to filled up the showroom SR-I by the amount W1 and rest amount
kp
′
1 is stored in the secondary ware house SW-I. Items are then

transferred from SW-I to SR-I in continuous release pattern at the
rates p

′
1 and p

′′
1 during the period (t1, tp1) and (tp1 , t2+k

′
) respec-

tively to filled-up showroom SR-I continuously, as the demand rate
at SR-I is stock depended. The items are transferred from SW-II
to SW-I in bulk release pattern of amount kp

′
1 with time interval k

and of amount k
′
p
′′
1 with time interval k

′
for n and m times during

the periods (t1, tp1) and (tp1 , t2) respectively. The amount kp
′
1 is

transferred r times among m times with time interval k
′

for the pe-
riod (tp1 , tp2). As demand is stock dependent at SR-II, so the items
are continuously transferred with rateD2 to filled-up the showroom
SR-II from the production plant-II and SW-II during (0, tp2) and
(tp2 , t3) respectively.
Mathematical formulation for different showrooms and secondary
warehouses are depicted in different sub-section. The block dia-
grams of production inventory model is given in Fig.-1.

Fig. 1. Block diagram of the production inventory model
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5. MATHEMATICAL FORMULATION OF THE
MODEL

5.1 For Showroom-I(SR-I)

Differential equation for the SR-I in [0, Tp1 ] is given by

dq1s
dt

=


P1 − a1, 0 ≤ t < t1
0, t1 ≤ t < t2 + k

′

−[a1 + b1q1s(t)], t2 + k
′ ≤ t ≤ Tp1

(1)

with boundary condition q1s(t) = 0 at t = 0, Tp1 , q1s(t1 − 0) =

Fig. 2. Inventory level of SR-I

−S1

and continuity condition q1s(t) = W1 during [t1, t2 + k
′
].

Solving the differential equation (1) with boundary conditions, we
have

q1s(t) =


(P1 − a1)t, 0 ≤ t < t1
W1, t1 ≤ t < t2 + k

′

a1
b1

(
eb1(Tp1−t) − 1

)
, t2 + k

′ ≤ t ≤ Tp1

Here S1 = A+Bk where A and B are given by

A = (a1 − P1)
[ t

′
1(P2 − (a2 + b2W2)) +W1

(P2 − (a2 + b2W2))− (a1 − P1)

]
and, B = (a1 − P1)

[ P
′
1

(P2 − (a2 + b2W2))− (a1 − P1)

]
Also, P1 + p

′
1 = a1 + b1W1, p

′′
1 = a1 + b1W1 and

Tp1 = t2 + k
′
+ 1

b1
log(1 + b1W1

a1
)

S1s = Inventory Shortage cost of SR-I

= c1s
[
−
∫ t1

0

(P1 − a1)tdt
]

= −c1s
[

(P1 − a1)
t21
2

]
H1s = Inventory holding cost H1s of SR-I

= h1s

[
W1(t2 + k

′ − t1) +

∫ Tp1

t2+k
′

a1
b1

(
eb1(Tp1−t) − 1

)
dt

]
= h1s

[
W1(t2 + k

′ − t1) +
W1

b1
− a1
b21
log(1 +

b1W1

a1
)

]
Id1s = The idle cost of SR-I = id1s(Tp2 − Tp1)

5.2 For Showroom-II (SR-II)

Differential equation for the SR-II in [0, Tp2 ] is given by

dq2s
dt

=

{
P2 − (a2 + b2 +W2q2s(t)), 0 ≤ t < t

′
1

0, t
′
1 ≤ t < t3

−(a2 + b2 +W2q2s(t)), t3 ≤ t ≤ Tp2

(2)

with boundary condition q2s(t) = 0, at t = 0, Tp2 , and continuity

Fig. 3. Inventory level of SR-II

condition q2s(t) = W2 in [t
′
1, t3].

Solving the differential equation(2) with boundary conditions, we
have

q2s(t) =


(P2−a2)

b2
(1− e−b2t), 0 ≤ t < t

′
1

W2, t
′
1 ≤ t < t3

a2
b2

(
eb2(Tp2−t) − 1

)
, t3 ≤ t ≤ Tp2

with t
′
1 = − 1

b2
log(1− b2W2

a2
)

and, Tp2 = t3 +
1

b2
log(1 +

b2W2

a2
) = U + V k

where U and V are given by

U = (1 +
P2

a2 + b2W2

)

[ (a1 − P1)
[ t

′
1
(P2−(a2+b2W2))+W1

(P2−(a2+b2W2))−(a1−P1)

]
+W1

P2 − a2 − b2W2

]
+

1

b2
log(1 +

b2W2

a2
) > 0

V = (1 +
P2

a2 + b2W2

)
p
′
1

(P2 − a2 − b2W2)− (a1 − P1)

+ n(
P2 + a2 + b2W2

a2 + b2W2

) +
m(a2 + b2W2) + rP2

a2 + b2W2

p
′
1

p
′′
1

− m+ n

a2 + b2W2

p
′′
1

H2s = Inventory holding cost of SR-II

= h2s

[
W1(t3 − t1) +

(P2 − a2)

b2

∫ t
′
1

0

(1− e−b2t)dt
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+
a2
b2

∫ Tp2

t3

(
eb2(Tp2−t) − 1

)
dt

]
= h2s

[
P2 − a2
b2

[
t
′
1 +

e−b2t
′
1

b2

]
W2(t3 − t1)

+
W2

b2
− a2
b22
log(1 +

b2W2

a2
)

]
5.3 For Secondary Warehouse-I (SW-I)

Differential equation for the SW-I in [t1, t2 + k
′
] is given by

dq1r
dt

=

{
−p′1, t1 ≤ t < tp1
−p′′1, tp1 ≤ t ≤ t2 + k

′ (3)

with boundary conditions

Fig. 4. Inventory level of SW-I

q1r(t) =


p
′
1k, at t = t1 + ik , i = 0, 1, 2, ., ., n

0, at t = t1 + ik − 0 , i = 0, 1, 2., ., ., n

p
′′
1k
′
, at t = tp1 + jk

′
, j = 0, 1, 2, ., ., .,m

0 at t = tp1 + jk
′ − 0 , j = 0, 1, 2, , ., .,m

where tp1 = t1 + nk , t2 = tp1 +mk
′

and p
′
1k = p

′′
1k
′
.

Solving the differential equation(3) with boundary conditions, we
have

q1r(t) =



p
′
1

[
t1 + ik − t

]
, t1 + (i− 1)k ≤ t < t1 + ik

i = 1, 2, ., ., ., n

p
′′
1

[
tp1 + jk

′ − t
]
, tp1 + (j − 1) ≤ t < tp1 + jk

′

j = 1, 2, ., ., .,m

p
′′
1

[
k
′
+ t2 − t

]
, t2 ≤ t < t2 + k

′

H1r = Inventory holding cost of SW-I

= h1r

[ n∑
1

∫ t1+ik

t1+(i−1)k
q1r(t)dt

+

m+1∑
1

∫ tp1+jk
′

tp1+(j−1)k′
q1r(t)dt

]

= h1r

[
n

2
p
′
1k

2 +
m+ 1

2
p
′′
1k
′2
]

Id1r = The idle cost of SW-I

= id1r(t1 + Tp2 − t2 − k
′
)

5.4 For Secondary Warehouse-II (SW-II)
Differential equation for the SW-II in [0, t3] is given by

dq2r
dt

=

{
P2 − (a2 + b2W2), t

′
1 ≤ t < tp2

−(a2 + b2W2), tp2 ≤ t ≤ t3
(4)

with boundary conditions

Fig. 5. Inventory level of SW-II

q2r(t) =



0, at t = t
′
1, t1

S1 +W1 + kp
′
1, at t = t1 − 0[

P2 − p
′
1 − (a2 + b2W2)

]
ik,

at t = t1 + ik, i = 0, 1, 2...n[
P2 − p

′′
1 − (a2 + b2W2)

]
jk
′
,

at t = tp1 + jk
′
, j = 0, 1, 2...r[

P2 − (a2 + b2W2)
]
tp2 − jp

′′
1k
′
,

at t = tp1 + jk
′
,  = r + 1, r + 2...m

0 at t = t3

where tp2 = tp1 + rk
′

, t2 = tp1 + mk
′

and t3 = t1 + nk +

mk
′
+ P2

a2+b2W2
(t1 + nk + rk

′
)− m+n

a2+b2W2
p
′
1k

Solving the differential equation(4) with boundary conditions, we
have

q2r(t) =



[
P2 − (a2 + b2W2)

]
(t− t′1), t

′
1 ≤ t < t1[

P2 − (a2 + b2W2)
]
(t− t′1)− (i− 1)p

′
1k,

t1 + (i− 1)k ≤ t < t1 + ik, i = 1, 2...n[
P2 − (a2 + b2W2)

]
(t− t1)− nkp′1 − (j − 1)p

′′
1k
′
,

tp1 + (j − 1)k
′ ≤ t < tp1 + jk

′
, j = 1, 2...r

P2tp2 − (a2 + b2W2)t− (n− r)kp′1 − (j − 1)p
′′
1k
′
,

tp2 + (j − 1)k
′ ≤ t < tp2 + jk

′
, j = 1, 2...m− r

(a2 + b2W2)(t3 − t), t2 ≤ t < t3

H2r = Inventory holding cost of SW-II

= h2r

[∫ t1

t
′
1

q2r(t)dt+

n∑
1

∫ t1+ik

t1+(i−1)k
q2r(t)dt

5
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+

r∑
1

∫ tp1+jk
′

tp1+(j−1)k′
q2r(t)dt+

m−r∑
1

∫ tp2+jk
′

tp2+(j−1)k′
q2r(t)dt

+

∫ t3

t2

q2r(t)dt

]
= h2r

[
P2 − (a2 − b2W2)

2
(t1 − t

′
1)2

+
P2 − (a2 − b2W2)

2
n2k2 − n(n+ 1)

2
p
′
1k

2

+
P2 − (a2 − b2W2)

2

[
2nrkk

′
+ r2k

′2]− nrp′′1k′2
− r(r + 1)

2
p
′′
1k
′2

+ nP2(t1 + nk + rk
′
)k
′

− (a2 − b2W2)

2

[
(m− r)2k2 + 2(m− r)(t1 + nk + rk

′
)k
′]

− (m− r)(m+ n− 1)

2
p
′
1k

2 +
(a2 − b2W2)

2
(t2 − t3)2

]
Id2r = The idle cost of SW-II = id2r(Tp2 − t3)

Ct = total transportation cost

= ct[S1 +W1 + (m+ n+ 1)kp
′
1]

6. INTEGRATED MODEL:
6.1 In Crisp Environment
Total profit of the production inventory system TP is given by

TP = Total profit of the production inventory system
= Revenue from sales -production cost -S1s -H1s -H2s

-H1r -H2r-Id1s-Id2s-Id1r-Id2r-Ct-A1s-A2s-A1r-A2r

= Xk2 + Y k + Zwhere X , Y and Z are given by

X = −
[
c1s(a1 − p1)

[ Bp
′
1

(P2 − a2 − b2W2)2

] p
′
1

P2 − a2 − b2W2

+ c1s(a1 − p1)
[ B2

(P2 − a2 − b2W2)2

]
+ h1r

B

P2 − a2 − b2W2[
nP2

p
′
1

p
′′
1

− (a2 + b2W2)(m− r)
]

+ h1r

[n
2
p
′
1 +

m+ 1

2

p
′2
1

p
′′
1

]
+ h2r

[ p
′2
1

2(P2 − a2 − b2W2)
+
P2 − a2 − b2W2

2
(n2 + r2

+
2nrp

′
1

p
′
1

)− n(n− 1)

2
p
′
1 − r(n+ r − 1)

p
′2
1

p
′′
1

+ nP2(n
p
′
1

p
′′
1

+ r
p
′2
1

p
′′2
1

)− a2 + b2W2

2

(
(m− r)2 + 2(m− r)(np

′
1

p
′′
1

+ r
p
′2
1

p
′′2
1

)

− (m− r)(m+ n− 1)

2
p
′2
1

)
p
′
1

P2 − a2 − b2W2

(
nP2

p
′
1

p
′′
1

− (a2 + b2W2)(m− r)
)]

+ cs1
(a1 − P1)p

′2
1

2(P2 − a2 − b2W2)2

]
< 0,

Y = (s1 − s2)B +
[ B

P2 − a2 − b2W2

]
[
(s1 − cp1)P1 + (s2 − cp2)P2

]

− 2c1s(a1 − P1)B
[
(P2 − a2 − b2W2)t

′
1

+
A+W1

(P2 − a2 − b2W2)2

]
+ (n+

p
′
1

P2 − a2 − b2W2

)[
(s1 − cp1)P1 + (s2 − cp2)P2

]
+ r(s2 − cp1)

P2
p
′
1

p
′′
1

+ (s1 − s2)(m+ n+ 1)p
′
1

− cs1(a1 − p1)
[
t
′
1 +

A+W1

P2 − a2 − b2W2

]
p
′
1

P2 − a2 − b2W2

− h1sW1

[
(n+ 1) +

mp
′
1

p
′′
1

]
− h2s

[
W2(1 +

P2

a2 − b2W2

)(
B

P2 − a2 − b2W2

)

− a2
b22
log(1 +

b2W2

a2
)
]
− h2sW2

[
n

+
p
′
1

P2 − a2 − b2W2

+
mp

′
1

p
′′
1

+
P2

a2 + b2W2

(n+
p
′
1

P2 − a2 − b2W2

+
rp
′
1

p
′′
1

)− (m+ n)p
′
1

a2 − b2W2

]
− h1r(t

′
1 +

A+W1

P2 − a2 − b2W2

)
[
nP2

p
′
1

p
′′
1

− (a2 + b2W2)

(m− r)
]
− h2r

P2

2

[
n+

p
′
1

P2 − a2 − b2W2

+
rp
′
1

p
′′
1

− m+ n

2
p
′
1

]
− id1s

rp
′
1

p
′′
1

− (id1r + h2r
P2

2
)

(
B

P2 − a2 − b2W2

)− id1r
[ p

′
1

P2 − a2 − b2W2

− (m− r + 1)p
′
1

p
′′
1

]
− ct(m+m+ 1)p

′
1

and, Z = (s1 − s2)(A+W1) +
[
t
′
1 +

A+W1

P2 − a2 − b2W2

]
[
(s1 − cp1)P1 + (s2 − cp2)P2

]
− c1s(a1 − P1)[

t
′
1 +

A+W1

P2 − a2 − b2W2

]2
− c1s(a1 − P1)[ (P2 − a2 − b2W2)t

′
1 +A+W1

P2 − a2 − b2W2

]2
− h1s

[W1

b1
− a1
b21
log(1 +

b1W1

a1
)
]

− h2s

[P2 − a2
b2

(t
′
1 +

1

b2

P2 − a2 − b2W2

P2 − a2
)

+ W2(1 +
P2

a2 − b2W2

)(t
′
1 +

A+W1

P2 − a2 − b2W2

)

− a2
b22
log(1 +

b2W2

a2
)
]
− (id1r + h2r

P2

2
)

(t
′
1 +

A+W1

P2 − a2 − b2W2

)− id2r
[ 1

b2
log(1 +

b2W2

a2
)

− ct(A+W1)−A1s −A2s −A1r −A2r

]
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The average profit ATP(k) is given by

ATP (k) =
TP

Tp2

=
Xk2 + Y k + Z

U + V k
(5)

For optimum value of ATP(k),we must have

d(ATP )

dk
= 0

⇒ V Xk2 + 2UXk + (UY − V Z) = 0

⇒ k = −U
V
±

√
U2

V 2
− UY − V Z

V X

Now
d2(ATP )

dk2

]
k=k∗

< 0

for U2X − V (UY − V Z) < 0

and UY − V Z > 0 (6)

Where k∗ is the corresponding optimal value of k and given by

k∗ = −U
V

+

√
U2

V 2
− UY − V Z

V X
(7)

Therefore ATP is concave for k = k∗ if the inequations in (6)
holds. Substituting the value of k∗ in (5) we get the optimum value
ATP ∗(k) of ATP (k).

6.2 In Fuzzy Environment
Considering all holding costs, shortage costs, set-up costs, and
transportation cost as fuzzy numbers and then from equation (5),
average total profit of the system is given by

˜ATP (k) =
TP

Tp2

=
X̃k2 + Ỹ k + Ỹ

U + V k
(8)

where X̃ ,Ỹ and Z̃ are given by

X̃ = −
[

˜c1s(a1 − p1)
[ Bp

′
1

(P2 − a2 − b2W2)2

] p
′
1

P2 − a2 − b2W2

+ ˜c1s(a1 − p1)
[ B2

(P2 − a2 − b2W2)2

]
+ h̃1r

B

P2 − a2 − b2W2[
nP2

p
′
1

p
′′
1

− (a2 + b2W2)(m− r)
]

+ h̃1r

[n
2
p
′
1 +

m+ 1

2

p
′2
1

p
′′
1

]
+ h̃2r

[ p
′2
1

2(P2 − a2 − b2W2)
+
P2 − a2 − b2W2

2
(n2 + r2

+
2nrp

′
1

p
′
1

)− n(n− 1)

2
p
′
1 − r(n+ r − 1)

p
′2
1

p
′′
1

+ nP2(n
p
′
1

p
′′
1

+ r
p
′2
1

p
′′2
1

)− a2 + b2W2

2

(
(m− r)2 + 2(m− r)(np

′
1

p
′′
1

+ r
p
′2
1

p
′′2
1

)

− (m− r)(m+ n− 1)

2
p
′2
1

)
p
′
1

P2 − a2 − b2W2

(
nP2

p
′
1

p
′′
1

− (a2 + b2W2)(m− r)
)]

+ ˜c1s
(a1 − P1)p

′2
1

2(P2 − a2 − b2W2)2

]
,

Ỹ = (s1 − s2)B +
[ B

P2 − a2 − b2W2

][
(s1 − cp1)P1

+ (s2 − cp2)P2

]
− 2 ˜c1s(a1 − P1)B

[
(P2 − a2 − b2W2)t

′
1

+
A+W1

(P2 − a2 − b2W2)2

]
+ (n+

p
′
1

P2 − a2 − b2W2

)
[
(s1 − cp1)P1

+ (s2 − cp2)P2

]
+ r(s2 − cp1)P2

p
′
1

p
′′
1

+ (s1 − s2)

(m+ n+ 1)p
′
1 − ˜c1s(a1 − p1)

[
t
′
1

+
A+W1

P2 − a2 − b2W2

] p
′
1

P2 − a2 − b2W2

− h̃1sW1

[
(n+ 1) +

mp
′
1

p
′′
1

]
− h̃2s

[
W2(1

+
P2

a2 − b2W2

)(
B

P2 − a2 − b2W2

)− a2
b22
log(1 +

b2W2

a2
)
]
− h̃2sW2

[
n+

p
′
1

P2 − a2 − b2W2

+
mp

′
1

p
′′
1

+
P2

a2 + b2W2

(n+
p
′
1

p2 − a2 − b2W2

+
rp
′
1

p
′′
1

)

− (m+ n)p
′
1

a2 − b2W2

]
− h̃1r(t

′
1 +

A+W1

P2 − a2 − b2W2

)[
nP2

p
′
1

p
′′
1

− (a2 + b2W2)(m− r)
]
− h̃2r

P2

2

[
n+

p
′
1

P2 − a2 − b2W2

+
rp
′
1

P
′′
1

− m+ n

2
p
′
1

]
− ˜id1s

rp
′
1

p
′′
1

− ( ˜id1r + h̃2r
P2

2
)(

B

P2 − a2 − b2W2

)

− ˜id1r
[ p

′
1

P2 − a2 − b2W2

− (m− r + 1)p
′
1

p
′′
1

]
− c̃t(m+m+ 1)p

′
1

and, Z̃ = (s1 − s2)(A+W1) +
[
t
′
1 +

A+W1

P2 − a2 − b2W2

]
[
(s1 − cp1)P1 + (s2 − cp2)P2

]
− ˜c1s(a1 − P1)[

t
′
1 +

A+W1

P2 − a2 − b2W2

]2
− ˜c1s(a1 − P1)[ (P2 − a2 − b2W2)t

′
1 +A+W1

P2 − a2 − b2W2

]2
− h̃1s

[W1

b1
− a1
b21
log(1 +

b1W1

a1
)
]
− h̃2s

[P2 − a2
b2

(t
′
1 +

1

b2

P2 − a2 − b2W2

P2 − a2
) +W2(1 +

P2

a2 − b2W2

)(t
′
1 +

A+W1

P2 − a2 − b2W2

)

− a2
b22
log(1 +

b2W2

a2
)
]
− ( ˜id1r + h̃2r

P2

2
)

(t
′
1 +

A+W1

P2 − a2 − b2W2

)− ˜id2r
[ 1

b2
log(1 +

b2W2

a2
)− c̃t(A+W1)− Ã1s − Ã2s

− Ã1r − Ã2r

]
6.2.1 Deterministic representation of the proposed model.
Following Grzegorzewski[14], the fuzzy numbers are now trans-
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formed to interval numbers and the expression (8) is expressed as

˜ATP (k) =
[
FL, FR

]
(9)

(For detail calculations of FL and FR , see Appendix-A)
According to Dey et.al[10], the interval problem (9) can be repre-
sented as

Maximize{FL, FC} (10)

where FC = (FL + FR)/2.

7. INTERACTIVE APPROACH
Now considering the imprecise nature of DM’s judgement, DM
may have different fuzzy or imprecise goals for each of the ob-
jective functions and hence interactive approach is used for the
man-machine interaction. To derive the membership functions µFL

and µFC
for the objective functions FL and FC respectively

from DM’s viewpoint, we first calculate individual minimum(i.e.
Fmin
L , Fmin

C ) and individual maximum(i.e. Fmax
L , Fmax

C ) by a
non-linear optimization technique. With the help of individual min-
imum and maximum, the DM can select any one from among the
following three types of membership functions

(i) Linear membership functions.
(ii) Quadratic membership functions.
(ii) Exponential membership functions.

The membership functions µFL
and µFC

for the corresponding ob-
jective functions FL and FC can be written as

µFk
=

{
1, if Fk ≤ F 0

k ,
dk, if F 0

k ≤ Fk ≤ F 1
k ,

0, if F 1
k ≤ Fk

(11)

where F 0
k and F 1

k are to be chosen such that Fmin
k ≤ F 0

k ≤ F 1
k ≤

Fmax
k and dk is a strictly monotonic decreasing continuous func-

tion of Fk which may be linear or non-linear.

7.1 Description of the Membership functions
7.1.1 Linear membership function (Type-I). For each objec-
tive function, the corresponding Linear membership functions are
as follows:

µFk
=


1, if Fk ≤ F 0

k ,

1−
F 1
k − Fk

Pk

, if F 0
k ≤ Fk ≤ F 1

k ,

0 if F 1
k ≤ Fk

(12)

where F 0
k and F 1

k are to be chosen such that Fmin
k ≤ F 0

k ≤ F 1
k ≤

Fmax
k and Pk = F 1

k−F 0
k is the tolerance of k-th objective function

Fk

7.1.2 Quadratic membership function (Type-II). For each ob-
jective function, the corresponding quadratic membership func-
tions are as follows:

µFk
=


1, if Fk ≤ F 0

k ,

1−
(
F 1
k − Fk

Pk

)2

, ifF 0
k ≤ Fk ≤ F 1

k ,

0, if F 1
k ≤ Fk

(13)

where F 0
k and F 1

k are to be chosen such that Fmin
k ≤ F 0

k ≤ F 1
k ≤

Fmax
k and Pk = F 1

k−F 0
k is the tolerance of k-th objective function

Fk.

7.2 Fuzzy decision method
After determining the different linear/nnon-linear membership
functions(MF) for each of the objective functions, following
Bellman and Zadeh[1] and Zimmermannn[36], the given prob-
lem(10)can be formulated as

Maximize λ

Subject to λ ≤ µFL
, λ ≤ µFC

(14)
0 ≤ λ ≤ 1.

with the help of two different types of membership functions given
by (12) and (13),the above problem can be restated for a particular
choice of DM as

Maximize λ

Subject to λ ≤ 1− F 1
L − FL

PL

,

if the MF of first objective ∈ Type− I,

λ ≤ 1−
(
F 1
C − FC

PC

)2

, (15)

if the MF of first objective ∈ Type− II,
0 ≤ λ ≤ 1.

Here DM selects the above membership functions for the cor-
responding objective functions. Then the above problem can be
solved by a non-linear optimization technique and optimal solu-
tion of λ, say λ∗ is obtained.
Now after obtaining λ∗, the DM selects the most important objec-
tive function from among the objective functions FL and FC . Here
FL is selected as DM would like to maximize his/her worst case.
Then the problem becomes (λ = λ∗)

Maximize FL

Subject to FL ≥ mL, FC ≥ mC (16)
0 ≤ λ ≤ 1.

Where mL = F 1
L − (F 1

L − F 0
L)(1− λ∗),

if the MF of first objective ∈ Type− I,
mC = F 1

C − (F 1
C − F 0

C)(1− λ∗) 1
2 ,

if the MF of first objective ∈ Type− II,
0 ≤ λ ≤ 1.

7.3 Pareto-optimal solution
Now, after deriving the optimum decision variables, Pareto-
optimality test is performed according to Sakawa[31]. Let the de-
cision variable k∗ and optimum values, F ∗L = FL(k∗) and F ∗C =
FC(k∗) are obtained from (16). With these values, the following
problem is solving using a non-linear optimization technique:

Minimize V = (εL + εC)

Subject to FL − εL = F ∗L,

FC − εC = F ∗C (17)
εL, εC ≥ 0, 0 ≤ λ ≤ 1.

The optimal solutions of (17), say, k, F̄L and F̄C are called strong
Pareto-optimal solutions of the problem(10) provided V is very
small; otherwise it is weak Pareto-optimal.

8
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8. NUMERICAL EXAMPLE
To illustrate the proposed inventory model, following crisp input
data are considered in table-1. We consider case-I, when fuzzy pa-
rameters are TFN and case-II when fuzzy parameter are PFN.The
nearest interval approximation according to Grzegorzewski[14] in
both cases(i.e, case-I and case-II)are given in Table-2.
Following (14) and (15), the problem (9) is solved and the results
are presented in Table-3 and Table-4.
Let, with the above values, the membership functions of the objec-
tive functions be formed of the types as per Table 5.
Let, at the beginning, analysis is performed to find optimum λ with
the membership functionsFL as linear(Type-I) andFC as quadratic
(Type-II). The optimum value of λ is presented in Table-6.
With this value of λ∗, the objective function FL is optimized and
the optimum results are given in Table-7.
Now, the results obtained from Table-7 are tested for pareto-
optimality and the pareto-optimal results are given in Table-8.

9. DISCUSSION:
In Table 8, the values of V are quite small in both cases and hence,
the optimum results in table 7 are strong Pareto-optimum and can
be accepted.Still, if the decision-maker/practitioner is not satisfied
with the outputs, he/she may perform the above analysis again
re-choosing the membership functions for FL and FC as linear,
quadratic and exponential(say). If the second time analysis does not
also give the desired result, the DM may perform the analysis with
the other possible different combinations(in this case,32 times) of
the membership functions and can select the most suitable optimum
solution for his/her firm/factory for implementation.Furthermore
we observed that the average profit is greater in case-II than Case-I.

10. CONCLUSION
This production inventory model, which comprises of two pro-
duction plants, two secondary warehouses and two showrooms,
is aiming at minimizing the overall production cost per unit
of product. In order to attain it we derived a closed form of
solution of the model. Here, two plant concepts were used in the
sense that a manufacturer / firm wanted to minimize the overall
production cost by erecting two plants in two different regions
/ areas. In a nut shell, the study suggests that the production
cost per unit of the product will minimize and thereby the total
net profit will maximize by erecting two plants out of which one
plant has substantially lower production cost per unit than the other.

Acknowledgements: Dr. Jayanta Kumar Dey thanks the Minor Re-
search Project (PSW-138, 09/10 UGC, Govt. of India) for financial
support to do this research work.
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Table 1. Input data for different crisps parameter of the model.
Parameter P1 P2 s1 s2 cp1 cp2 a1 b1 W1 a2 b2 W2 n r

value 100 200 90 70 75 50 110 .5 75 75 .5 50 11 18

Table 2. Input data for different TFN/PFN parameter of the model.
Parameter Fuzzy value Case-I Case-II
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11.1 Appendix-A

FL =
XLk

2 + YLk + YL

U + V k

and, FR =
XRk

2 + YRk + YR

U + V k
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Table 3. Individual minimum and maximum of objective function.
cases Case− I Case− II

Objective functions Minimum Maximum Minimum Maximum

FL 3561.014 3622.093 3642.440 3707.427
FC 3807.755 3881.665 3905.213 3983.940

Table 4. Input data for F 0
k ,F 1

k .
cases Case− I Case− II

Objective functions F 0
k F 1

k F 0
k F 1

k

FL 3561.015 3622.092 3642.441 3707.426

FC 3807.756 3881.664 3905.214 3983.939

where XL,XR,YL, YR, ZL and ZR are given by
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Table-5. Types of MF for objective functions.

Objective function Types of membership functions

FL Types− I
FC Types− II

Table-6: Optimal values of λ

Maximumλ Case− I Case− II
λ∗ .9975313 .9973593

Table-7: Optimal results when FL is chosen as the most important objective function

Parameter k∗ F ∗L F ∗C F ∗R
Case-I 1.084373 3621.941 3877.992 3922.341
Case-II 1.172279 3707.254 3979.894 4023.375

Table-8: Pareto-optimal results

Parameter k∗ F ∗L F ∗C V ∗

Case-I 1.084409 3621.942 3877.993 .000857474
Case-II 1.172386 3707.255 3979.897 .000847669
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