
International Journal of Computer Applications (0975 – 8887) 

Volume 96– No.19, June 2014 

 

9 

Comparative Study of Parallel Programming Models to 

Compute Complex Algorithm 

Mukul Sharma (Research Scholar) 
Department of Computer Science & Engineering,  

SBCET, Jaipur Rajasthan, India 

 
 

Pradeep Soni (Research Scholar) 
Department of Computer Science & Engineering, 

SBCET, Jaipur, Rajasthan, India 

 
4

 

ABSTRACT 
The main goal of this research is to use OpenMP, Posix Threads 

and Microsoft Parallel Patterns libraries to design an algorithm 

to compute Matrix Multiplication effectively. By using the 

libraries of OpenMP, Posix Threads and Microsoft Parallel 

Patterns Libraries, one can optimize the speedup of the 

algorithm. First step is to write simple program which calculates 

a predetermined Matrix and gives the results, after compilation 

and execution of the code. In this stage only single core 

processor is used to calculate the Matrix multiplication.  

Later on, in this research OpenMP, Posix Threads and Microsoft 

Parallel Patterns libraries are added separately and use some 

functions in the code to parallelize the computation, by using 

those functions multi-cores of a processor are allowed. Then 

execute the program and check its run time, then a timer 

function is added to the code which periodically checks the time 

it took for the computer to do the parallelization. First the 

program is run without the Parallel libraries, and then with the 

OpenMP, Posix Threads and with Microsoft Parallel Patterns 

libraries code.  

Then program is executed for each input Matrix size and result 

is collected. Maximum 5 trials for each input size are conducted 

and record the time it took for the computer to parallelize the 

Matrix multiplication.  

Finally comparison of the performance in terms of execution 

time and speed up for OpenMP, Posix Threads and Microsoft 

Parallel Patterns libraries is done using different Matrix 

Dimensions and different number of processors. 

 

Keywords: Parallel Computing, Parallel Programming models, 

Open MP, PThreads, Microsoft Parallel Patterns Libraries. 

 

1. INTRODUCTION 
Parallel computing includes all the architectures and software 

terms which are related to the applications that run concurrently 

[1]. It means that the use of more than one resource at a time to 

compute a problem to get the result is parallel computing.  

A processor is typically a unit of 32 or 64 bits or variable-length 

chunks of data that can read and run program instructions. The 

data in the instruction guide the processor that how to do the 

work. The work of  instructions are to read data from memory or 

send data to the user display as an output, but this work is done 

so fast and take very less time that one can get the results 

smoothly. 

A part of the processor that performs reading and executing the 

instruction is ‘Core’. Single core processors means one 

instruction at a time can be executed. However as the name 

implies, Multi-core processors are collection of more than one 

core, that can run multiple instruction at a time. A very common 

example would be a dual core processor [2].  

The advantage of using dual core processor in the place of single 

core is that it can either use both its cores to complete a single 

task or it can span threads which divided tasks between both its 

cores, so that it takes twice the amount of time it would take to 

execute the task than it would on a single core processor. Also 

more than one task can be performed by Multi- core processors at 

a particular time. A common example would be listening to 

music on windows media player while dual-core processor is 

running a background virus check. As Multi-core processor is 

using the shared memory so both cores share the same memory 

address, and on the same chip on a multi-core architecture. So 

memory is shared in multi-core processors, so any change in one 

core is reflected to other one. Following are the Parallel 
Programming Models used in this research: 

 

1.1 OpenMP 
OpenMP (Open Multiprocessing) can be defined as an 

Application Programming Interface  which can operate on 

different platforms for shared memory multiprocessing 

programming in C, C++ and Fortran languages, on different 

processor architectures and operating system environments, 

including Windows, AIX, HP-UX, GNU/Linux, Mac OS X, and 

Solaris platforms. It includes a set of compiler directives, library 

routines, and environment variables that affects the dynamic 

behavior [5]. Management for OpenMP is done by the nonprofit 

technical consortium OpenMP Architecture Review Board (or 

OpenMP ARB), jointly defined by a group of major computer 

hardware and software organizations, including AMD, IBM, 

Intel, Cray, HP, Fujitsu, Nvidia, NEC, Microsoft, Texas 

Instruments, Oracle Corporation, and other organizations. 

OpenMP implements a portable and scalable model which 

provides developers a simple and efficient interface for creating 

parallel programs and applications for various platforms 

including the standard desktop systems to the supercomputers. 

An application built with the hybrid model of parallel computing 

can execute upon a computer cluster using both OpenMP and 

Message Passing Interface (MPI) programming Models, or more 

clearly by the use of OpenMP extensions of non-shared Memory 

systems. 

 

1.2 Posix Threads 
The Pthreads api is basically POSIX C API thread library that has 

standardized inbuilt functions for using threads across different 

platforms. Posix Threads Provides a functionality to take full 

advantage of the capabilities provided by threads, it is a 

standardized programming Model. For UNIX systems, this 

interface has been specified by the IEEE POSIX 1003.1c 

standard (1995). Implementations that adhere to this standard are 

referred to as POSIX threads, or Pthreads. Most hardware 

vendors now offer Pthreads in addition to their proprietary API's. 

Pthreads can be defined as a collection of C language 



International Journal of Computer Applications (0975 – 8887) 

Volume 96– No.19, June 2014 

 

10 

programming types and procedure calls. Vendors usually provide 

a Pthreads implementation in the form of a header or include file 
and a library that can be easily link with any program [8]. 

 

1.3 Microsoft Parallel Patterns Libraries 
Microsoft’s Parallel Patterns Library (PPL) gives an imperative 

programming model that improves scalability as well as user 

interaction in the development of Parallel applications. The PPL 

is developed on the scheduling and resource management 

components of the Concurrency Runtime. It increases the level 

of abstraction between the application program and the 

underlying threading mechanism by providing generic, type-safe 

algorithms and containers that work on data concurrently. The 

PPL also provides a way to develop applications that scale by 

giving solutions to shared state. 

The PPL make the following features available: 

 Task Parallelism: it provides a way to perform several 

tasks in parallel 

 Parallel algorithms: they are the generic algorithms 

which works on collections of data in parallel 

 Parallel containers and objects: the generic container 

types which gives safe concurrent access to their 

elements 

2. MOTIVATION 
The high complexity of Matrix multiplication when performed 

with large dimensions motivates us to explore a new algorithm 

for fast computation, using different libraries to solve problem 

with multiple threads simultaneously. Even the system does not 

allow to declare the matrices with more than one thousand 

dimensions. 

The computation of multiplication of large matrices can involve 

billions of steps. By using this approach, one can reduce the 

memory latency and can be handled efficiently with multiple 

threads by OpenMP runtime library, Posix Threads and 

Microsoft Parallel Patterns libraries. 

 

3. PROPOSED APPROACH 
Matrix multiplication when performed with large dimension 

matrices consists the great complexity. Then first write the 

algorithm for Matrix multiplication and then modify it by adding 

the OpenMP, Posix Threads and Microsoft Parallel Patterns 

libraries and functions. Then a timer function to calculate the 

execution time for 2, 4, 6, and 8 processors using OpenMP, 

Posix Threads and Microsoft Parallel Patterns API, is added 

separately. 

A problem is faced then, that one cannot be able to define 

Matrix with more than 1000x1000 dimensions. While defining 

the Matrix with much size the “Segmentation fault” occurred. 

So dynamic memory allocation for the input Matrix is performed. 

This approach is important for this research because with large 

dimension input matrices the differences between the execution 

time and speedup is more clear for algorithm with OpenMP, 

Posix Threads and Microsoft Parallel Patterns API’s and without 

these parallel API’s. 

4. EXPERIMENTAL SETUP 

In this research, all the tests are performed under following 

specifications: 

 

a)  Host System: Intel i5 processor with 6 GB RAM and    500 

GB Hard disk. 

b) Operating Environment: Ubuntu 12.04 is used for Posix 

Threads/Open MP and Windows 8 is used for Microsoft Parallel 

Patterns libraries for all the tests. 

c)  Posix Threads api: API with gcc++ 4.7 is used. 

d) OpenMP api: Intel® OpenMPx api 4.0 

e) Microsoft Parallel Patterns api: Visual Studio 2013 is used 

for Task Parallelism. 

4.1 Performance Metrics of Parallel Systems 
a) Speedup: Speedup Sp can be defined in terms of the ratio of 

the execution time using single core of the sequential algorithm 

in order to solve a problem to the time used by the algorithm 

implementing parallel computing while solving the same 

problem on p processor [7]. All the processors used by the 

parallel algorithm must be having same characteristics with the 

processor which is used in the sequential algorithm. 

 

           
                                      

                                    
  

 

b) Execution Time: Execution time can be defined in terms of 

time consumed by an algorithm in order to solve a problem 

using processor p. 

 

c) Serial runtime: The total time consumed in the overall 

execution of the serial calculations. Generally denoted by TS. 

 

d) Parallel runtime: Total time consumed in the overall 

execution of parallel calculations, computations and processing 

elements (PE). Generally denoted by TP. 

 

5. RESULTS AND ANALYSIS 
1) Experiemnt-1: (Matrix Dimensions (500x500), 

(500x500) Execution time without using Parallel 

libraries is 0.91 Seconds. 

 

Table 1 

Execution Time and Speed Up for Matrix Dimensions 

(500x500), (500x500) 

Programming Model Execution Time Speedup (in%) 

OpenMP 0.64 42.18 

PThread 0.49 85.71 

Parallel Patterns Lib. 0.84 8.33 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 96– No.19, June 2014 

 

11 

 
Figure 1: Execution time and Speedup for Matrix 

Dimensions (500x500), (500x500) 
 

From the figure 1 it is clear that the speedup in Posix Threads is 

maximum for Matrix Dimensions (500x500), (500x500). 

 

2) Experiment-2:- (Matrix Dimensions (1000x1000), 

(1000x1000)) Execution time without using Parallel 

libraries is 9.34 Seconds. 

 

Table 2 

Execution Time and Speed Up for Matrix Dimensions 

(1000x1000), (1000x1000) 

Programming Model Execution Time SpeedUp 

OpenMP 6.01 55.40 

PThread 5.93 57.50 

Parallel Patterns Lib. 7.869 18.69 

 

 
Figure 2: Execution time and Speedup for Matrix 

Dimensions (1000x1000), (1000x1000) 

 

From the figure 2 it is clear that the speedup in Posix Threads is 

maximum for Matrix Dimensions (1000x1000), (1000x1000). 

 

3) Experiment-3:- (Matrix Dimensions (1500x1500), 

(1500x1500)) Execution time without using Parallel 

libraries is 45.89 Seconds. 

 

Table 3 

Execution Time and Speed Up for Matrix Dimensions 

(1500x1500), (1500x1500)  

Programming 
Model 

Execution Time Speedup (in %) 

OpenMP 26.63 72.32 

PThread 28.68 60.00 

Parallel Patterns 
Lib. 

32.091 
42.99 

 

 
 

Figure 3: Execution time and Speedup for Matrix 

Dimensions (1500x1500), (1500x1500) 

From the figure 3 it is clear that the speedup in OpenMP is 

maximum for Matrix Dimensions (1500x1500), (1500x1500). 

6. CONCLUSION 
As the dimensions of matrices increased, the difference between 

the execution time taken by the computer for the computation of 

matrices with OpenMP, PThread and Microsoft Parallel Patterns 

APIs increases significantly. 

For the relatively smaller dimensions of matrices Pthreads 

provides the best outcomes in terms of speedup but as the matrix 

dimensions increases OpenMP provides better outcomes 

comparatively PThreads and Parallel Patterns Libraries. 

As the number of Matrix Dimensions increased the speedup 

using Microsoft Parallel Patterns libraries doesn’t increase 

significantly because of the problem of overhead while in 

OpenMP and PThread speedup increases significantly. 

Speedup of this algorithm with OpenMP in comparison to 

PThread and Microsoft Parallel Patterns libraries would 

approach better in all the different experiments. 

7. FUTURE SCOPE 
The future of parallel computing is bright, but with great 

opportunities it includes challenges. 

0 

20 

40 

60 

80 

100 

OpenMP 
PThread 

Parallel 
Patterns Lib. 

0.64 
0.49 

0.84 

42.18 

85.71 

8.33 

Matrix Dimensions (500x500), 
(500x500) 

Execution Time SpeedUp 

0 

10 

20 

30 

40 

50 

60 

OpenMP 
PThread 

Parallel 
Patterns Lib. 

6.01 
5.93 7.869 

55.4 57.5 

18.69 

Matrix Dimensions 
(1000x1000), (1000x1000) 

Execution Time SpeedUp 

0 

20 

40 

60 

80 

OpenMP 
PThread 

Parallel 
Patterns Lib. 

26.63 28.68 32.091 

72.32 

60 

42.99 

Matrix Dimensions (1500x1500), 
(1500x1500) 

Execution Time Speedup (in %) 



International Journal of Computer Applications (0975 – 8887) 

Volume 96– No.19, June 2014 

 

12 

Generally, in a compiler implementation, the compiler can infer 

the type of the data element of the intermediate representation of 

the guarded function invocation. Therefore, it is not necessary to 

ask the programmer to specify it again in the API. So, the API 

does not need to have this field, which would make the API 

simpler and cleaner. There are other similar issues in the current 

design which can be optimized in a decent compiler 

implementation in all Programming Models. Therefore, a final 

decision on the design of the API needs a comprehensive 

discussion to decide which fields need to be kept in the API to 

make it simpler.  

The implementation of much complex algorithms such as Tower 

of Hanoi which is not possible using OpenMP API because of 

the recursion and waiting problems can be done. 

8. REFERENCES 
[1] Blaise Barney, “Introduction to Parallel Computing”, 

Lawrence Livermore National Laboratory, January 2009. 

[2] Anshul Gupta,“Introduction to Parallel Computing”, IBM 

T.J. Watson Research Center, Yorktown Heights, 2003. 

[3] George Karypis,“Parallel Algorithms and Applications”, 

University of Minnesota, Minneapolis, March 2012. 

[4] George Mozdzynski, “Concepts of Parallel 

Computing”,European Centre for Medium-Range Weather 

Forecasts, March 2012. 

[5] S. Salvini, Unlocking the Power of OpenMP, Invited   

lecture at 5th European Workshop on OpenMP (EWOMP 

’03), September 2003. 

[6] Dheeraj Bhardwaj, “Parallel Computing- A Key to 

Performance”, Department of Computer Science & 

Engineering, Indian Institute of Technology Delhi, August 

2011. 

[7] R. Parikh,“Accelerating quicksort on the intel Pentium 4 

processor with hyper–threading technology”,Software 

Community Intel, October 2007. 

[8] Werner Backes, Sussane Wetzel, “A Parallel LLL using 

Posix Threads”, Department of computer science, Stevens 

Institute of Technology. 

[9] J. Balart, A. Duran, M. Gonz`alez, X. Martorell, E. 

Ayguad´e, and J. Labarta. Nanos Mercurium,“A Research 

Compiler for OpenMP”, 6th European Workshopon 

OpenMP (EWOMP ’04), pages 103–109, September 2004. 

[10] D. an Mey,“Two OpenMP programming patterns”, 

Proceedings of the Fifth European Workshop on OpenMP - 

EWOMP’03, September 2003. 
 

9. AUTHOR’S PROFILE 
Mr. Mukul Sharma is a Microsoft Certified Professional and 

Microsoft certified Technology Specialist. He has two years’ 

experience in development with Microsoft Technologies. He is 

Pursuing his Master of Technology Degree in Computer 

Science. His area of research involves Ad Hoc Networks, 

Parallel Programming and Scalable Computing. 

 

Mr. Pradeep Soni is a Microsoft Certified Technology 

Specialist. He has two years’ experience in development with 

Microsoft Technologies. He is Pursuing his Master of 

Technology Degree in Computer Science. His area of research 

are Parallel Programming, Networking and DSA. 

 

IJCATM : www.ijcaonline.org 


