
International Journal of Computer Applications (0975 – 8887)

Volume 96– No.18, June 2014

16

An End-Around Approach for Efficient Join Query

Processing

Raksha Chauhan

 Dept. of Computer Science &
 Engineering

 Gujarat Technological University,
Gujarat

Pratik A Patel
 Dept. of Computer Science &

 Engineering
Gujarat Technological University,

Gujarat

ABSTRACT
This paper introduced a method for producing immediate and

result in multi-join query, in homogeneous and heterogeneous

environment. In recent years Adaptive or Non Blocking join

algorithms have attracted a lot of attention in streaming

applications, where data is provided from autonomous data

sources in heterogeneous network environments. This

algorithms are better as compared to traditional algorithms is

that they can generates join results as early as the first input

tuples are on hand hence it improves pipelining, smooth out

join result production and also masking source or network

delays. As response time of the queries places a very

important role in adaptive join, the join algorithm like Hash

Join, Sort Merge Join are become unacceptable for this

environment because they require preprocessing before

generating the join result. Hence, in adaptive join technique

only possible algorithm is Nested loop join. In Nested Loop

Join, every single record of the outer relation is compared

with every single record of the inner relation. The no. of

comparisons done by the nested loop join can be reduced by

making improvement in Block Nested loop Join. In proposed

End-Around Block Nested loop join outer and inner table’s

comparison is done in parallel and whenever a row in first

location didn’t find a match then row from first location

removed and placed at rear end as like in a queue, the matched

row removed from inner relation and added to result set.

Whenever, New tuple arrive is then pushed into rear end and

process is continuing with new incoming tuples in streaming

environments.

Keywords
Query processing, Streams, Joins, Block nested loop join

1. INTRODUCTION
Non Blocking join algorithms were explored to overcome the

limitations of traditional join algorithms in streaming

environments. As Non-Blocking algorithms are able to

produce results whenever input tuples are on hand, hence,

overcome situations like initial delay, slow data delivery, or

bursty arrival, which can affect the efficiency of the join. Real

time systems rarely stored all data in one large table and if to

store data in large table it would require to maintain several

duplicate copies of the same values and could destroy the

integrity of the data. Instead, IT department all time and

everywhere divide their data into several different tables for

efficient access. Because of this, a method is required which

simultaneously access two or more table using join operation.

Here, main focus is to show how join operators work in

databases.

2. EXISTING WORK
There are three basic join algorithms: Hash based join, Sort

Merge based join, Nested loop based join algorithm. There are

some other algorithms are also available. The all existing

work is given here.

2.1 Nested loop based join algorithm
In Nested loop join, every single row of one table (i.e. outer

table) compare with every single row of the other table (i.e.

inner table) based on join predicate. Inner join and outer join

are the logical operations. The cost of Nested loop join

algorithm is proportional to the size of outer table multiplied

by size of the inner table.

Algorithm:

Let the two tables R and S, algorithm is follows:

For every record of table R,

Read record from table R,

For every record of table S,

Read record from table S,

Compare the join attributes

If matched

Then Store the records

2.2 Hash based join algorithm
Hash join algorithms [2] are used mostly for joining large

tables. The algorithm of hash join is divided in two parts:

1. Build: - hash table is created using smaller table in a

memory

2. Probe: - using hash table scan larger table with hash

value

For Example:-

Consider schema of two tables Employee_Master and

Employee_Info

Create Table Employee_Master (Id int, Name varchar (20),

Designation varchar (20), Dept varchar (20))

Another table is: Create Table Employee_Info (Id int,

Dt_of_Joining Date Time)

Query is written as:-

Select Id int, Name varchar (20), Designation varchar (20),

Dept varchar (20)

From Employee_Master inner join Employee_Info

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.18, June 2014

17

On Employee_Master.Id = Employee_Info. Id

Order by Employee_Info.Dt_of_Joining desc

2.3 Sort based join algorithm
Sort merge join [3] algorithm is used to join two autonomous

data sources. When the volume of data is big in a table, short

merge join algorithm perform better than the nested loop join

algorithm but less then hash join algorithm. Its performance is

better than hash join algorithm when the joining data is

already sorted on join condition or there is no sorting

required. Existing work on adaptive join algorithms can be

classified in two groups:-hash based join and sort based join.

Examples of hash based algorithms are XJoin, MJoin, Hash

Merge join, and Progressive Merge join.

2.4 Double Pipelined Hash Join (DPHJ)
The double Pipelined Hash Join (DPHJ) [4] is another

extension of the symmetric hash join algorithm. DPHJ has

two stages. The first stage is similar to the in-memory join in

the symmetric hash join and XJoin. In the second stage, pairs

that are not joined together in the first phase are marked and

are joined in disk. DPHJ is suitable for moderate size data but

not scale well for large data sizes.

2.5 XJoin
It is a non-blocking join algorithm XJoin[5], it is optimized to

produce first few results quickly and hide delays in data

arrival by reactively scheduling background processing. We

show that Xjoin is an efficient alternative for providing fast

query responses to user even in the presence of slow and

bursty network sources.

In previous work [6] of Xjoin, we identified three classes of

delays that can affect the responsiveness of query processing:

1) Initial delay:-longer than expected wait until the first tuple

arrives from a remote source

2) Slow delivery:- data arrive at a fairly constant but slower

than expected rate

3) Bursty arrival:- data arrive in a fluctuating manner.

2.6 Hash Merge Join
HMJ [2] main idea is to minimize time to produce first few

result and produce join result if two sources of operator

already blocked. HMJ was implemented taking benefits of

XJoin and Progressive Merge Join with two phases: The

hashing phase and the merging phase. The hashing phase, in a

memory hash-based join algorithm produces join results as

soon as data arrives. In merging phase, join results produced if

the two sources are blocked.

2.7 MJoin
The basic idea of the MJoin[8] algorithm is simple: generalize

the symmetric binary hash join and the XJoin algorithms to

work for more than two inputs. Main objective of this study is

to maximize the output rate during the memory-to-memory

phase of the MJoin. Like XJoin, in MJoin, the disk to memory

phase generates outputs while its inputs are blocked, while the

disk to-disk phase generates final answers after the inputs

have terminated.

2.8 Progressive Merge Join
PMJ [3,10] is non-blocking version of the sort merge join

algorithm. It splits the memory into two partitions, as tuples

arrives; they are inserted in their memory partition. When the

memory exhaust, the partitions are sorted on the join attribute

and are joined using any memory join algorithm. Thus,

resultant tuples are obtained each time the memory gets

exhausted. Partition pair (i.e., the bucket pairs that were

simultaneously flushed each time the memory was full) is

copied on disk. After the data from both sources completely

arrives, the merging phase begins. The algorithm defines a

parameter F, the maximal fan-in, which represents the

maximum number of disk partitions that can be merged in a

single “turn”. F/2 groups of sorted partition pairs are merged

in the same fashion as in sort merge. In order to avoid

duplicates in the merging phase, a tuple joins with the

matching tuples of the opposite relation only if they belong to

a different partition pair arrives. Merging phase is switch

when two sources are blocked and hence produce join results.

2.9 Rate based Progressive Join
RPJ [9] is the most recent and advanced adaptive join

algorithm. It is the first algorithm that tries to understand and

exploit the connection between the memory content and the

algorithm output rate. During the online phase it performs as

HMJ. When memory is exhausted, it tries to find which tuples

have the smallest chance to participate in joins. In this Rate-

based Progressive Join dynamically changes its execution

according to its data properties i.e distribution, arrival pattern,

etc. RPJ introduced a novel optimal flushing algorithm which

is based on the same data statistics i.e distribution, arrival

pattern, etc and significantly enhances the efficiency of the

memory stage. Furthermore, RPJ maximizes the output rate

by invoking the memory-disk and disk-disk in a strategic

order, i.e., the next stage is selected for execution which is the

one expected to produce the higher output rate.

3. PROPOSED SYSTEM
In Block Nested Loop Join[7], To join relations ‘r’ and

relation ‘s’, the outer loop reads the blocks of relation ‘r’ and

inner loop reads the blocks of relation ‘s’. If there is enough

memory to fit relations ‘r’ and‘s’ than the join operation is

done more efficiently. The number of disk accesses is done in

Block Nested loop Join – is to read the blocks of relation ‘r’

and to access the disk for reading the blocks of relation ‘s’.

Algorithm: Block Nested Loop Join

for each block bR of ‘r’ do

{blocks of relation ‘r’ are scanned one by one.

for each block bS of s do

{blocks of relation ‘r’ are scanned one by one.

Compute bR *bS in memory

}}

The BNLJ algorithm is improved version of the NLJ

algorithm, it is used for transferring blocks of participating

relation efficiently rather than transferring the tuples in the

join operation. BNLJ works by reading a block of tuples from

the outer and inner relation. In one block at a time-BNLJ,

each relation chunk’s is transferred for join operations in a

memory from hard disk.

Block nested loop join algorithms creates blocks of outer

relation that fit into input buffer pages of memory and then

scanning is performed over the inner relation ‘s’ for every

single block of the outer relation. Key on outer relation, for

every single block of relation ‘r’ is scanned, the bS blocks of

relation‘s’ are scanned and for bR blocks of relation ‘r’, the

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.18, June 2014

18

(bS *bR) times the blocks of relation‘s’ are scanned. The total

block transfer is ((bR * bS) + bR) [7].

Improvement is here over nested loop join is disk input and

output rate is improved. But no of comparison is same as in

case of nested loop join. So here as parts of extension of

proposed block nested loop join algorithm is to make it more

suitable for online environment by reducing no. of

comparison. Technique is discussed below.

In the Block Nested loop join every single row of the outer

relation is compared with every single row of the inner

relation same as like Nested loop join, thus results in a

Cartesian product as shown in below fig 1.Here two tables

Department table and Student table are subject to Join

Operation

Eno Dept_id Name Dept_Name

1 111 Deepak Computer

2 111 Sarika Computer

3 112 Sneha Mechanical

4 113 Priya IT

5 114 Ajay Civil

6 114 Vishal Civil

7 115 Manisha Electrical

8 116 Soniya EC

9 117 Rahul Automobile

10 117 Rima Automobile

Fig 1: Actual Processing of Block Nested loop Join

For every single record of the inner relation, outer relation’s

all records are scanned, if there is any match found then those

matched results are taken out in a new table. Execution time is

calculated.

Here suppose the outer table has 'n' records and inner table has

'm' records, than the no of comparisons is 'n*m' has been

made for results. By using End-Around approach in

comparison to be used instead of conventional approaches in

an existing block nested loop joins to maximize the no. of

resultant tuples.

In the proposed End-Around approach, outer relation(or outer

table) is a relation containing less number of records and other

table containing a higher record then outer relation is inner

relation(or inner table).

First step, outer relation’s all rows are compared with inner

relation’s rows in parallel at a time.

Second Step, while comparing the matching rows is removed

from the relation “inner” and is added to the result set.

Third Step, when a row did not find a match in the first

location, it is again added in the rear part of the relation (or

table) as shown in below fig 2.

Fourth Step, from the outer relation when the matching rows

are removed, empty space is created where other rows are

inserted in a way takes place in the queue.

Fig 2: Records pushed to the table in the form of a queue

In steaming join where the tuples are continues arriving at

different rate, this type of join can be used. As long as tuples

arrives in a system added to the rear end of the tables and

unmatched rows which is moved upward in a table are again

added into the rear end to find a match with outer relation.

The following fig 3-13 will explain this Join technique.

Fig 3: Matched found, two rows are moved into the result

set

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.18, June 2014

19

Fig 4: No matched found, inner table first row moved to

the rear end

Fig 5: Matched found, one row is moved into the result set

Fig 6: Matched found, two rows are moved into the result

set

Fig 7: No matched Found, inner table first row moved to

the rear end

Fig 8: Matched found, one row is moved into the result set

Fig 9: No matched found, inner table first row moved to

the rear end

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.18, June 2014

20

Fig 10: No matched found, inner table first row moved to

the rear end

Fig 11: No matched found, inner table first row moved to

the rear end

First block of outer relation is completely compared with

inner relation this is shown in fig 3 to 11. Now, Second block

of outer relation is compared with inner relation is shown

below.

Fig 12: Matched found, one row is moved into the result

set

Fig 13: Matched found, three rows are moved into the

result set and new incoming tuple inserted to rear end

With our approach we have seen that all the rows of outer

relation is get compared with inner relation in less time and if

new tuples arrive that add at the rear end and comparison of

inner and outer relation continue in parallel fashion as

discussed above. Number of comparison is less as compared

to Block Nested loop and Nested loop Join.

By using this technique no of comparison of Block Nested

Loop Join is reduced, hence it reduces join time processing

and increases output tuples with fast rate. In streaming

Environment Fast early or partial results are vary essential for

further processing.

Here, It is seen that with End-Around approach all the rows of

outer relation has been compared with inner relation and also

if new tuples arrive that push at the rear end. With new

streaming tuples join process is continue and comparison is

done in parallel fashion same as discussed above.

4. EXPERIMENT RESULTS
The given below graph shows the no. of comparisons required

to perform the Nested Loop Join and Proposed End-Around

Technique (EBNLJ for short). The no. of comparison is

greatly reduced in proposed End-Around technique. End-

Around BNLJ and Nested Loop Join behaves similar in worst

case situation. In streaming environment worst case situation

take place very rarely.

Fig 14: Shows Comparison of Nested Loop Join and End-

Around Technique

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.18, June 2014

21

The performance of proposed End-Around Block nested join

and DINER algorithm is calculated on the basis of throughput

i.e the number of joined tuples per unit time. By using

proposed End-Around algorithm the number of joined tuples

is increased. For example, DINER produced 76 joined tuples,

whereas End-Around technique produces 121 joined tuples in

15millisecond.

Fig 15- Performance comparison of proposed End-Around

Technique and DINER

5. CONCLUSIONS
The major benefit of adaptive or Non Blocking join algorithm

is that they can start generating joining results as early as the

first input tuples are on hand. Nested loop join is the one join

algorithm that can produce the output without any pre-work.

In Nested Loop Join every single row of the outer relations

are compared with the inner relation, which is same as

Cartesian Join. Proposed End-Around technique reduced the

number of comparisons compared to nested loop join and

DINER. Using proposed End-Around approaches, the no. of

comparison are reduced, hence, increased the no. of resultant

tuples which is produced per unit of time.

Hence, it is proved that in 15millisecond, the End-Around

BNLJ produced 121 tuples and DINER produced 76 tuples.

For future work, the flushing policy can be enhanced by

considering more factors to specify which tuples have to be

flushed. The flushing policy has a significant role in

improving the performance of the join operation.

6. REFERENCES
[1] Mihaela A.Bornea, Vasilis Vassalos, Yannis Kotidis,

Antonios Deligiannakis, “Adaptive Join Operators for

Result Rate Optimization on Streaming Inputs”, In IEEE

Trans. Knowl. Data Eng. 22(8): 1110-1125 (2010).

[2] M. F. Mokbel, M. Lu, and W. G. Aref. “Hash-Merge

Join: A Non blocking Join Algorithm for Producing Fast

and Early Join Results” In ICDE Conf., 2004.nal

conference on very large databases 2003.

[3] J. Dittrich, B. Seeger, and D. Taylor. “Progressive merge

join: A generic and non-blocking sort-based join

algorithm” In Proceedings of VLDB, 2002.

[4] Z. G. Ives, D. Florescu, and et al. “An Adaptive Query

Execution System for Data Integration” In SIGMOD,

1999.

[5] T.Urhan and M.J.Franklin, ”Xjoin: A Relatively

scheduled pipelined join operator”, In IEEE Data

Eng.Bull,23920,2000

[6] T. Urhan, M. J. Franklin and L. Amsaleg. “Cost Based

Query Scrambling for Initial Delays”, In ACM SIGMOD

Conf., Seattle, WA, 1998.

[7] Deepak Shukla, Dr. Deepak Arora, Rakesh Kr.Pandey,

K.K Agarwal, “An Efficient Approach of Block Nested

Loop algorithm based on Rate of Block Transfer” In

International Journal of Computer Application,Volume-

21,No 3,May-2011

[8] S.D Viglas,J.F.Naughton and J.Burger, “Maximizing the

output rate of multi-way join queries over streaming

information sources”. In VLDB 2003: proceeding of the

29th international

[9] Y. Tao, M. L. Yiu, D. Papadias, M. Hadjieleftheriou, and

N. Mamoulis. “RPJ: Producing Fast Join Results on

Streams Through Rate-based Optimization”In

Proceedings of ACM SIGMOD Conference, 2005.

[10] J. Dittrich, B. Seeger, and D. Taylor. “Progressive merge

join “On producing join results early”, In. ACM

SIGMOD, 2003

[11] Mihaela A. Bornea, Vasilis Vassalos, Yannis Kotidis,

and Antonios Deligiannakis. “Double index nested-loop

reactive join for result rate optimization”. In Proc. Intl.

Conf. onData Engineering (ICDE), pages 481–492, 2009.

[12] G. Abdulla, T. Critchlow, and W. Arrighi, “Simulation

Data as Data Streams,” SIGMOD Record, vol. 33, no. 1,

pp. 89–94, 2004.

IJCATM : www.ijcaonline.org

