
International Journal of Computer Applications (0975 – 8887)

Volume 96– No.18, June 2014

8

Optimal Round Robin CPU Scheduling Algorithm using

Euclidean Distance

Merwyn D’Souza
Assistant Professor

Department of Computer
Engineering

Don Bosco College of
Engineering, Goa -India

Fiona Caiero
Assistant Professor

Department of Computer
Engineering

Padre Conceicao College of
Engineering, Goa-India

Suwarna Surlakar
Assistant Professor

Department of Computer
Engineering

Padre Conceicao College of
Engineering, Goa-India

ABSTRACT
The performance of Round robin CPU scheduling algorithm is

entirely dependent on the time quantum selected. This paper

describes a new method to calculate the time quantum without

user intervention by finding the relationship between the burst

times of all processes in the ready queue using a similarity

measure known as the Euclidean distance. Similarity measure

is used to find patterns in the burst times of processes present

in the ready queue.

General Terms
Operating Systems, Algorithms, Efficiency.

Keywords
Round Robin, Scheduling algorithms, Time Slice, Time

Quantum, CPU scheduling, Turnaround Time, Waiting Time,

Context Switch.

1. INTRODUCTION
CPU scheduling is an essential operating task. The problem of

determining when processor should be assigned and to which

processes is called processor scheduling or CPU scheduling.

CPU scheduling is of two types preemptive scheduling and

non-preemptive scheduling. Preemptive scheduling allows a

process to be interrupted in the midst of execution. Non-

preemptive scheduling does not allow a process to be

interrupted in the midst of execution.

When more than one process is runnable, the operating system

must decide which one must be scheduled first. The part of

the operating system concerned with this decision is called the

scheduler, and algorithm it uses is called the scheduling

algorithm.

1.1 Scheduling Criteria
Different CPU scheduling algorithms have different

properties, and the choice of a particular algorithm may favor

one class of processes over another. In choosing which

algorithm to use in a particular situation, one must consider

the properties of the various algorithms. Many characteristics

can be used to compare scheduling algorithms. The

scheduling criteria include the following:

CPU utilization: Keep the CPU as busy as possible (ranges

from 0 to 100 percent).

Throughput: It is the number of processes completed per unit

of time.

Turnaround time: It is the interval from the time of

submission of a process to the time of completion.

Waiting Time: It is the sum of the periods spent waiting in the

ready queue.

Response time: It is the time from submission of a request

until first response is produced.

1.2 Scheduling Algorithms
First Come First Served (FCFS) [1] is the simplest algorithm,

the process that requests the CPU first is allocated the CPU

first. Being a non-preemptive algorithm, once a process has

the CPU, it runs to completion. Thus it is undesirable for

time-sharing systems where each process needs a share of

CPU at regular intervals.

Shortest-Job-First (SJF) algorithm [1] gives CPU to the

processes having smallest next CPU burst. The SJF algorithm

can be preemptive or non-preemptive. The main difficulty of

SJF is to know in advance the length of the next CPU burst.

Priority scheduling algorithm [1] assigns priorities to ready

processes and CPU is allocated to the process with highest

priority. A major problem of priority based scheduling

algorithms is that lower priority processes may be starved of

CPU time due to frequent execution of higher priority

processes.

Round Robin Scheduling algorithm [1] employs time-sharing,

giving each process a certain amount of CPU time (a time

slice or time quantum) and if it is not finished by the end of

the time slice, the process is moved to the back of the process

queue, and the next process in line is moved to the CPU.

2. RELATED WORK
Rami J. Matarneh [2] proposed a method that calculates

median of burst time of all processes in ready queue. Mostafa

et al. [3] proposed a new method using integer programming

for finding the value of time quantum. The method depends

on changing time quantum in each round over the cyclic

queue. Ahad [4] proposed to modify the time quantum of a

process based on some threshold value which is calculated by

taking average of left out time of all processes in its last turn.

Hiranwal et al. [5] introduced a concept of smart time slice

which is calculated by taking the average of burst time of all

processes in the ready queue if number of processes are even

otherwise time slice is set to mid process burst time.

Yaashuwanth et al [6] introduced a term intelligent time slice

which allocates the frame exclusively for each task based on

priority, shortest CPU burst time and context switch

avoidance time. Behera et al. [7] proposed an approach in

which the process are arranged in ascending order of the burst

time and then an optimal time quantum is calculated using the

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.18, June 2014

9

median concept, which means that if the number of processes

in the ready queue is odd, the burst time of the middle process

will become the time quantum, otherwise the average of the

two middle processes will become the time quantum. .Noon et

al. [8] proposed to calculate the time quantum by taking

average of the burst time of all the processes in ready queue.

Alam [9] proposed a method to determine time quantum using

fuzzy logic. It uses two fuzzy inference systems, one for

finding the time quantum value and another for deciding the

preemption. Banerjee et al.[10] proposed an algorithm which

first sorts all the processes according to the burst time and

then finds the time quantum by taking average of burst time of

all process from mid to last. Nayak et al. [11] calculated the

optimal time quantum by taking the average of highest burst

and median of burst.

3. PROPOSED WORK
A major disadvantage of round robin is that a process is pre-

empted and context switch occurs, even if the running process

requires time (in fractions) which is slightly more than

assigned time quantum. Another problem with round robin is

the time quantum selection. If time quantum is too large, the

response time of the processes is too much, the algorithm

degenerates to FCFS which may not be tolerated in an

interactive environment. If time quantum is too small, it

causes unnecessarily frequent context switches leading to

more overheads resulting in lesser throughput.

Since random selection of time quantum can lead to an

inefficient round robin algorithm, the proposed new algorithm

Optimal Round Robin (ORR) determines a dynamic time

quantum without user intervention based on the similarity of

the burst times of all processes present in the ready queue.

Similarity is the measure of how much alike two data objects

are. Similarity determines how the burst times of processes in

ready queue are related to each other. Based on the

relationship of burst times with each other, a time quantum is

calculated. The similarity is calculated using Euclidean

distance measure.

3.1 Euclidean Distance
In mathematics the Euclidean distance [12] or Euclidean metric

is the "ordinary" distance between the two points that one

would measure with a ruler, which can be proven by repeated

application of the Pythagorean Theorem. The proposed new

algorithm on round robin uses Euclidean distance to

determine a time quantum based on similarity of burst times

of all processes in the ready queue.

The Euclidean distance between point p and q is the length of

the line segment connecting them (p,q). In Cartesian

coordinates, if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two

points in Euclidean n-space, then the distance from p to q, or

from q to p is given by:

 =

3.2 Proposed Methodology
The proposed algorithm known as Optimal Round Robin

(ORR) algorithm selects a time quantum based on the

Euclidean distance (ED) of burst times of all processes in

ready queue and a factor known as Quantum factor (Qf).The

ED finds the distance (similarity) between the burst times of

all processes in ready queue. The Qf factor multiplied with the

ED gives a time quantum large enough to schedules majority

of the processes in a single time quantum thereby reducing the

waiting times, turnaround times and number of context

switches. Based on experiments it is found that best Qf value

is 0.4. The time quantum chosen is large enough so that

processes require less waiting times; small enough so that

number of context switches are reduced.

3.3 Optimal Round Robin Algorithm
The following data structures are needed:

Process (Pi). Number of processes in ready queue for i=1, 2,

3,4,…...n

Burst Time (Bi): Processing time required by each Pi

1. Calculate the Euclidean Distance ‘ED’ of the cpu burst

times of processes present in ready queue

2. time quantum = ED * Qf ; //consider as integer

3. Schedule processes according to the calculated time

quantum.

4. EXPERIMENTS
For the purpose of simplicity, a demonstration is done using

group of five processes in three different cases that the ORR

algorithm is more efficient than the classic Simple Round

Robin (SRR). For SRR, a time quantum is assumed in all

cases in order to compare the two algorithms fairly.

Case 1: Assume five processes arrive at time 0 with following

burst times: P1=24, P2=11, P3=31, P4=12, P5=20.

The Euclidean distance (ED) calculated is 37

Time quantum (ORR) = ED * Qf = 37 * 0.4 = 14

Fig 1: SRR Gantt Chart (case 1)

Fig 2: ORR Gantt Chart (case 1)

Table 1. Comparison between SRR and ORR (case 1)

Algorithm

Time

Quantum

Waiting

Time

Turnaround

time

Context

Switch

SRR 8 56.7 76.4 14

ORR 14 49.2 68.8 9

Case 2: Assume five processes arrive at time 0 with following

burst times: P1=7, P2=13, P3=24, P4=10, P5=18.

The Euclidean distance (ED) calculated is 27

Time quantum (ORR) = ED * Qf = 27 * 0.4 = 10

P1 P2 P3 P4 P5 P2 P3 P5 P3

0 7 17 27 37 47 50 60 68 72

Fig 3: ORR Gantt Chart (case 2)

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P3 P5 P3

0 8 16 24 32 40 48 51 59 63 71 79 87 91 98

P1 P2 P3 P4 P5 P1 P3 P5 P3

0 14 25 39 51 65 75 89 95 98

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.18, June 2014

10

Fig 4: SRR Gantt Chart (case 2)

Table 2. Comparison between SRR and ORR (case 2)

Algorithm
Time

Quantum

Waiting

Time

Turnaround

time

Context

Switch

SRR 6 39.4 54 14

ORR 10 32.4 46.7 9

Case 3: Assume five processes arrive at time 0 with following

burst times: P1=10, P2=14, P3=33, P4=29, P5=7.

The Euclidean distance (ED) calculated is 30

Time quantum (ORR) = ED * Qf = 30 * 0.4 = 12

P1 P2 P3 P4 P5 P2 P3 P4 P3 P4

0 10 22 34 46 53 55 67 79 88 93

Fig 5: ORR Gantt Chart (case 3)

Fig 6: SRR Gantt Chart (case 3)

Table 3. Comparison between SRR and ORR (case 3)

Algorithm Time

Quantum

Waiting

Time

Turnaround

time

Context

Switch

SRR 6 46.4 65 18

ORR 12 41.2 59.7 10

Fig 7: Difference in Waiting time between SRR and ORR

Fig 8: Difference in Turnaround time between SRR and

ORR

Fig 7: Difference in Context switch between SRR and

ORR

From the above comparisons and as can be seen in fig 7, fig 8

and fig 9, the ORR algorithm using Euclidean distance

method for calculating time quantum is clearly more efficient

than the SRR algorithm resulting in reduction of turnaround

time , waiting time and context switches.

Although three cases with each case having five processes are

shown, the number of processes does not affect the working

of ORR algorithm as it works well even with large number of

processes.

5. CONCLUSION AND RESULTS
The performance of round robin algorithm is entirely

dependent on the time quantum selected. Many attempts have

been made in the past to select an optimum time quantum.

Some approaches required making use of other algorithms

like shortest job first or priority scheduling, thereby carries

forward the deficiencies of those algorithms into round robin

scheduling.

The Optimal Round Robin (ORR) determines the time

quantum by taking account the similarity or differences of the

burst times of all processes present in the ready queue. The

ORR does not require priorities to be assigned to the jobs nor

does it require the jobs to be sorted according to their burst

times. It results in better performance of round robin

algorithm with reduction in context switches, turnaround

times and waiting times. The time quantum determined

through ORR is dynamic in the sense that no user intervention

is required and the time quantum is related to the burst times

of processes present in the ready queue.

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P2 P3 P5 P3

0 6 12 18 24 30 31 37 43 47 53 54 60 66 72

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P2 P3 P4 P3 P4 P3 P4 P3

0 6 12 18 24 30 34 40 46 52 53 55 61 67 73 79 85 90 93

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.18, June 2014

11

The ORR algorithm performs better than the classic round

robin algorithm.

6. REFERENCES
[1] Operating System Concepts ,8th Ed.,Abraham

Silberschatz, Peter B. Galvin, Grege Gagne . ISBN 978-

81-265-2051-0.

[2] Rami J Matarneh. , “Self adjustment time quantum in

round robin algorithm depending on burst time of the

now running process”, American Journal

[3]Samih M. Mostafa, S. Z. Rida, Safwat H. Hamad, “Finding

time quantum of round robin CPU scheduling, algorithm

in general computing systems using integer

programming” October 2010, IJRRAS 5 (1)

[4] Mohd Abdul Ahad,” Modifying round robin algorithm for

process scheduling using dynamic quantum precision”,

International Journal of Computer applications(0975-

8887) on Issues and Challenges in Networking,

Intelligence and Computing Technologies- ICNICT

2012.

[5] Saroj Hiranwal and Dr. K.C. Roy, “ Adaptive round robin

scheduling using shortest burst approach based on smart

time slice”, International Journal of Data Engineering,

volume 2, Issue.3, 2011.

[6] Yaashuwanth C. & R. Ramesh, “ Intelligent time slice for

round robin in real time operating system, IJRRAS 2 (2),

February 2010.

[7] H.S.Behera, R. Mohanty, Debashree Nayak, “A New

Proposed Dynamic Quantum with Re-Adjusted Round

Robin Scheduling Algorithm and its Performance

Analysis”, Volume 5-No. 5, August 2010, International

Journal of Computer Application(0975-8887)

[8] Abbas Noon , Ali Kalakech and Saifedine Kadry, “ A new

round robin based scheduling algorithm for operating

systems: dynamic quantum using the mean average”

IJCSI International Journal of Computer Science Issues,

Vol. 8, Issue 3, No. 1, May 2011.

[9] Bashir Alam, “Fuzzy round robin cpu scheduling

algorithm”, Journal of Computer Science 9 (8): 1079-

1085, 2013.

[10] Pallab Banerjee, Probal Banerjee and Shweta Sonali

Dhal, “Comparative performance analysis of mid average

round robin scheduling (MARR) using dynamic time

quantum with round robin scheduling algorithm having

static time quantum”, International Journal of Electronics

and Computer Science Engineering, ISSN-2277-1956

2012.

[11] Debashree Nayak , Sanjeev Kumar Malla and Debashree

Debadarshini, “Improved round robin scheduling using

dynamic time quantum”, International Journal of

Computer Applications (0975-8887) Volume 38- No 5,

January 2012.

[12] http://en.wikipedia.org/wiki/Euclidean_distance

IJCATM : www.ijcaonline.org

