
International Journal of Computer Applications (0975 – 8887)

Volume 96– No.14, June 2014

22

Validate the Correctness of Object Oriented Program

with Regression Testing

Tarun Kumar
Assistant Professor

Vidya College of Engineering
Bagphat Road, Meerut (India)

Mayank Singh
Associate Professor

Krishna Engineering College
Mohan Nagar, Ghaziabad

Arun Sharma
Professor & Head, CSED
KIET, Ghaziabad (India)

ABSTRACT
Regression testing is used to validate the correctness of

upgrades version of any program or software. The newly

introduced features in the system under test are compared with

the existing versions which determine the proper

implementation of regression testing. The verification is done

in a way that the modification made in the SUT does not

interfere with the existing features, in this paper two program

with new version of each are being put to regression testing

with old and new test cases to check the satisfiability of

regression testing. Software developers often face the

challenge of projecting the difference in behaviour of one

version of a program unit as compared to the upgraded on of

the same program unit, for such situations, the developers

need to generated test cases between the existing and

upgraded version, if any exist.

Keywords
SUT, Regression Testing

1. INTRODUCTION
In the software development life cycle, regression testing

comes under software testing phase and is an important

activity which is used to validate the modification and to

ensure that no other parts of the program have been affected

by the change. The retesting of a program or software to

verify that the change have no lead the software to fail and the

product or software still complies or successful run with its

specified requirements [1]. Software is said to regress if 1) a

new modules or component is added, or 2) a modification

done to the existing modules affects other parts of the

program. Therefore, it is essential to retest not only the

changed code but also to retest the possible affected code due

to the change. Due to regression testing activity, extra cost

includes in development cost and typically accounts for half

of the total cost of software maintenance [2].
The environments in which the changed software is tested

frequently, regression test selection techniques [2]. For

example, consider an environment in which nightly builds of

the software are performed and a test suite is run on the newly

built version of the software. Under the regression test

selection approach, a small subset of the test suite is selected

for testing the new version of the software. This enhance the

effectiveness of the testing the time required for testing

strategy by reducing the time required for testing due to the

utilization of a subset of the test suite.
For instance, considering a development environment that

include a regression test selection components, where in the

developers often modifying their software can be the

regression test selection to select a subset of the test suite for

testing. This strategy helps in locating errors during the early

stage of development as the developers can frequently test

their software while making the changes in the software [2].

The techniques are also effective when the cost of test cases is

high. For example, reduction of one test case in the regression

testing of avionics software may result in saving one

thousands of dollars in the testing resources.

2. HOW TO DO REGRESSION

TESTING
Regression testing is done by well defined methodology

because it is the final type of testing i.e. normally performed

just before release the software. The following steps for

regression testing are:
 Initially perform an initial “smoke” or “sanity” test.
 Design the best test case which id based on well

defined criteria.
 categorize the test cases
 Methodology for each selected test cases.
 Retest the test cases to ensure the impact the

modification.
3. HISTORY
The object oriented concept like classes, object, abstraction,

encapsulation, inheritance, dynamic binding, and

polymorphism gives the new idea for software development

and also give the idea about the relationship between classes

and their attributes [2]. They not only introduce new testing

problems as recognized in Harrold et al. (1992), Perry and

Kaiser (1990), Smith and Robson (1990), and Wild and Huitt

(1991), but also raise a new and Challenging question of how

to conduct regression Testing for object oriented programs.

Regression testing can be found in Leung and White (1989)

and Hartman and Robson (1988). The four fundamental

problems:
To find out the affected on the function or part of the program

automatic is the first problem. Harrold and Soffa (1988)

proposed a method to study the change effects within a

module. The concept behind the analysis of impact of change

in module is to use of a data flow graph. The benefit of this

methodology is that to save time and test effort because by

retesting only the affected define-use paths and new paths.

The technique has been extended so that it can also be used to

identify affected procedures at the inter-procedural level

(Harrold and Soffa, 1989) [1]. A lot of techniques are

proposed by the researchers based on a control flow graph of a

procedure/function to identify the affected control paths in a

module (Laski and Szermer, 1992; Prather and Meyers, 1987)

[3].
The second problem of regression testing comes under cost

benefits analysis. And concern with the how we can design

effective test case for conducting retests so that test effort and

costs are minimized. Testing divided into three categories first

top-down in which we start the testing at the root and second

bottom-up ,where we start the testing from bottom and third

sandwich approaches (Bezier, 1990), where we test parallel

form bottom to up and from top to down., These come up to

International Journal of Computer Applications (0975 – 8887)

Volume 96, June 2014

rely on the tester to make the selection. Prather and Myers

(1987) proposed an adaptive-path prefix software-testing

strategy that used previous test paths as a guide in the

selection of subsequent paths. Their method ensures branch

coverage and consumes fewer computational resources

Harrold et al. (1992) [4] presented an incremental testing

methodology based on class inheritance hierarchy. The

approach suggests that the base class should be tested before

derived classes so that the test cases and relevant information

of the base class can be reused in testing the derived classes.
The third problem of regression testing concerns coverage

criteria. Fischer [5-6] (1977; Fischer et al. 1981) and Prather

and Myers (1987) [7], respectively, described the various

retest criteria relating to path coverage of a

function/procedure. Leung and White (1990a; White and
Leung, 1992) used firewalls as a retesting criteria at module

level to ensure that all affected modules and links between

modules will be retested.
The selection, reuse, and modification of existing test cases

for retesting are the fourth problem. The test case selection

problem discussed by Fischer (1977; Fischer et al.; 1981)

which is based on the set covering problem. Unit regression

testing covers one of the path criteria which are based on the

concept of 0-l integer-programming models to find the

minimum test cases. And same concept of 0-1 integer-

programming model on a test matrix to minimize test efforts

in functional regression testing used by Lee and He, (1990)

[8] also used the. Leung 1991 and White proposed corrective

regression testing in which a retest strategy for performing is

used. Two sub problems comes to view regression testing: the

test selection problem i.e. a good test case is one which can

find out the maximum number of error and the test plan

update problem. Thus, the retesting process is divided into

two phases: fist phase to classification of test case and second

to update the test plan. After the existing test cases are

classified into reusable tests, obsolete tests, and retest able

tests in the test classification phase, during the regression

testing new test cases are considered for testing.
4. REGRESSION TEST SELECTION

ALGORITHMS
Although object-oriented languages have been available for

some time, only two safe regression-test-selection algorithms

that handle features of object-oriented software have been

developed [9-10]. However, both approaches are limited in

scope and can be imprecise in test selection. Rother- Mel,

Harrold, and Dedhia's algorithm [9] was developed for only a

subset of C++, and has not been applied to software written in

Java. The algorithm does not handle some features that are

commonly present in object-oriented languages; in particular,

it does not handle programs that contain exception-handling

constructs. Furthermore, the algorithm must be applied to

either complete programs or classes with attached drivers. For

classes that interact with other classes, the called classes must

be fully analysed by the algorithm. Thus, the algorithm cannot

be applied to applications that call external components, such

as libraries, unless the code for the external components is

analysed with the applications. Finally, because of its

treatment of polymorphism, the algorithm can be very

imprecise in its selection of test cases. Thus, the algorithm can

select many test cases that do not need to be rerun on the

modified software White and Abdullah's approach [10] also

does not handle certain object-oriented features, such as

exception handling. Their approach assumes that information

about that classes that have undergone specification or code

changes is available. Using this information, and the

relationships between the changed classes and other classes,

their approach identifies all other classes that may be affected

by the changes; these classes need to be retested. White and

Abdullah's approach selects test cases at the class level and,

therefore, can select more test cases than necessary
This paper presents the safe regression-test-selection

technique for C++ using two programs in C++ that efficiently

handles the features of the Java language, such as

encapsulation, polymorphism, inherientance, dynamic

binding, data abstraction and exception handling. Our

technique is an adaptation of Rother Mel and Harold’s graph-

traversal algorithm [9] [11], which use a control-flow-based

representation or algorithms of the original and modified

versions of the software to select the test cases to be rerun.

Our new algorithm efficiently represents C++ language

features, and modified algorithms or LOC in program safely

selects all test cases in the original test suite that may reveal

faults in the modified software. Thus, unlike previous

approaches, our technique can be applied to common

commercial software or program written in objected oriented

language like C++ or others.
5. REGRESION TESTING
Our analysis assume the existence of an original program P

and a changed program P' derived from P. both p and P' are

assumed to be syntactically correct and compliable. But we

impose no restrictions on the number or the nature of the

changes than transform P into P'. We assume that an idea

provides information about the files, cases and method that

have been edited. Alternatively, one can rely on a utility like

different to obtain this information.
The program, P, the modified version of P is P’, and a test

suite is T.
Leung and White categorise test cases into five classes. The

first three classes consist of test cases that already exist in T.
 Reusable: Reusable test cases only execute the parts of

the program that remain unchanged between two

versions, i.e. the parts of the program that are common

to P and P'. It is unnecessary to execute these test cases

in order to test P'; however, they are called reusable

because they may still be retained and reused for the

regression testing of the future versions of P.
 Retest able: Test cases execute the parts of P that have

been changed in P'. Thus retest able test cases should be

re-executed in order to test P'.
 Obsolete: Test cases can be rendered obsolete because 1)

their input/output relation is no longer correct due to

changes in specifications, 2) they no longer test what

they were designed to test due to modifications to the

program, or 3) they are ‘structural’ test cases that no

longer contribute to structural coverage of the program.

The remaining two classes consist of test cases that

have yet to be generated for the regression testing of P'.
 New-structural: New-structural test cases test the

modified program constructs, providing structural

coverage of the modified parts in P'.
 New-specification: New-specification test cases test the

modified program specifications, testing the new code

generated from the modified parts of the specifications

of P' [12]

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.14, June 2014

24

Program 1: sqrt.cpp (P)
1. #include<iostream.h>
2. #include<stdio.h>
3. #include<conio.h>
4. class Square
5. { public:
6. float Square_root(float q);
7. };
8. float Square:: Square_root(float q)
9. { float i , j;
10. i = q;
11. do
12. { j = i;
13. i= (i + q/i) / 2; }
14. while(i!= j);
15. printf("%f",a);
16. return(i); }
17. int main()
18. { float q;
19. float q;
20. Square s;
21. clrscr();
22. cout<<" enter any number \n";
23. cin>>q;
24. if(q > 0){
25. cout<<s.Square_root(q); }
26. else {
27. cout<<s.Square_root(-q)<<"i"; }
28. getch();
29. return 0;
30. }

Program 2: new version of sqrt.cpp (P’)

1. #include<iostream.h>
2. #include<stdio.h>
3. #include<conio.h>
4. class Square
5. { public:
6. float Square_root(float q);
7. };
8. float Square:: Square_root(float q)
9. {float i , j;
10. i = q;
11. do
12. { j = i;
13. i = (i + q/i) / 2; }
14. while(i!= j);
15. printf("%f",i);
16. return(i); }
17. int main()
18. { float q;
19. float q;
20. Square s;
21. clrscr();
22. cout<<" enter any number \n";
23. cin>>q;
24. if(q > 0){
25. cout<<s.Square_root(q); }
26. else if (q<0) {
27. cout<<s.Square_root(-q)<<"i"; }
28. else
29. cout<<” Square root is zero”;
30. getch();
31. return 0;
32. }}

Program 3: Ackrmen.cpp

1. #include <iostream.h>
2. #include<conio.h>
3. int ackerman_number(int l, int m)
4. {
5. if (l == 0)
6. return m+1;
7. else return ackerman_number(l-1,

ackerman_number(l, m-1));
8. }
9. int main()
10. {int l,m;
11. cout << "l and m";
12. cin>>l;
13. cin>>m;
14. cout<<ackerman_number(l,m);
15. getch();
16. return 0;
17. }

Program 4: New version of Ackrmen.cpp

1. #include <iostream.h>
2. #include<conio.h>
3. int ackerman_number(int l0, int m)
4. {
5. if (l == 0)
6. return m+1;
7. else if (m == 0)
8. return ackerman_number(l-1, 1);
9. else return ackerman_number(l-1,

ackerman_number(l, m-1));
10. }
11. int main()
12. {
13. int l,m;
14. cout << "l and m";
15. cin>>l;
16. cin>>m;
17. cout<<ackerman_number(x,y);
18. getch();
19. return 0;
20. }

The initial version of the program 1 sqrt.cpp was tested using

the following test suite T;

Test

case
input value Actual Output Expected Output

T1 36 6 6
T2 -36 6i 6i
T3 0 -NaN 0

In case of test case T3, the actual output is different from

expected output. So here we need to focus and analyse the

module through which T3 is executed. After analyse the

source code do the modification in source code and generated

the new version of the said program (i.e. program 2).
Now modify the program (as highlighted in program 2) to

address the following:
1. else if (x<0) {
2. cout<<s.Square_root(-x)<<"i"; }
3. else
4. cout<<” Square root is zero”;

International Journal of Computer Applications (0975 – 8887)

Volume 96, June 2014

The comparison of the old and the new versions of the

program sqrt.cpp will produce the following diff output:

Test

case
input value Actual Output Expected Output

T1 No need to execute again
T2
T3 0 0 0

In this manner test case T3 run successfully with new version

of the program sqrt.cpp the initial version of the program

Ackrmen.cpp was tested using the following set T of test

cases:

Test case input

value
Actual

Output
Expected Output

 x y
T1 0 2 3 3
T2 1 2 Fail 4
T3 2 0 Fail 3
T4 0 0 1 1

In case of test case T2, T3, the actual output is different from

expected output. So here we need to focus and analyse the

module or path through which T3 is executed. After analyse

the source code do the modification in source code and

generated the new version of the said program (i.e. program

3). Now modify the program (as highlighted in program 4) to

address the following:
1. else if (y == 0)
2. return ackerman_number(x-1, 1);

 The comparison of the old and the new versions of the

program Ackrmen.cpp will produce the following different

output:

Test case input

value
Actual

Output
Expected Output

 x y
T1 No need to execute again
T4
T2 1 2 4 4
T3 2 0 3 3

In this manner test case T2, T3 run successfully with new

version of the program Ackrmen.cpp.

6. AVERAGE PERCENTAGE FAULT

DETECTION (APFD) METRIC
Average Percentage of Faults Detected (APFD) metric [1] was

used to determine the effectiveness of the new test case

orderings, but it considered faults and test cases cost to be

uniform. To measure the average rate of fault detection of a

regression test suite the average percentage of faults detected

(APFD) metric was proposed by Rother Mel et al. [13]. The

APFD metric has been used by several researchers [14-15] to

evaluate the effectiveness of a test prioritization scheme. The

APFD metric for a test suite is calculated by taking the

weighted average of the number of faults detected during

execution of the program with the test suite. APFD metric

values range from 0 to 100 and a higher number indicates a

faster rate of fault detection. The APFD metric can be

calculated using the following expression. Let T be the

original test suite containing n test cases, and let F be a set of

m faults revealed by T. Let T0 be an ordering of T. In T0, let

TFi be the first test case which reveals a fault i. Then the

APFD metric for test suite T0 can be obtained by using the

equation n is the number of test case and m is the number of

fault [4]:

For Program Sqrt.cpp
APFD =1-[1/ (3*1)] -1/2*3

 = 0.55
 =55%

For Program Ackrmen.cpp
APFD =1-[(1+1)/ (4*2)] -1/2*4

 = 0.625
 =62.5%
7. IMPACT ON FAULT DETECTION

CAPABILITY
The effectiveness of the minimisation itself was calculated as

follows [9]:

For program sqrt.cpp (new and old version)
 = (1-1/3)*100

=66.66%
For program Ackrmen.cpp

= (1-2/4)*100
=50.00%

The impact of test suite minimisation was measured by

calculating the reduction in fault detection effectiveness as

follows:

For program sqrt.cpp (new and old version)
= (1-0/1)*100%

 =100%
For program Ackrmen.cpp (new and old version)

= (1-0/2)*100%
 =100%

8. TESTING TOOL SUPPORT
In future, regression testing performs by one of the automated

testing tool, which is explained below. Every tool has a

similar structure of the description. It contains firstly in the

header line: Name of the tool, Company name. Then the

description begins with one sentence, which explains the main

scope of the tool [16-18].
1. CitraTest, Tevron, LLC.
This tool is ideal for latency, functional, and regression

testing.
2. Rational Robot, Rational Software Corp, Allows user to

create, modify, and run automated Functional, regression, and

smoke tests for e-applications.
3. preVue-ASCEE, Rational Software Corporation,
Used in: Assurance, Performance measurement and regression

testing.
4. preVue-X, Rational Software Corporation,
Used in: Regression and Performance testing.
5. Teleprocessing Network Simulator,
Used in: Performance, function, & automated regression

testing.
6. Silk Pilot, Segue Software, Inc., www.segue.com
Used in: Functional and regression testing of middle-tier

servers.
7. CHILL/C/C Pilot, Kvatro Telecom AS,
Used in: Programmable debugger and conformance/

regression tester for CHILL/C/C++ programs.
8. SMARTS, Software Research, Inc.,

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.14, June 2014

26

Used in: Maintenance and regression testing. STW/Regression

for Windows, Software Research, Regression testing tool.
9. AQtest, AutomatedQA Corp.,
Used in: Automated support for functional, unit, and

regression testing.

9. CONCLUSION AND FUTURE SCOPE
In this paper two programs (sqrt.cpp & ackerman.cpp) are

discussed and regression testing has been performed for both

programs with the old test cases as well as new test case.

Analysis of impact of fault detection was done and value in

percentage is 100% for both the program with some

modification where as in previous program value was 66.66%

and 50.00 respectively. Average percentage fault detection

(APED) for both program is 55.00% and 62.55 respectively.

Here test case generates manually but in future test case will

be generated through testing tool which is explained in above

section VIII. Maintaining a software structure is a high-priced,

composite and ever running activity. Among the many

activities executed to prevent and improve to harmfully

impact the quality of a system, regression testing is the most

commonly used technique. When tests reveal a failure,

developers have to analyse the execution to understand the

causes of the failure to fix the associated fault.

10. REFERENCE
[1] Laski, j., and Szermer, w., “Identification of Program

Modifications and Its Applications in Software

Maintenance”, in proc. Conf. Software maintenance,

1992, pp. 282-290.

[2] David C. Kung, Jerry GAO, and Pei Hsia, “ On Regression

Testing Of Object-Oriented Programs”, j. Systems

software 1996; 32:21-40 0 1996 by Elsevier Science inc.

655 avenue of the Americas, New York, NY 10010, ssdi

0164-1212(95)00047-5.

[3] Harold, M. J., McGregor, j. D., and Fitzpatrick, k. J.,

“Incremental Testing of Object-Oriented Class

Structure”, in Proc of 14 international conf. on software

engineering, 1992.

[4]] G. Rothermel and m. J. Harrold, “Analysing Regression

Test Selection Techniques,” IEEE transactions on

software engineering, vol. 22, no. 8, pp. 529–551, 1996.

[5] Fischer, k. F., “A Test Case Selection Method For The

Validation Of Software Maintenance Modifications”, in

IEEE compsac 77 int. Conf. Procs., 1977, pp. 421-426.

[6] Fischer, K. F., Raji, F., and Chruscicki, A., “A

Methodology For Re-Testing Modified Software”, in

national telecoms. Conf. Procs., 1981, pp. B6.3.1-6.

[7] Prather, R. E., and Myers, J. P., Jr, “The Path Prefix

Software Testing Strategy”, IEEE trans. Software eng.

Se-13 (1987).

[8] Lee, j. A. N., and he, xudong, a methodology for test

selection, j. Syst. Software, 13, 177-185, (1990).

[9] G. Rother Mel, M. J. Harrold, and J. Dedhia., “Regression

Test Selection For C++ Software”. Journal of software

testing, veri_cation, and reliability, 10(6):77{109}, jun.

2000.

[10] L. J. White and K. Abdullah., “A _Rewall Approach For

Regression Testing Of Object-Oriented Software”, In

Pro-ceedings of 10th Annual Software Quality Week,

May1997.

[11] Scott McMaster and Atif M. Memon, “Fault Detection

Probability Analysis For Coverage-Based Test Suite

Reduction”, In proceedings of the 23rd international

conference on software maintenance, 2007.

[12] Leung Hkn, White l., “Insight Into Regression Testing”,

Proceedings of international conference on software

maintenance (ICSM 1989), IEEE computer society press,

1989; 60–69.

[13] Rother Mel G, Untch R, Chu C, Harold M, “Prioritizing

Test Cases For Regression Testing”. IEEE trans software

eng 27(10):929–948, 2001.

[14] Elbaum S, Malishevsky A, Rother Mel G, “Incorporating

Varying Test Costs And Fault Severities Into Test Case

Prioritization”, In: proceedings of the 23rd international

conference on software engineering, pp 329–338,

Ontario,2001.

[15] Jeffrey D, Gupta N, “Experiments With Test Case

Prioritization Using Relevant Slices” J syst softw

81:196–221.2008.

[16] Fewster, M., Graham, D., “Software Test Automation”.

ACM press, New York, 1999.

[17] Tervonen, I., Katselmointi JA Testaus., Lecture notes in

University of Oulu, 2000.

[18] Pentti Pohjolainen, “Software Testing Tools”,

Department of Computer Science and applied

mathematics, University of Kuopio march 2002.

[19] Chhabi Rani Panigrahi, Rajib Mall, “An Approach To

Prioritize The Regression Test Cases Of Object-Oriented

Programs”, CSI Publications 2013, csit (June 2013)

1(2):159–173 doi 10.1007/s40012-013-0011-7.

[20] S. Yoo, M. Harman, "Regression Testing Minimisation,

Selection And Prioritisation: A Survey", software testing,

verification and reliability Softw. Test. Verify. Reliab.

2007; 00:1–7 (doi: 10.1002/000) published online in

wiley interscience (www.interscience.wiley.com). Doi:

10.1002/000

[21] Kristen r. Walcott et al,” time aware test suite

prioritization”, ACM, issta’06, Portland, Maine, USA,

July 17–20, 2006.

[22] Bo Qu Changhai Nie et al, “Test Case Prioritization For

Multiple Processing Queues”, issue-08, pg. 646-49 IEEE,

2008.

[23] Jonathan Misurda, James A. Clause, Juliya l. Reed, Bruce

R. Childers, and Mary Lou Soffa, “ Demand-Driven

Structural Testing With Dynamic Instrumentation”. In

proceedings of the 27th international conference on

software engineering, 2005.

[24] Romain Delamere, Benoit Baudry, Yves Le Traon,

“Regression Test Selection When Evolving Software

With Aspects”, Proceedings of late workshop in

conjunction with aosd'08 (2008).

[25] Swarnendu Biswas, Rajib Mall, "Regression Test

Selection Techniques: A Survey", informatics 35 (2011)

289–321.

IJCATM : www.ijcaonline.org

