
International Journal of Computer Applications (0975 8887)
Volume 96 - No. 10, June 2014

An Investigation into the Central Data Warehouse
based Association Rule Mining

Gurpreet Singh Bhamra
DCSE, M. M. University,

Mullana-133203,Haryana,India

Anil Kumar Verma
DCSE, Thapar University,

Patiala-147004, Punjab, India

Ram Bahadur Patel
DCSE, G. B. Pant Engineering College,
Ghurdauri-246194, Uttarakhand, India

ABSTRACT
Data Mining(DM) technique is used to mine interesting hidden
knowledge from large databases using various computational tech-
niques/tools. Association Rule Mining(ARM) today is one of the
most important aspects of DM tasks. In ARM all the strong associ-
ation rules are generated from the Frequent Itemsets. In this study a
central Data Warehouse based client-server model for ARM is de-
signed, implemented and tested. The Outcome of this investigation
and the advantages of software agents forms the base and motiva-
tion of using software agent technology in Distributed Data Mining.

General Terms:
Data Mining,Distributed Data Mining

Keywords:
Data Warehouse, Frequent Itemsets, Association Rule Mining

1. INTRODUCTION
The exponential growth in the stored data generated an urgent need
for new technique that can intelligently transform this enormous
amount of data into useful knowledge. Consequently, DM has be-
come a powerful technology with a great potential to help compa-
nies focus on the most important information in the huge data they
have collected about the behavior of their customers and potential
customers. DM involves the use of computational techniques/tools
such as classification, association rules, clustering, etc. to automat-
ically extract some interesting and valid data patterns or trends rep-
resenting knowledge, implicitly stored in large databases [9, 10].
These tools can include statistical models,algorithms, and machine
learning methods. In a classical knowledge discovery technique in
distributed environment, a single centrally integrated data reposi-
tory called Data Warehouse (DW) is created and then DM tech-
niques are used to mine the data and extract the knowledge [15].

The central DW based approach, however, is ineffective or infeasi-
ble because of heavy storage and computational costs involved in
managing data form the ever increasing and updated distributed re-
sources where data is produced continuously in streams. Network
communication cost is also involved while transferring huge data
over the wired or wireless network in a limited network bandwidth
scenario. It is also not desirable to centrally collect the privacy-
sensitive raw distributed data of the business organizations like

banking, and telecommunication as they want only knowledge to
be exchanged globally. Data from modern business organizations
are not only geographically distributed but also horizontally or ver-
tically fragmented making it difficult if not possible to combine
them in a central location. Performance and scalability of a DM ap-
plication can be increased by distributing the workload among sites
[16]. Resource constraints of distributed and mobile environment
are not considered in algorithms for central DW based DM as cer-
tain data sets are immovable in practice. This paper is an attempt to
practically investigate the classical central DW based client-server
model for association rule mining.

Rest of the sections are organized as follows. Section 2 describes
the ARM concepts. Important algorithms for ARM are discussed
in section 3. Section 4 completely describes the Central DW based
ARM approach with subsections 4.1 for preliminary notations, 4.2
for synthetic data sets used and 4.3 for architectural layout or work-
ing modal along with the various algorithms involved in the system.
Experimentation and result evaluation is discussed in section 5 and
finally the article is concluded in section 6.

2. ASSOCIATION RULE MINING (ARM)
Let DB = {Tj , j = 1 . . .D} be a transactional dataset of size
D where each transaction T is assigned an identifier (TID) and
I = {di, i = 1 . . .m}, total m data items in DB. A set of items
in a particular transaction T is called itemset or pattern.An item-
set P = {di, i = 1 . . . k}, which is a set of k data items in a
particular transaction T and P ⊆ I , is called k-itemset.Support of
an itemset, s(P ) = No of T containing P

D
%, is the frequency of

occurrence of itemset P in DB, where No of T containing P
is the support count (sup count) of itemset P . Frequent item-
sets (FIs) are the itemsets that appear in DB frequently, i.e., if
P ≥ min th sup (given minimum threshold support), then P is a
Frequent k-Itemset.Finding such FIs plays an essential role in min-
ing the interesting relationships among itemsets. Frequent Itemsets
Mining (FIM) is the task to find the set of all subsets of FIs in a
transactional database. It is CPU and input/output intensive task,
mainly because of the large amount of itemsets generated and large
size of the datasets involved in progress [10].

Association Rules (ARs) first introduced in [1], are used to discover
the associations (or co-occurrences) among items in a database.
ARs can be used to find the patterns of customers purchase such
as how the transaction of buying some goods will impact on the
transactions of buying others. Such rules can be implemented to

1



International Journal of Computer Applications (0975 8887)
Volume 96 - No. 10, June 2014

design the goods shelves, to manage the stock and to classify the
customers according to the purchase patterns.AR is an implication
expression of the forms P ⇒ Q[support, confidence] where ,
P ⊂ I ,Q ⊂ I and P and Q are disjoint itemsets, i.e., P ∩Q = φ.
An AR is measured in terms of its support and confidence factor
where:

—Support s(P ⇒ Q) = p(P ∪ Q) =
No of T containing both P and Q

D
% : the probability of both

P and Q appearing in T ,we can say that s % of the transactions
support the ruleP ⇒ Q, 0 ≤ s ≤ 1.0 or 0% ≤ s ≤ 100%

—Confidence c(P ⇒ Q) = p(Q | P ) = s(P⇒Q)
s(P )

=
sup count(P⇒Q)
sup count(P )

% :the conditional probability of Q given P ,
we can say that when itemset P occurs in a transaction there
are c% chances that itemset Q will occur in that transaction,
0 ≤ c ≤ 1.0 or 0% ≤ c ≤ 100%

An Association rule P ⇒ Q is said to be strong if

(1) s(P ⇒ Q) ≥ min th sup ,i.e., support of the rule is greater
than or equal to the given minimum threshold support and

(2) c(P ⇒ Q) ≥ min th conf , i.e., confidence of the rule is
greater than or equal to the given minimum threshold confi-
dence

Association Rule Mining(ARM) today is one of the most important
aspects of DM tasks. In ARM all the strong association rules are
generated from the FIs. The ARM can be viewed as a two-step
process [2, 17].

(1) Find all frequent k-itemsets (Lk)

(2) Generate Strong Association Rules from (Lk)
(a) For each frequent itemset l ∈ L , generate all non empty

subsets of l.
(b) For every non empty subset s of l , output the rule ”s ⇒

(l − s)”, if sup count(l)
sup count(s)

≥ min th conf

3. ALGORITHMS FOR MINING FREQUENT
ITEMSETS

FIM, being the first step in ARM task, has lots of proposed al-
gorithms both sequential and parallel. Since ARM is dedicated to
handle the huge amount of data so time complexity and resource
complexity in such algorithms are carefully considered. These al-
gorithms can be classified into two categories:

—Candidate-generation-and-subset-test approach
—Pattern-growth approach

The first category, the candidate-generation-and-subset-test ap-
proach, such as Apriori algorithm [3], is directly based on the
downward closure property of the FIs, i.e., if a set cannot pass a test,
all of its supersets will fail the same test as well or all nonempty
subsets of a FI must also be frequent or any (k-1)-itemset that is not
frequent cannot be a subset of a frequent k-itemset. This property
is used in subset testing of FIs. Apriori algorithm [3] has emerged
as one of the best FIM and subsequently ARM algorithms since
ARs can be straightforwardly generated from a set of FIs. It has
been the basis of many subsequent ARM and/or ARM-related al-
gorithms. Apriori algotirhm iteratively identifies FIs in the data by
making use of the downward closure property of the itemsets in the
generation of candidate (possibly frequent) itemset where a candi-
date itemset is confirmed as frequent only when all its subsets are
identified as frequent in the previous pass.

The Apriori algorithm performs repeated scan of the database, suc-
cessively computing support-counts for sets of single items, pairs,
triplets and so on. At the end of each pass, sets that fails to reach
the required threshold support are eliminated and candidates for the
next pass are constructed as supersets of the remaining (frequent)
sets. Since no set can be frequent which has an infrequent subset,
this procedure guarantees that all frequent sets will be found. Since
the number of database passes of the Apriori algorithm equals the
size of the maximal frequent itemset, it scans the darabase k times
even when only one k-frequent itemset exists. The drawback of this
method is that if the dataset is very large, the required multiple
database scans can be one of the limiting factors. Working model
and implementation of Apriori algorithm can also be found in [5].
Many algorithms have been proposed, directed at improving the
performance of the Apriori algorithm using different types of ap-
proaches. An analysis of the best known algorithms can be found
in [14, 13].

A second category of methods, pattern-growth methods has been
proposed such as FP-growth [12] and Apriori-TFP[8] have been
proposed. These algorithms typically operate by recursively pro-
cessing a tree structure into which the input data has been encoded.
In the study shown by [11], a novel FI tree structure, FP-tree was
proposed. FP-tree is an extended prefix-tree structure for strong
compressed information about FIs. It consists of one root labeled
as NULL and a set of item prefix sub trees as the descendents of
the root. A frequent-item header table is also kept to link all the
transactions containing that item. Each node in the item prefix sub
tree consists of three fields: item-name, count and node link where
item-name registers which item this node represents, count regis-
ters the number of transactions represented by the path reaching
this node and node-link links to the next node in the FP-tree carry-
ing the same item name or NULL if there is none.

Based on the FP-tree [11], an itemset fragment growth algorithm,
FP-growth [12] was designed to avoid the costly generation of large
number of candidate sets. The FP-growth is a partition-based, di-
vide and conquer method used to decompose the mining task into
set of smaller tasks for mining confined itemsets in conditional
databases , thereby dramatically reducing the search space. The
size of the FP-tree is usually small and will not grow exponen-
tially. FP-growth method is efficient and scalable for mining both
long and short FIs and faster than Apriori algorithm but has some
disadvantages. Its first principal drawback is that because FP-trees
are repeatedly generated, FP-growth can have significant storage
requirements. Secondly, larger number of links makes it difficult
to distribute the tree. These drawbacks are particularly significant
with respect to the dense datasets.

In general, no single FIM/ARM algorithm has been identified to fit
all types of data [4]. Real datasets can be sparse and/or dense ac-
cording to their applications. For example, for telecommunication
data analysis, calling patterns for home users vs. business users can
be very different: some are frequent and dense (e.g. to family mem-
bers and close friends) while others are large and sparse. Similar
situations arise for market basket analysis, etc. It is hard to select
an appropriate ARM method. Large applications need more scala-
bility. Many existing methods are efficient when the data set is not
very large. Otherwise, their core data structure(such as FP-tree) or
the intermediate results(e.g. the set of candidates in Apriori or the
recursively generated sub-trees in FP-growth) may not fit in main
memory and may cause thrashing.

2



International Journal of Computer Applications (0975 8887)
Volume 96 - No. 10, June 2014

4. CENTRAL DW BASED ARM
4.1 Preliminaries and Definitions
A client-server based framework for mining the strong association
rules from central DW can be formally described as:

—S = {Si, i = 1 . . . n} , n distributed sites
—SCENTRAL,a Central site
—DBi = {Tj , j = 1 . . .Di} , Transactional Data Set of sizeDi at

the local site Si, where each transaction Tj is assigned an iden-
tifier (TID)

—I = {dl, l = 1 . . .m} , total m data items in each DBi

—DB =
⋃n

i=1DBi , the Central Data Warehouse at SCENTRAL

of size D =
⋃n

i=1Di

—δ1 , start time of transferring DBi over the network at site Si

—δ2 , end time of receiving DBi at SCENTRAL

—δ = δ2 − δ1 , total network time taken in dispatching DBi at Si

—min th sup, minimum threshold support
—min th conf , minimum threshold confidence
—LFI , the list of frequent k-itemsets at SCENTRAL

—LFISC , the list of support count of every frequent k-itemsets in
LFI

—LSAR, the list of strong association rules atSCENTRAL

4.2 Data Sets
Data set consists of total 11250 transactions of 10 items which are
horizontally partitioned and these horizontally partitioned synthetic
transactional datasets (DBi) are created and stored across three
distributed sites S1,S2 and S3, with 3500, 3850 and 3900 transac-
tions respectively using a Synthetic Transactional Dataset Genera-
tor(TDSGenerator v1.0) tool [6].These data sets use Boolean values
to show whether an item exists in a transaction. Table 1 shows size
and density of each DBi and snapshot of each DBi at distributed
sites are shown in Figure 1.

Table 1. Size and density of each DBi.
Site No. of No. of Approximate Size of
Name Items Transactions Density Data Set
S1 10 3500 60% 172KB
S2 10 3850 50% 192KB
S3 10 3900 65% 192KB

4.3 Framework for Central DW based ARM
Figure 2 shows the client-server model for central DW based ARM
approach. Various components involved in the framework are:

(1) Dataset Dispatcher: It is a client application running at
each distributed site Si. It dispatches DBi over the network
to the Central DW Manager Server application running at
SCENTRAL and keeps track of the δ. Algorithm 1 describes
the working of Dataset Dispatcher.

(2) Central DW Manager: It is a server application running at
SCENTRAL. It handles all the incoming requests from the
Dataset Dispatcher. It receives, stores eachDBi and waits con-
tinuously till all the clients have dispatched their DBi. Algo-
rithm 2 describes the working of Central DW Manager. Vari-
ous other assistant components of Central DW Manager appli-
cation are:-

(a) Dataset Merger: It merges each DBi into a single DB.
See Algorithm 3.

(b) FI and SC Generator: It scans DB and generates LFI

and LFISC to be further processed by SAR Harvester.
Apriori [3] algorithm is used to create LFI with the given
min th sup . See Algorithm 4 to Algorithm 6.

(c) SAR Harvester: It generates the strong association rules
from LFI and LFISC with the constraint of given
min th conf . See Algorithm 7.

Algorithm 1 DATASETDISPATCHER

Input: DBi, T ransactional Data Set of size Di at Si

Output: δ, Total network time taken in dispatching DBi

1: procedure DATASETDISPATCHER(DBi)
2: α← open a new socket with CentralDWManager
3: β ← bind ObjectInputStream at α
4: χ← bind ObjectOutputStream at α
5: ξ ← bind ObjectInputStream with local DBi

6: A← read the entire DBi object at ξ stream
7: δ1 ← get start time for dataset transfer
8: write A on χ stream
9: δ2 ← read end time received on β stream

10: δ ← δ2 − δ1
11: Close all the opened channels
12: return δ
13: end procedure

Algorithm 3 DATASETMERGER

Input: {DBi, i = 1 · · ·n}
Output: DB,AggregatedDataset

1: procedure DATASETMERGER({DBi, i = 1 · · ·n})
2: for all DS ∈ {DBi, i = 1 · · ·n} do
3: α← bind ObjectInputStream with DS
4: A← read the entire DS object at α stream
5: add A into a single unit DB
6: end for
7: Close all the opened channels
8: return DB
9: end procedure

5. EXPERIMENT AND RESULTS
All the components of the framework are implemented in java lan-
guage. Table 2 describes the required configuration for the frame-
work. Figure 3 shows the snapshots of the running state of the
Dataset Dispatcher at each distributed site.Time taken by each
Dataset Dispatcher in transferring DBi over the network is shown
in Figure 4. Figure 5 shows the snapshot of the running state of
the CentralDWManager at SCENTRAL . LFI and LFISC lists
generated by FIandSCGenerator module with 20% min th sup is
shown in Figure 6.
Strong Association Rules generated by SAR Harvestor module
with 50% min th conf are shown in Figure 7. Due to space con-
straints strong rules for 3-itemsets, and 2-itemsets are not shown

3



International Journal of Computer Applications (0975 8887)
Volume 96 - No. 10, June 2014

Fig. 1. Snapshot of Transactions of DB1 ,DB2 and DB3

Fig. 2. Framework for Central DW based ARM

here. CPU time taken by Dataset Merger module, FIandSCGener-
ater modeule and SAR Harvester modeule are 203789677 nano sec-
onds, 291567951788 nano seconds and 218382486678 nano sec-
onds respectively. Number of strong ARs for frequent 2-itemsets,
3-itemsets and 4-itemsets are 54, 174 and 51 respectively. The re-
sult analysis is performed in Table 3.

6. CONCLUSION
The practical investigation and result analysis in this study indicates
that this central DW based DM approach is ineffective because
of various costs involved in managing data. This approach is also
not privacy-preserving and scalable.Performance and scalability of
a DM application can be increased by distributing the workload
among sites. This is possible when the DM is performed locally and

4



International Journal of Computer Applications (0975 8887)
Volume 96 - No. 10, June 2014

Algorithm 2 CENTRALDWMANAGER

Input:
—DB = {DBi, i = 1 · · ·n}, T ransactional Data Set from n disttibuted sites
—I = {dl, l = 1 · · ·m}, total m items in DBi

—minthrsup, the given minimum threshold support
—minthrconf, the given minimum threshold confidence

Output: LSAR, the list of strong association rules

1: procedure CENTRALDWMANAGER(DB, I,minthrsup,minthrconf )
2: P ← open a new server port at# 9900
3: while all DBi from registered clients not received do
4: β ← accept the incoming request at P and open a new socket with the client
5: start a new Thread of CENTRALDWMANAGERIMPL(β)
6: end while
7: DB ← Call DATASETMERGER({DBi, i = 1 · · ·n})
8: LFI&SC ← Call FIANDSCGENERATOR(DB, I,minthrsup)
9: LSAR ← Call SARHARVESTER(LFI&SC ,minthrconf)

10: Close all the opened channels
11: return LSAR

12: end procedure

13: procedure CENTRALDWMANAGERIMPL(α : socket with the client)
14: β ← bind ObjectInputStream at α
15: γ ← bind ObjectOutputStream at α
16: A← read the entire DBi object at β stream
17: ε← get end time for dataset receiving
18: write ε on γ stream to send to the client
19: ξ ← bind ObjectOutputStream with local file system on server
20: write A on ξ stream to save DBi on the server
21: Close all the opened channels
22: end procedure

Table 3. Result Analysis.
Parameter Analysis
Storage Cost(cost incurred in storing and
managing the data)

Size of centralDB = 565248 bytes (552KB) As all data from distributed sites are centrally colleted
so storage cost is high at central location.

Communication Cost(cost incurred in terms
of time taken in transferring the data over the
network)

Maximum δ in transferring DBi = 2684481005 ns. As entire DBi is to be transferred to central
location for mining so communication cost is also high particularly in case of limited network
bandwidth.

Computational Cost(cost incurred in terms
of CPU time taken in executing the task)

CPU time taken by FI and SC Generator module = 291567951788 ns, CPU time taken by SAR
Harvester = 218382486678 ns. Total CPU time taken by two major modules in Central DW based
ARM is 509950438466 nano sec as huge dataset has to be processed at central location.

Global Knowledge Central DW based ARM does not reflect the global knowledge as it also contains the strong rules
for frequent itemsets which may not be locally frequent.

Security No security in transferring DBi from each site over the network.
Scalability Adding more sites would affect the performance of the system by increasing all the costs involved.

Hence it is not scalable system.

Table 2. Framework configuration.

Site Name Processor OS
LAN Configuration

IP 1 Network
SCENTRAL Intel2 MS3 192.168.46.5 NW 4

S1 Intel2 MS3 192.168.46.212 NW 4

S2 Intel2 MS3 192.168.46.189 NW 4

S3 Intel2 MS3 192.168.46.213 NW 4

1. IP address with Mask:255.255.255.0 and Gateway:192.168.46.1
2. Intel Pentium Dual Core(3.40 GHz,3.40 GHz)with 512MB RAM
3. Microsoft Windows XP Professional ver. 2002
4. Network Speed:100 Mbps and Network Adaptor: Intell 82566DM-2 Gigabit NIC

only results are carried at central site for mining global knowledge.
Intelligent software agent technology and its advantages discussed
in [7] makes this technology best suited for mining the distributed
data. This paper is an attempt to practically investigate the classical
central DW based client-server model for association rule mining
and paving the way for moving ahead in further research of design-
ing a framework for agent based distributed data mining.

7. REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association
rules between sets of items in large databases. In Proceedings

5



International Journal of Computer Applications (0975 8887)
Volume 96 - No. 10, June 2014

Algorithm 4 FIANDSCGENERATER: Part-1
Input:

—DB =
⋃n

i=1DBi, Central Datawarehouse
—I = {dl, l = 1 · · ·m}, total m items in DBi

—minthrsup, the given minimum threshold support
Output: LFI&SC , the list of frequent itemsets their support counts

1: procedure FIANDSCGENERATER(DB, Itemset,minthrsup)
2: T ← DB.size . No. of records in DB
3: I ← Itemset.size . No. of items in DB
4: minsupcount← (T ×minthrsup)/100
5: � generate frequent-1 itemset list (FIL1) and support count list (FISC1 )
6: CFIL1 ← {1, 2, 3 · · · I} . candidate frequent-1 itemset
7: for i← 1, I do . initialize the support count array SCFIL1 to zero
8: SCFIL1[i]← 0
9: end for

10: k ← 1
11: for all candidate c ∈ CFIL1 do . find support count for every candidate
12: for all transaction t ∈ DB do . scan DB
13: if c ⊂ t then
14: SCFIL1[k]← SCFIL1[k] + 1
15: end if
16: end for
17: k ← k + 1
18: end for
19: � prune CFIL1 to generate FIL1 and FISC1

20: for k ← 1, I do
21: if SCFIL1[k] ≥ minsupcount then
22: add ck ∈ CFIL1 to FIL1

23: add SCFIL1[k] to FISC1

24: end if
25: end for
26: if FIL1 6= ∅ then
27: add FIL1 to L

FI

28: add FISC1 to L
FISC

29: end if
30: k ← 2
31: while FILk−1 6= ∅ do
32: CFILk ← Call GENERATECFIL(FILk−1) . candidate frequent-k itemset
33: for i← 1, CFILk.length do . initialize the array SCFILk to zero
34: SCFILk[i]← 0
35: end for
36: i← 1
37: for all candidate c ∈ CFILk do . find support count for every candidate
38: for all transaction t ∈ DB do . scan DB
39: if c ⊂ t then
40: SCFILk[i]← SCFILk[i] + 1
41: end if
42: end for
43: i← i+ 1
44: end for
45: � prune CFILk to generate FILk and FISCk

46: for i← 1, SCFILk.length do
47: if SCFILk[i] ≥ minsupcount then
48: add ci ∈ CFILk to FILk

49: add SCFILk[i] to FISCk

50: end if
51: end for
52: if FILk 6= ∅ then
53: add FILk to L

FI

54: add FISCk to L
FISC

55: end if
56: k ← k + 1
57: end while
58: add T to LFI&SC

59: add LFI to LFI&SC

60: add LFISC to LFI&SC

61: return LFI&SC

62: end procedure

6



International Journal of Computer Applications (0975 8887)
Volume 96 - No. 10, June 2014

Algorithm 5 GENERATECFIL
Input: Lk−1, F requent k − 1 itemsets
Output: Ck, Candidate Frequent k itemsets

1: procedure GENERATECFIL(Lk−1)
2: for all itemset l1 ∈ Lk−1 do
3: for all itemset l2 ∈ Lk−1 do
4: if (l1[1] = l2[1]) ∧ (l1[2] = l2[2]) ∧ · · · ∧ (l1[k − 1] = l2[k − 1]) then
5: c← l1 ⊗ l2 . join step: generate candidates
6: end if
7: if HASINFREQUENTSUBSET(c, Lk−1) then
8: delete c . prune step: remove unfruitful candidate
9: else

10: add c to Ck

11: end if
12: end for
13: end for
14: return Ck

15: end procedure

Algorithm 6 HASINFREQUENTSUBSET

Input: c, Candidate k − itemset
Output: Lk−1, F requent k − 1 itemsets

1: procedure HASINFREQUENTSUBSET(c, Lk−1)
2: for all (k − 1) subset s ∈ c do
3: if s /∈ Lk−1 then
4: return TRUE
5: else
6: return FALSE
7: end if
8: end for
9: end procedure

Fig. 4. Dataset Transfer Time (δ ) at S1, S2 and S3

of the ACM-SIGMOD International Conference of Manage-
ment of Data, pages 207–216, 1993.

[2] R. Agrawal and J. C. Shafer. Parallel mining of association
rules. IEEE Transaction on Knowledge and Data Engineer-
ing, 8(6):962–969, 1996.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms
for Mining Association Rules in Large Databases. In Proceed-
ings of the 20th International Conference on Very Large Data
Bases(VLDB’94), pages 487–499. Morgan Kaufmann Pub-
lishers Inc., Sept. 12-15 1994.

[4] Kamal Ali Albashiri, Frans Coenen, and Paul Leng. EMADS:
An extendible multi-agent data miner. Knowledge-Based Sys-
tems, 22(7):523–528, October 2009b.

[5] Gurpreet Singh Bhamra, Ram Bahadur Patel, and Anil Kumar
Verma. An Encounter with Strong Association Rules. In Pro-
ceedings of IEEE International Advanced Computing Con-
ference (IACC-2010), pages 342–346. Thapar University, Pa-
tiala, Punjab, India, IEEE, Feb 19-20 2010.

[6] Gurpreet Singh Bhamra, Ram Bahadur Patel, and Anil Kumar
Verma. TDSGenerator: A Tool for generating synthetic Trans-
actional Datasets for Association Rules Mining. International
Journal of Computer Science Issues (IJCSI), 8(2):184–188,
March 2011.

[7] Gurpreet Singh Bhamra, Ram Bahadur Patel, and Anil Ku-
mar Verma. Intelligent Software Agent Technology: An
Overview. International Journal of Computer Applica-
tions(IJCA), 89(2):19–31, March 2014.

[8] Frans Coenen, Graham Goulbourne, and Paul Leng. Tree
Structures for Mining Association Rules. Data Mining and
Knowledge Discovery, 8(1):25–51, January 2004.

[9] Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic
Smyth, and Ramasamy Uthurusamy. Advances in Knowledge
Discovery and Data Mining. AAAI/MIT Press, 1996.

[10] J. Han and M. Kamber. Data Mining: Concepts and Tech-
niques. Morgan Kaufmann, 2nd edition, 2006.

7



International Journal of Computer Applications (0975 8887)
Volume 96 - No. 10, June 2014

Algorithm 7 SARHARVESTOR

Input:
—LFI&SC , Collection of number of records , frequent k itemset and support count
—minthrconf, the given minimum threshold confidence

Output: LSAR, List of Strong Association Rules

1: procedure SARHARVESTOR(LFI&SC ,minthrconf )
2: T ← LFI&SC .get(0) . No. of records
3: LFI ← LFI&SC .get(1) . frequent k-itemset list
4: LFISC ← LFI&SC .get(2) . support count list
5: for k ← 2, LFI .size do
6: Lk ← LFI .get(k) . get frequent k-itemset list
7: for all l ∈ Lk do
8: lsubsets ← generate all non− empty subsets of l
9: lspcount ← get support count of l from LFISC

10: ARsupport ← (lspcount/T )× 100 . support of the association rule
11: for all non− empty subset s ∈ lsubsets do
12: sspcount ← get support count of s from LFISC

13: ARconf ← (lspcount/sspcount)× 100 . confidence of the association rule
14: if ARconf ≥ minthrconf then
15: ARstrong ← ”s ⇒ l − s[ARsupport%, ARconf%]”
16: print ARstrong

17: add ARstrong to L
SAR

18: end if
19: end for
20: end for
21: end for
22: return LSAR

23: end procedure

[11] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent pat-
terns without candidate generation. In Proceedings of the
2000 ACM SIGMOD international conference on Manage-
ment of data, pages 1–12. ACM, 2000.

[12] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining
Frequent Patterns without Candidate Generation: A Frequent-
Pattern Tree Approach. Data Mining and Knowledge Discov-
ery, 8(1):53–87, January 2004.

[13] Jochen Hipp, Ulrich Guntzer, and Gholamreza Nakhaeizadeh.
Algorithms for association rule mining a general survey
and comparison. ACM SIGKDD Explorations Newsletter,
2(1):58–64, June 2000.

[14] Renata Ivancsy, Ferenc Kovacs, and Istvan Vajk. An analysis
of association rule mining algorithms. In Proceedings of the
4th International ICSC Symposium on Engineering of Intelli-
gent Systems, pages 774–778, Feb. 29 - March 2 2004.

[15] Byung-Hoon Park and Hillol Kargupta. Distributed Data Min-
ing: Algorithms, Systems, and Applications. Department of
Computer Science and Electrical Engineering, University of
Maryland Baltimore County, 1000 Hilltop Circle Baltimore,
MD 21250, 2002.

[16] Grigorios Tsoumakas and Ioannis Vlahavas. Distributed Data
Mining. Department of Informatics, Aristotle University of
Thessaloniki, Thessaloniki, Greece, 2009.

[17] M. J. Zaki. Parallel and distributed association mining: a sur-
vey. IEEE Concurrency, 7(4):14–25, 1999.

8



International Journal of Computer Applications (0975 8887)
Volume 96 - No. 10, June 2014

Fig. 3. Dataset Dispatcher running at S1, S2 and S3

9



International Journal of Computer Applications (0975 8887)
Volume 96 - No. 10, June 2014

Fig. 5. Central DW Manager running at SCENTRAL

10



International Journal of Computer Applications (0975 8887)
Volume 96 - No. 10, June 2014

Fig. 6. Lists of Frequent Itemsets and their support count with 20% min th sup at SCENTRAL

11



International Journal of Computer Applications (0975 8887)
Volume 96 - No. 10, June 2014

Fig. 7. Strong Association Rules for Frequent 4-Itemsets at SCENTRAL

12


	Introduction
	Association Rule Mining (ARM)
	Algorithms for mining Frequent Itemsets
	Central DW based ARM
	Preliminaries and Definitions
	Data Sets 
	Framework for Central DW based ARM

	Experiment and Results
	Conclusion
	References

