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ABSTRACT 

Random key bit generators are used in statistically secured 

stream ciphers. In stream ciphers pseudorandom key bits are 

XORed with non-random text bits to generate random cipher 

bits. In practice, it is impossible to get a Random Bit 

Generator (RBG) that can be used for encryption as well as 

for decryption. The solution is to search for a suitable Pseudo 

Random Bit Generator (PRBG). In this paper, a comparative 

study of randomness of RC4 is made with that of six set of 

pseudorandom 8-bit sequences generated by introducing some 

variations in BBS and PM algorithms. In RC4, the given key 

randomizes an 8-bit identity S-Box in 256 rounds. The BBS 

and PM require an initial seed to be given as key. In the study, 

one algorithm generates 167800 pseudorandom 8-bit key 

sequences for a given key. For each of the seven sets, 300 

such sequences are generated using 300 different given keys. 

The randomness of 300 sequences for each set are tested using 

three test modules.  

General Terms 

Pseudo Random Bit Generator (PRBG), Pseudo Random 

Number Generator (PRNG), Statistical Randomness Test. 

Keywords 

NIST Statistical Tests, Pseudorandom Bit Generator, 

Statistical Randomness Test, Stream Cipher. 

1. INTRODUCTION 
In cryptography, stream ciphering algorithms generate a 

stream of pseudorandom key bits (pk-bits) and such pk-bits 

are XORed in succession with text bits giving rise to cipher 

bits. Following reference [1], the necessary condition, that a 

symmetric ciphering scheme is unconditionally secure, is 

H(K) ≥ H(M), where H() is an entropy function for random 

variables K and M denoting respectively the secrete random 

key and plaintext message. The fact, that the entropy of K is 

greater than that of M, indicates the probability of occurrence 

of each bit in a stream of pk-bits under ideal condition is 0.5. 

The ciphering being unconditionally secure ensures that after 

XORing the probability of occurrence of each cipher bit is 

also 0.5. This means that in a stream cipher a sequence of pk-

bits shall make a sequence of meaningful message bits into a 

sequence of completely meaningless irrevocable random 

cipher bits. The strength of a stream ciphering algorithm lies 

essentially on its capability to generate a stream of random 

key bits. 

Among many stream ciphers, e.g. RC4, HC-128, Grain etc., 

each one has its own algorithm to generate pseudorandom 

sequence (p-sequence). RC4 is the oldest one generating 8-bit 

p-sequence; HC-128 generates 32-bit p-sequence and the 

Grain, the 1-bit p-sequence in hardware. In course of time, 

RC4 turns out to be a popular stream cipher. Its algorithm is 

very simple and the code is unthinkably short. Possibly, due to 

this reason, it is used in many applications. During the last 

two decades, RC4 has drawn attentions of many researchers - 

some worked to mark its weaknesses [2-4], some analyzed its 

strength followed by suggestion to incur small changes in 

order to improve its algorithm (RC4A and RC4+) without 

sacrificing its inherent simplicity [5-8] and some worked on 

hardware design of the original one and also of the improved 

ones [9-12]. 

In the present paper it is planned to use a standard Blum Blum 

Shub (BBS) algorithm [13,14] to generate 8-Bit PRBG and to 

use Park and Miller (PM) algorithm to generate 8-bit PRNG 

[15] and to compare their statistical randomness with RC4. It 

may be noted that the BBS algorithm is based on composite 

quadratic residue property [16] due to which it exhibits 

provable security and is considered to be the best possible 

PRBG. It generates 1-bit (LSB) from one random number 

generated in each cycle making it a cryptographically secured, 

but slow algorithm. A faster BBS is considered here by 

choosing 4 bits in one cycle thereby forming 8 bits in two 

cycles. On the contrary, the PM algorithm, a number sequence 

based on linear congruential property, is considered here even 

though it is considered by many as cryptographically weak. 

The focus of the present paper is a comparative study on the 

degree of statistical randomness of the 8-bit BBS p-sequence 

and 8-bit PM p-sequence with RC4.  

The comparative study is undertaken using three test modules. 

In Sec. 2, the procedures adopted for the three test modules 

are described. In Sec. 3, the three algorithms generating 8-bit 

p-sequences are discussed. The results obtained from the three 

test modules are given in Sec. 4 and the conclusion, in Sec. 5. 

2. MODULAR APPROACH OF  

      STATISTICAL TEST 
A new concept is proposed in Test Module-1 that checks the 

probability of 8-bit p-sequences in two tests. The Test 

Module-2 undertakes four tests mentioned in [1] and the Test 

Module-3 is the CU software [17] based on the NIST 

Statistical Test Suite [18-21]. In the study, each one of the 

three algorithms detailed in Sec. 3 generates 8-bit 167800 p-

sequences using given non-random keys. Each algorithm 

generates 300 such p-sequences using 300 different given 

keys. To study the random characteristics of the three 

algorithms, the 300 p-sequences generated by each are tested 

using the three test modules. Both the test modules 2 and 3 

consider 1342400 bit sequence instead of the 167800 8-bit p-

sequences. Brief description of the three test modules follows. 

2.1 Test Module-1 
In test module-1, there are two tests – both checks the 

probability of occurrences of an 8-bit character among 167800 

characters in a p-sequence. If probability of occurrences of 

each of 256 characters is equal to the expected one, the 
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deviation is zero. A sequence is considered to be random if 

the probability of occurrences of each and all 8-bit characters 

is close to 1/256. The calculation procedure is as follow. 

Let, the probability of ith character is pi and the expected 

probability for all characters is pn = 1/256 ≈ 0.0039. The 

normalized standard deviation of occurrences of characters (σ) 

is obtained as, 
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First Test: In this test, σ is calculated considering the long 

stream of 167800 8-bit characters as a whole. To satisfy the 

value of pn = 0.0039, the expected value of occurrences of 

each character is about 655 times. If it is assumed to allow 

10% deviation and if σ < 0.1024, then the 8-bit p-sequence 

stream can be considered as random. The σ is calculated using 

eq.(1) above. 

Second Test: Calculation procedure of the second test is 

similar to the first one. The only difference is that, the 8-bit p-

sequence stream is divided into five blocks and σ is calculated 

for each block. The motivation behind this test is to see if the 

characters are distributed throughout the whole stream 

uniformly or there exist clustering of characters. If clustering 

occurs in a particular p-sequence, the sequence fails the 

second test, while it may pass the first one. In each block, the 

expected value of occurrences of each character is 131 times. 

Five σ values are calculated for each stream and if all σ values 

are less than 0.1024, the sequence is considered as random. 

2.2 Test Module-2 
In test module-2, four tests, namely the Frequency test, 2-bit 

Serial test, 8-bit Poker test and Runs test are considered 

following Menezes [1]. In frequency test, one has to ascertain 

if the numbers of 0s and 1s are approximately equal as would 

have been for a random sequence. The purpose of the 2-bit 

serial test is to see if the overlapping frequencies of 

occurrences of 00, 01, 10 and 11 in a bit sequence are 

approximately the same as would be expected for a random 

bit sequence. The 8-bit Poker test sees if the non-overlapping 

frequencies of 28 types of 8-bit patterns appearing in a long bit 

sequence are approximately the same as would be for a 

random bit sequence. The runs test considers the number of 

runs, both of zeros and of ones, of various lengths from 1-bit 

to 9-bit and sees if these are approximately the same as would 

be for a random bit sequence. The four tests calculate values 

X1, X2, X3 and X4 respectively. 

The four tests are executed on output sequences of an 

algorithm. All the tests of this module check the first 13424 

bits from the sequence to get a preliminary understanding 

about the randomness of the algorithm. The degrees of 

freedom of all the four tests are 1, 2, 255 and 16 respectively. 

The significance level α is already set at 0.05 and the 

corresponding upper value of 2 for each of the four tests are 

3.8415, 5.9915, 293.2478 and 26.2962 respectively following 

the table given in [1] for respective degrees of freedom. A 

sequence will pass the tests if X1, X2, X3 and X4 values are 

lying within the maximum limit 3.8415, 5.9915, 293.2478 and 

26.2962 respectively.  

2.3 Test Module-3 
The test module-3 contains fifteen statistical randomness tests 

proposed by NIST [19] – all are important and exhaustive in 

nature. In fact, module-3 takes a long time to quantitatively 

measure parameters defining the degree of randomness of p-

sequences generated by an algorithm and to draw a 

comprehensive decision on randomness of the concerned 

algorithm. In the event, one has to choose one or few PRBG 

or PRNG algorithms from among many such algorithms, say 

10, module-3 takes exhaustively long time. In order to reduce 

the total testing time, module-1 and module-2 are considered 

as preliminary modules so that bad algorithms can be located 

and rejected fast even without applying module-3 on them.  

The fifteen tests included in module-3 are not described here 

in detail - the interested reader can go through [17-21]. The 

test numbers with name of the fifteen tests are given in Table 

1 where the minimum length of bit-sequence required for a 

particular test is also mentioned following the NIST guideline.  

Table 1. Minimum required lengths and used lengths of 

bit-sequence for different tests 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each test provides one or more P-value(s) as a statistical 

measure for each of 300 bit sequences generated by an 

algorithm. From P-values of a particular test, one can estimate 

the Observed Proportion of Passing (OPOP) and compare it 

with the T-value given in eq.(2).  The distribution pattern of 

P-values is estimated from the P-value of P-values (POP) 

given in eq.(3). These two parameters are considered as the 

quantitative measures of degree of randomness of the 

concerned algorithm. The T-value depends on the number of 

P-values generated by a particular test; hence it differs from 

test to test. Tests 1 through 10 and 12 have one P-value, tests 

11 and 13 both have two P-values, Test 14 has eight, test 15 

has eighteen. In respect to a test, all P-values of the sequences 

Test 

No. 
Test Name 

Length of bit-

sequence (n) 

Minimum 

required 

length 

Used in 

CU 

software 

1 Frequency Test 100 1342400 

2 Frequency Test within a 

Block 

9000 1342400 

3 Runs Test 100 1342400 

4 Longest Run of Ones in 

a Block 

128 1342400 

5 Binary Matrix Rank 

Test 

38912 1342400 

6 Discrete Fourier 

Transform Test 

1000 13424 

7 Non-overlapping 

Template Test 

1048576 1342400 

8 Overlapping Template 

Test 

1000000 1342400 

9 Maurer’s “Universal 

Statistical” Test 

1342400 1342400 

10 Linear Complexity Test 1000000 1342400 

11 Serial Test 1000000 1342400 

12 Approximate Entropy 

Test 

100 1342400 

13 Cumulative Sums 

(Cusum) Test 

100 13424 

14 Random Excursions 

Test 

1000000 1342400 

15 Random Excursions 

Variant Test 

1000000 1342400 
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will be considered uniformly distributed between 0 and 1, if 

POP ≥ 0.0001. 

Observed Proportion of Passing (OPOP) of a test based on 

P-values: To observe the Proportion of Passing of a test, it is 

necessary to consider large number of samples of bit-

sequences generated by an algorithm. If m samples of bit-

sequences obtained from an algorithm are tested by a test 

producing one P-value, then a statistical threshold value (T-

value) would be, 

                      
m

Tvalue

)1(
3)1(





               (2) 

where significance level (α) = 0.01. The size of m should be 

greater than inverse of α. If m = 300, T-value = 0.972766. 

This means that such a test is considered to be statistically 

successful, if at least 292 P-values out of the 300 P-values do 

pass the test. If any test produced n number of P-values, then 

to calculate T-value in eq.(2), one should consider m×n 

instead of m. With same values of α and m, the T-value is 

0.983907 for n = 8 (tests 14). Such a test is considered 

statistically successful if at least 2362 P-values out of the total 

300×8 = 2400 P-values do pass the test.  

Distribution pattern of P-values and Estimation of P-value 

of P-values (POP): The concept of distribution pattern of P-

values is mentioned in [17-18]. It calculates the POP, where it 

is stated that P-values for a particular test can be considered 

uniformly distributed, if it’s POP ≥ 0.0001. For computing 

POP,  χ2 is calculated as 
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where, Si is the number of P-values in sub-interval i, and m is 

the sample size. If any test produced n number of P-values, 

then m = n×(number of files calculated). Here the degrees of 

freedom K = 9. Two parameters are a = K/2 and x = χ2/2 and 

the corresponding POP is calculated as, 
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3. RC4, PM and BBS ALGORITHMS 
In reality, there is no algorithm to produce pure random bits or 

numbers. All mathematical algorithms have deterministic 

features and the output sequences produced by them are not 

expected to be statistically random - at best can be called 

pseudorandom. There are different types of pseudorandom 

generators, e.g. Linear Congruential, Quadratic Congruential, 

etc. A Linear Congruential generator, a Quadratic one along 

with RC4 is discussed in this Section. 

3.1 RC4 algorithm 
The RC4 involves an idea coined by Knuth [22] which states 

that a series of 8-bit random numbers can suitably be 

generated if number elements of a reasonably large linear 

matrix are randomly shuffled for a number of times.  Ronald 

Rivest translated the concept in two stages, Key Scheduling 

Algorithm (KSA) and Pseudorandom Generator Algorithm 

(PRGA). In KSA an identity S-Box is chosen with indices as 

element values. The element values are shuffled 256 times 

within fixed indices considering a role of the given key in the 

shuffle. In PRGA, two elements are randomly chosen, modulo 

added to give 8-bit random key and then swapped – the 

infinite continuation of the process generates a stream of 8-bit 

p-sequence. 

3.2 Park-and-Miller (PM) algorithm 
The Park-and-Miller proposed a linear congruential algorithm 

[15] to generate sequence of floating-point random numbers 

(fprn) between 0 and 1. The algorithm can be stated as,  

                               seedi+1 = A × seedi % M                       (4a) 

                                    fprn = seedi+1 / M                            (4b) 

where M is chosen as a large 32-bit positive integer, (231 – 1) 

= 2147483647, a prime number and A is considered as a large 

integer (16807) less than square root of M (A < √M). 

The algorithm involves choice of an initial non-zero seed 

number (seed0). The seed is continuously upgraded by the 

remainder obtained by dividing (A×seed) by M. If seed0 is 

zero, all remainders become zero and the algorithm fails. 

There is another problem - while multiplying A with seed, the 

product may not fit into the 32-bit computer memory and the 

algorithm may fail due to the storage problem. A technique is 

presented in [23] following Schrage [24,25] to handle the 

memory overflow problem. The coding is shown below in 

PMB block: 

PMB block: 

Q = M / A; 

R = M % A; 

k = seed / Q; 

r = seed % Q; 

if ((A×r – k×R) ≥ 0) seedi+1 = (A×r – k×R); 

otherwise, seedi+1 = M + (A×r – k×R); 

The PM algorithm generates non-repeating integral seeds 

between 0 and M, if and only if the initial seed is non-zero 

positive integer less than M. In order that 0 is accepted as an 

initial seed, XOR operation between seed and an arbitrary 

integer (MASK) is introduced before and after the PMB block 

[23]. The code then looks like, 

seed = seed^MASK; 

PMB block 
seed = seed^MASK; 

The above algorithm may also fail, if MASK happens to be an 

initial seed or an intermediate seed. One can handle such an 

eventuality using the following code instead of the previous 

one,  

if(seed != MASK) seed = seed^MASK; 

PMB block 
seed = seed^MASK; 

Considering the innovation proposed in the coding of the PM 

algorithm, the symbolic code narrated above is sound and 

shall accept any seed including zero.  

3.2.1 PM with Small multiplier (PM-S) 
To get an 8-bit random integer key with small multiplier, a 

16-bit multiplier is used in eq.(4b) as,  

                      key = (fprn× multiplier) % 256  

This way, an 8-bit p-sequence is produced in each iteration 

using small multiplier. 

3.2.2 PM with Large multiplier (PM-L) 
To get an 8-bit random integer key with large multiplier, the 

M itself is virtually used as 32-bit multiplier in eq.(4b) as,  

                     seedi+1 = A × seedi % M 

                     key = seedi+1 % 256  

This way, an 8-bit p-sequence is produced in each iteration 

using large multiplier. 



International Journal of Computer Applications (0975 – 8887) 

Volume 96– No.10, June 2014 

35 

3.3 BBS Algorithm 
The Blum Blum Shub (BBS) algorithm is a popular and well 

known pseudorandom bit generator. It is considered that BBS 

generator is a cryptographically secured PRBG and provides 

pseudorandom bit stream [13,14]. Brief information of this 

generator along with its security is as follows:  

Let p and q be two prime numbers and both are congruent to 3 

modulo 4, that is, 

                                    p ≡ q ≡ 3 (mod 4)                  (5) 

Now, 

          n = p × q                                        (6) 

Let s is a randomly chosen seed number relatively prime to n 

indicating that neither p nor q is a factor of s. A stream of 

BBS bits bi will be produced using the following algorithm: 

X0 = s2 mod n; 

for i = 1 to ∞  

Xi = (Xi–1)
2 mod n; 

bi = Xi mod 2; 

In each iteration, the LSB is considered as a random key bit. 

The computational approach of this algorithm is very simple 

and is easy to implement in software as well as in hardware. 

There is some evidence that the BBS generator has provable 

security [16]. But it is considered as a slow algorithm, since it 

produces only one bit at a time. To make it faster, it is proved 

that r bits can be extracted at a time if r ≤ log2log2(n) where n 

is the modulus used in the algorithm [14]. The generator will 

be faster if r ≥ 2. Now let, one intends to extract 4 bits in each 

iteration, n ≥  
 
= 216 = 65536. In this paper two sets of p and 

q given in eq.(6) are considered for statistical tests – for the 

first set n is small with p = 131, q = 499 and for the second set 

n is large with p = 42839 and q = 50123. 

3.3.1 BBS-1S 
In BBS-1S, the smaller value of n is obtained by considering 

prime values of p = 131 and q = 499 in eq.(6) and one LSB bit 

is extracted in one cycle from the upgraded seed.  

3.3.2 BBS-3S 
In BBS-3S, the smaller value of n is chosen as is being done 

in BBS-1S by considering prime values of p = 131 and q = 

499 in eq.(6) and three LSB bits are extracted in one cycle 

from an upgraded seed in succession of 3 steps.  

3.3.3 BBS-1L 
In BBS-1L, the larger value of n is obtained by considering 

prime values of p = 42839 and q = 50123 in eq.(6) and one 

LSB bit is extracted in one cycle from an upgraded seed.  

3.3.4 BBS-4L 
In BBS-4L, the larger value of n is obtained by considering 

prime values of p = 42839 and q = 50123 in eq.(6) and four 

LSB bits are extracted in one cycle from an upgraded seed in 

succession of 4 steps. 

4. RESULT AND DISCUSSION 
Based on the three algorithms discussed in Section 3, seven 

set of data each having 300 bit-sequences are generated. The 

data set are named as: RC4, PM-S, PM-L, BBS-1S, BBS-3S, 

BBS-1L and BBS-4L and these are discussed respectively in 

sections 3.1, 3.2.1, 3.2.2, 3.3.1, 3.3.2, 3.3.3 and 3.3.4. The 

results obtained by the three test modules are discussed in 

sections 4.1, 4.2 and 4.3 respectively. 

4.1 Result of Test Module-1 
Seven set of data each having 300 bit sequences are tested by 

Module-1. For a particular algorithm the best and worst values 

of σ calculated by eq.(1) are shown in Table 2 along with the 

Proportion of Passing obtained from the probability of 

occurrence of 8-bit value. It is seen from Table 2 that, the 

value of σ for data set BBS-1S and BBS-3S is always higher 

than 0.1024 for both the frequency test and block frequency 

test. The results of other data sets are satisfactory. 

Table 2. The value of σ in Test Module-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Of each set of the seven sets, the sequence with least value of 

σ (best sequence) are also graphically shown in Figs. 1(a) 

through 1(g) of Appendix A using MATLAB, where 8-bit 

ASCII value of each characters are plotted in x-axis and their 

frequency of occurrences in y-axis. The Figs. 1(d) and 1(e) 

corresponds to BBS-1S and BBS-3S respectively and for both 

the probability of occurrences of each 8-bit value are seen to 

lie within 0 and 2×10–2 – all are not distributed randomly and 

uniformly centering around 3.9×10-3. For other sets, the 

values are within the range of 0.0039 ± 0.0004. Hence one can 

conclude that BBS-1S and BBS-3S do not satisfy the random 

properties and can be declared as non-random. 

4.2 Result of Test Module-2 
In this module, the passing criterion for each test is set at 90% 

while it is set at 80% for all the four tests together. Though the 

results of BBS-1S and BBS-3S do not satisfy the random 

properties under test module-1; yet these are considered here 

with a view to see their results with the test module-2. Hence, 

module-2 considers the same seven data sets as in module-1. 

The results of four tests executed on data of seven sets are 

noted in columns 2 through 5 of Table 3 depicting test-wise 

percentage of passing data. The last column indicates the 

percentage of simultaneously passing data of all the four tests. 

The criterion of percentage of passing a test has been 

mentioned in Section 2.2. It is seen from Table 3 that BBS-1S 

and BBS-3S are unsatisfactory. For all the other five sets, the 

results are satisfactory. Hence, as per the results of module-2, 

Data set Best 

value 

Worst 

value 

Passing 

Proportion 

Result of frequency test:                               

Sequence length 166400 characters 

RC4 0.0339195

6 

0.0442959

4 

100.00 

PM-S 0.0334897

1 

0.0438840

9 

100.00 

PM-L 0.0339922

5 

0.0446135

2 

100.00 

BBS-1S 1.273882 15.96872 0.00 

BBS-3S 0.7244467 9.183318 0.00 

BBS-1L 0.0341972

6 

0.0445378

1 

100.00 

BBS-4L 0.0349984

2 

0.0445548

3 

100.00 

Result of block frequency test:                           

Block length 33280 characters 

RC4 0.0857523

1 

0.1013203 100.00 

PM-S 0.0853362

0 

0.1004934 100.00 

PM-L 0.0850295

8 

0.1021745 100.00 

BBS-1S 1.274072 15.96872 0.00 

BBS-3S 0.7247481 9.183318 0.00 

BBS-1L 0.0853172

4 

0.1014229 100.00 

BBS-4L 0.0842951

8 

0.1043170 99.67 
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both the BBS-1S and BBS-3S can be declared as non-random. 

These two are not considered in test module-3.  

Table 3. Percentage of passing in Test Module-2 

 

 

 

 

 
 

 

 

4.3 Result of Test Module-3 
In Module-3 five algorithms, namely, RC4, PM-S, PM-L, 

BBS-1L and BBS-4L each having 300 bit sequences are 

tested.  For all the five algorithms, the P-value data of all the 

15 tests are presented in Tables 4(a) through 4(e). If P-value < 

0.01, then it will be considered as unsuccessful. In Tables 4, 

column C0 indicates test number and the P-value data for a 

particular test are shown being divided in 11 groups, C1 to 

C11. The ranges of groups are C1: 0.00 – 0.01, C2: 0.01 – 0.1, 

C3: 0.1 – 0.2, C4: 0.2 – 0.3, C5: 0.3 – 0.4, C6: 0.4 – 0.5, C7: 

0.5 – 0.6, C8: 0.6 – 0.7, C9: 0.7 – 0.8, C10: 0.8 – 0.9, and 

C11: 0.9 – 1.0. The Observed Proportion of Passing for a 

particular test is the ratio of sum of the last ten columns (C2 to 

C11) to the total sum of eleven columns (C1 – C11). For each 

test, the Observed Proportion of Passing (OPOP) of all the 

300 sequences is estimated and presented in Table 5 and if 

OPOP ≥ T-value, a particular test is considered as being 

passed. The distribution pattern of P-values is estimated 

through P-value of P-values (POP) following the 

mathematical equations given in eq.(3). The P-values are 

uniformly distributed if POP ≥ 0.0001. In OPOP column Y/N 

indicates the successful/unsuccessful in Observed Proportion 

of passing and in POP column Y/N indicates the 

uniformity/non-uniformity of distribution of P-values. From 

various observations on test results, it is also understood that 

P-values are more uniformly distributed if POP is larger. The 

OPOP and POP are the two checking parameters measuring 

the degree of randomness of an algorithm.  

Regarding the uniformity or non-uniformity distribution of P-

values, one can correlate the POP value shown in Table 5 with 

a corresponding visual histogram obtained from the right data 

of the tables of Table 4. From Table 5, the test 2 of PM-S is 

seen as the best POP obtained from the test 2 data shown in 

Table 4(b) – the same data is displayed in a corresponding 

histogram in Fig. 2(a) of Appendix B. The uniformity of the 

P-value distribution is visually evident.  The worst POP is the 

test 15 of BBS-4L (vide Table 5). The corresponding data 

from test 15 of Table 4(e) is displayed in another histogram in 

Fig. 2(b) of the same Appendix. The histogram shows non-

uniform distribution of P-values. In both the histograms, there 

are ten columns: first column indicates the number of P-

values lying between 0 and 0.1; second column indicates the 

number of P-values lying between 0.1 and 0.2, so on and so 

forth. It may be noted that the test 2 has 300 P-values for 300 

sequences, while the test 15 has 5400 P-values for 300 

sequences. For paucity of space, the number of P-values for 

test 15 above 300 is shown in the ordinate axis of Fig. 2(b). 

Table 4(a). Frequency distribution of P-values in RC4 

C0|C1| C2  | C3  | C4  | C5  | C6 | C7  | C8  | C9  |C10 |C11 

   1|  6  |  24  |  29  |  33  |  38  |  26  |  36  |  32  |  24  |  25  |  27 

   2|  1  |  27  |  32  |  31  |  33  |  32  |  31  |  26  |  26  |  25  |  36 

   3|  6  |  24  |  29  |  31  |  32  |  25  |  17  |  35  |  32  |  38  |  31 

   4|  1  |  36  |  39  |  30  |  23  |  29  |  28  |  30  |  21  |  34  |  29 

   5|  3  |  27  |  26  |  33  |  40  |  32  |  27  |  25  |  27  |  31  |  29 

   6|  4  |  19  |  43  |  29  |  26  |  28  |  27  |  35  |  37  |  25  |  27 

   7|  4  |  25  |  28  |  29  |  28  |  37  |  27  |  34  |  32  |  32  |  24 

   8|  4  |  29  |  30  |  28  |  28  |  24  |  37  |  38  |  29  |  25  |  28 

   9|  2  |  23  |  30  |  24  |  25  |  43  |  31  |  29  |  28  |  33  |  32 

 10|  4  |  29  |  26  |  34  |  29  |  39  |  21  |  28  |  24  |  32  |  34 

 11|  5  |  60  |  70  |  62  |  56  |  49  |  51  |  65  |  63  |  62  |  57 

 12|  3  |  26  |  38  |  31  |  30  |  27  |  26  |  31  |  31  |  29  |  28 

 13|  7  |  54  |  61  |  61  |  44  |  57  |  71  |  55  |  70  |  58  |  62 

 14| 29 | 216 | 236 | 248 | 246 | 263 | 252 | 233 | 254 | 207 | 216 

 15| 72 | 474 | 543 | 573 | 558 | 561 | 530 | 568 | 503 | 522 | 496 

 

Table 4(b). Frequency distribution of P-values in PM-S 

C0|C1| C2  | C3  | C4  | C5  | C6 | C7  | C8  | C9  |C10 |C11 

   1|  5  |  25  |  25  |  24  |  21  |  29  |  40  |  36  |  41  |  22  |  32 

   2|  2  |  28  |  30  |  32  |  32  |  29  |  30  |  30  |  28  |  32  |  27 

   3|  4  |  27  |  39  |  28  |  23  |  36  |  35  |  26  |  26  |  29  |  27 

   4|  2  |  24  |  23  |  25  |  36  |  32  |  22  |  29  |  30  |  42  |  35 

   5|  4  |  19  |  26  |  37  |  38  |  35  |  26  |  30  |  26  |  34  |  25 

   6|  4  |  27  |  36  |  31  |  23  |  28  |  21  |  38  |  42  |  20  |  30 

   7|  0  |  30  |  19  |  35  |  33  |  30  |  40  |  31  |  27  |  25  |  30 

   8|  2  |  20  |  39  |  32  |  24  |  31  |  33  |  29  |  25  |  28  |  37 

   9|  3  |  22  |  29  |  22  |  48  |  32  |  32  |  26  |  30  |  29  |  27 

 10|  5  |  23  |  30  |  33  |  29  |  39  |  33  |  25  |  33  |  23  |  27 

 11|  3  |  49  |  60  |  53  |  60  |  54  |  51  |  66  |  69  |  57  |  78 

 12|  2  |  26  |  36  |  21  |  28  |  27  |  26  |  34  |  31  |  31  |  38 

 13|  6  |  66  |  68  |  72  |  58  |  56  |  61  |  43  |  57  |  51  |  62 

 14| 33 | 207 | 215 | 219 | 266 | 242 | 242 | 268 | 239 | 229 | 240 

 15| 54 | 441 | 575 | 539 | 561 | 598 | 550 | 527 | 482 | 549 | 524 

 

Table 4(c). Frequency distribution of P-values in PM-L 

C0|C1| C2  | C3  | C4  | C5  | C6 | C7  | C8  | C9  |C10 |C11 

   1|  2  |  20  |  32  |  28  |  25  |  32  |  37  |  27  |  31  |  46  |  20 

   2|  1  |  26  |  29  |  32  |  30  |  31  |  30  |  29  |  28  |  27  |  37 

   3|  1  |  26  |  41  |  29  |  33  |  31  |  30  |  32  |  23  |  25  |  29 

   4|  5  |  23  |  22  |  35  |  25  |  33  |  27  |  31  |  42  |  27  |  30 

   5|  3  |  28  |  30  |  29  |  37  |  28  |  27  |  28  |  28  |  30  |  32 

   6|  6  |  26  |  31  |  27  |  29  |  38  |  24  |  36  |  34  |  27  |  22 

   7|  3  |  26  |  32  |  21  |  30  |  23  |  28  |  30  |  39  |  30  |  38 

   8|  6  |  32  |  29  |  29  |  22  |  32  |  25  |  27  |  33  |  33  |  32 

   9|  6  |  16  |  42  |  30  |  26  |  33  |  39  |  33  |  26  |  30  |  19 

 10|  2  |  31  |  32  |  22  |  40  |  31  |  30  |  21  |  25  |  34  |  32 

 11|  7  |  61  |  49  |  63  |  80  |  58  |  54  |  46  |  70  |  51  |  61 

 12|  3  |  30  |  21  |  30  |  47  |  29  |  23  |  28  |  35  |  24  |  30 

 13|  7  |  51  |  64  |  71  |  63  |  61  |  54  |  69  |  68  |  52  |  40 

 14| 42 | 260 | 264 | 220 | 231 | 213 | 252 | 259 | 216 | 236 | 207 

 15| 93 | 487 | 558 | 557 | 568 | 501 | 544 | 545 | 502 | 544 | 501 

Data set 
Frequ-

ency 

test 

Seri-

al 

test 

Pok-

er 

test 

Runs 

test 

All 

four 

tests 

RC4 94.33 93.67 94.67 92.67 81.33 

PM-S 94.67 94.67 96.00 90.00 81.00 

PM-L 96.00 95.67 97.33 95.00 88.00 

BBS-1S 22.33 4.33 0 0 0 

BBS-3S 50.33 35.00 0 0 0 

BBS-1L 94.67 94.67 95.33 91.33 80.67 

BBS-4L 96.67 95.67 96.33 91.67 85.33 
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Table 4(d). Frequency distribution of P-values in BBS-1L 

C0|C1| C2  | C3  | C4  | C5  | C6 | C7  | C8  | C9  |C10 |C11 

   1|  4  |  21  |  19  |  27  |  24  |  33  |  27  |  37  |  36  |  32  |  40 

   2|  1  |  25  |  23  |  29  |  27  |  34  |  35  |  30  |  28  |  36  |  32 

   3|  2  |  20  |  27  |  30  |  31  |  31  |  44  |  28  |  27  |  28  |  32 

   4|  8  |  16  |  39  |  25  |  28  |  26  |  33  |  40  |  26  |  28  |  31 

   5|  2  |  25  |  37  |  30  |  25  |  31  |  21  |  33  |  23  |  36  |  37 

   6|  1  |  23  |  38  |  28  |  27  |  35  |  18  |  36  |  37  |  32  |  25 

   7|  2  |  29  |  34  |  31  |  28  |  27  |  33  |  26  |  27  |  29  |  34 

   8|  4  |  28  |  24  |  28  |  39  |  22  |  36  |  24  |  34  |  30  |  31 

   9|  6  |  32  |  34  |  27  |  35  |  27  |  23  |  23  |  26  |  35  |  32 

 10|  1  |  33  |  29  |  24  |  27  |  29  |  33  |  28  |  32  |  36  |  28 

 11|  4  |  25  |  53  |  64  |  58  |  66  |  47  |  73  |  69  |  60  |  81 

 12|  2  |  12  |  24  |  32  |  31  |  29  |  21  |  36  |  38  |  37  |  38 

 13| 12 |  54  |  77  |  56  |  51  |  65  |  73  |  59  |  53  |  45  |  55 

 14| 34 | 245 | 241 | 242 | 227 | 215 | 262 | 251 | 220 | 236 | 227 

 15| 65 | 427 | 492 | 485 | 555 | 573 | 569 | 546 | 568 | 566 | 554 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4(e). Frequency distribution of P-values in BBS-4L 

C0|C1| C2  | C3  | C4  | C5  | C6 | C7  | C8  | C9  |C10 |C11 

   1|  5  |  17  |  33  |  33  |  30  |  33  |  41  |  24  |  29  |  21  |  34 

   2|  1  |  17  |  30  |  31  |  33  |  25  |  26  |  28  |  23  |  46  |  40 

   3|  3  |  33  |  35  |  30  |  27  |  30  |  35  |  21  |  37  |  22  |  27 

   4|  3  |  21  |  34  |  30  |  38  |  26  |  20  |  32  |  30  |  35  |  31 

   5|  1  |  31  |  31  |  25  |  28  |  24  |  43  |  34  |  33  |  24  |  26 

   6|  4  |  33  |  36  |  28  |  36  |  34  |  24  |  29  |  32  |  18  |  26 

   7|  4  |  23  |  35  |  32  |  34  |  25  |  23  |  34  |  40  |  27  |  23 

   8|  1  |  28  |  27  |  32  |  28  |  32  |  35  |  23  |  28  |  37  |  29 

   9|  2  |  27  |  30  |  38  |  23  |  36  |  25  |  26  |  28  |  26  |  39 

 10|  2  |  27  |  28  |  30  |  35  |  42  |  32  |  25  |  28  |  27  |  24 

 11|  9  |  51  |  38  |  69  |  54  |  61  |  66  |  60  |  53  |  69  |  70 

 12|  4  |  24  |  20  |  35  |  28  |  34  |  40  |  25  |  27  |  30  |  33 

 13|  4  |  38  |  52  |  67  |  51  |  66  |  68  |  65  |  72  |  55  |  62 

 14| 34 | 233 | 220 | 234 | 228 | 269 | 240 | 238 | 219 | 252 | 233 

 15| 64 | 479 | 517 | 525 | 508 | 507 | 458 | 545 | 596 | 568 | 633 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Observed Proportion of Passing (OPOP) and P-value of P-values (POP) in Test Module-3 

Test 

No. T-value 

Observed Proportion of Passing (OPOP) P-value of P-values (POP) 

RC4 PM-S PM-L 
BBS1-

L 

BBS4-

L 
RC4 PM-S PM-L BBS1-L BBS4-L 

1 0.97277 0.9800 

Y 

0.9833 

Y 

0.9933 

Y 

0.9867 

Y 

0.9833 

Y 

6.7178e-1 

Y 

7.5719e-2 

Y 

4.5675e-2 

Y 

1.5091e-1 

Y 

2.4091e-1 

Y 

2 0.97277 0.9967 

Y 

0.9933 

Y 

0.9967 

Y 

0.9967 

Y 

0.9967 

Y 

9.1997e-1 

Y 

9.9969e-1 

Y 

9.7807e-1 

Y 

8.0434e-1 

Y 

1.7107e-2 

Y 

3 0.97277 0.9800 

Y 

0.9867 

Y 

0.9967 

Y 

0.9933 

Y 

0.9900 

Y 

3.6692e-1 

Y 

5.4088e-1 

Y 

6.0246e-1 

Y 

3.7250e-1 

Y 

3.5591e-1 

Y 

4 0.97277 0.9967 

Y 

0.9933 

Y 

0.9833 

Y 

0.9733 

Y 

0.9900 

Y 

4.0120e-1 

Y 

2.0590e-1 

Y 

3.7814e-1 

Y 

3.7250e-1 

Y 

4.6225e-1 

Y 

5 0.97277 0.9900 

Y 

0.9867 

Y 

0.9900 

Y 

0.9933 

Y 

0.9967 

Y 

7.5976e-1 

Y 

4.1902e-1 

Y 

9.7997e-1 

Y 

3.2933e-1 

Y 

3.0906e-1 

Y 

6 0.97277 0.9867 

Y 

0.9867 

Y 

0.9800 

Y 

0.9967 

Y 

0.9867 

Y 

2.2093e-1 

Y 

6.6882e-2 

Y 

5.3415e-1 

Y 

1.5376e-1 

Y 

2.4928e-1 

Y 

7 0.97277 0.9867 

Y 

1.0000 

Y 

0.9900 

Y 

0.9933 

Y 

0.9867 

Y 

8.9300e-1 

Y 

3.7814e-1 

Y 

3.9536e-1 

Y 

9.7394e-1 

Y 

3.4512e-1 

Y 

8 0.97277 0.9867 

Y 

0.9933 

Y 

0.9800 

Y 

0.9867 

Y 

0.9967 

Y 

6.8558e-1 

Y 

4.2506e-1 

Y 

7.0615e-1 

Y 

4.1303e-1 

Y 

8.3431e-1 

Y 

9 0.97277 0.9933 

Y 

0.9900 

Y 

0.9800 

Y 

0.9800 

Y 

0.9933 

Y 

4.2506e-1 

Y 

9.2784e-2 

Y 

8.2177e-2 

Y 

4.4967e-1 

Y 

3.7250e-1 

Y 

10 0.97277 0.9867 

Y 

0.9833 

Y 

0.9933 

Y 

0.9967 

Y 

0.9933 

Y 

4.5594e-1 

Y 

6.8558e-1 

Y 

3.3980e-1 

Y 

9.1141e-1 

Y 

4.9439e-1 

Y 

11 0.97781 0.9917 

Y 

0.9950 

Y 

0.9883 

Y 

0.9933 

Y 

0.9850 

Y 

6.8213e-1 

Y 

2.5355e-1 

Y 

5.0845e-2 

Y 

1.9136e-4 

Y 

1.0667e-1 

Y 

12 0.97277 0.9900 

Y 

0.9933 

Y 

0.9900 

Y 

0.9933 

Y 

0.9867 

Y 

9.5278e-1 

Y 

5.6123e-1 

Y 

5.7753e-2 

Y 

1.9631e-2 

Y 

3.7250e-1 

Y 

13 0.97781 0.9883 

Y 

0.9900 

Y 

0.9883 

Y 

0.9800 

Y 

0.9933 

Y 

4.6542e-1 

Y 

1.8156e-1 

Y 

1.5091e-1 

Y 

8.3867e-2 

Y 

1.3728e-1 

Y 

14 0.98391 0.9880 

Y 

0.9863 

Y 

0.9825 

N 

0.9858 

Y 

0.9858 

Y 

2.5248e-1 

Y 

2.7117e-1 

Y 

1.5885e-4 

Y 

1.0177e-1 

Y 

2.3579e-1 

Y 

15 0.98594 0.9867 

Y 

0.9900 

Y 

0.9828 

N 

0.9880 

Y 

0.9882 

Y 

2.2050e-1 

Y 

1.5498e-2 

Y 

1.2365e-1 

Y 

1.1548e-2 

Y 

4.7966e-6 

N 
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5. CONCLUSION 
Among the three test modules, the test module-3 is the most 

important. It has been possible to discard the BBS-1S and 

BBS-3S based on test modules 1 and 2 without trying on it the 

test module-3.  Based on the results obtained from all the 

three modules, one can conclude that the Park-and-Miller 

algorithm provides good 8-bit random sequences and can be 

used in stream ciphers. From Table 5, one notices that PM-L 

has two “N” for test 14 and 15, although numerical values are 

very close to the thresholds. Moreover, it has uniform 

distribution of P-values for all the fifteen tests. Hence PM can 

be considered as random. On the other side, for BBS-4L, the 

distribution of P-values in test 15 is not uniform, though it 

well satisfies the Observed Proportion of Passing criteria. 

Considering the overall result, BBS-4L can also be treated as 

random. The RC4, PM-S and BBS-1L have very good result 

for all tests of each of the three test modules. From the 

observations on test-results, one can mark two points. The 

first – if modulus in BBS is larger, it exhibits better 

randomness and extraction of 4-bits at a time from BBS 

algorithm using 32-bit modulus would give good randomness. 

The second one – the Park-and-Miller algorithm is good for 

both small and large multipliers. Based on these statistical 

tests it is proved that, RC4, PM and BBS with large modulus 

are secured from the statistical point of view.  Hence these can 

be used in stream ciphers. 
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Appendix A: Graphical representations showing the best sequences for each data set 

Fig 1(a): Best sample plot of RC4 
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Fig 1(b): Best sample plot of PM-S 
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Fig 1(c): Best sample plot of PM-L 
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Fig 1(d): Best sample plot of BBS-1S 
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Fig 1(e): Best sample plot of BBS-3S 
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Fig 1(f): Best sample plot of BBS-1L 
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Appendix B: Histograms for distribution of P-values 

Fig 1(g): Best sample plot of BBS-4L 
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Fig 2(a): Histogram for Test no. 2 of PM-S                            Fig 2(b): Histogram for Test no. 15 of BBS-4L 
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