
International Journal of Computer Applications (0975 – 8887)

Volume 96– No.10, June 2014

32

Search for Secure Random 8-bit Generator by Modular

Approach of Statistical Test

J K M Sadique Uz Zaman

Department of Radio Physics and Electronics,
University of Calcutta, Kolkata – 700009, India

Ranjan Ghosh
Department of Radio Physics and Electronics,
University of Calcutta, Kolkata – 700009, India

ABSTRACT

Random key bit generators are used in statistically secured

stream ciphers. In stream ciphers pseudorandom key bits are

XORed with non-random text bits to generate random cipher

bits. In practice, it is impossible to get a Random Bit

Generator (RBG) that can be used for encryption as well as

for decryption. The solution is to search for a suitable Pseudo

Random Bit Generator (PRBG). In this paper, a comparative

study of randomness of RC4 is made with that of six set of

pseudorandom 8-bit sequences generated by introducing some

variations in BBS and PM algorithms. In RC4, the given key

randomizes an 8-bit identity S-Box in 256 rounds. The BBS

and PM require an initial seed to be given as key. In the study,

one algorithm generates 167800 pseudorandom 8-bit key

sequences for a given key. For each of the seven sets, 300

such sequences are generated using 300 different given keys.

The randomness of 300 sequences for each set are tested using

three test modules.

General Terms

Pseudo Random Bit Generator (PRBG), Pseudo Random

Number Generator (PRNG), Statistical Randomness Test.

Keywords

NIST Statistical Tests, Pseudorandom Bit Generator,

Statistical Randomness Test, Stream Cipher.

1. INTRODUCTION
In cryptography, stream ciphering algorithms generate a

stream of pseudorandom key bits (pk-bits) and such pk-bits

are XORed in succession with text bits giving rise to cipher

bits. Following reference [1], the necessary condition, that a

symmetric ciphering scheme is unconditionally secure, is

H(K) ≥ H(M), where H() is an entropy function for random

variables K and M denoting respectively the secrete random

key and plaintext message. The fact, that the entropy of K is

greater than that of M, indicates the probability of occurrence

of each bit in a stream of pk-bits under ideal condition is 0.5.

The ciphering being unconditionally secure ensures that after

XORing the probability of occurrence of each cipher bit is

also 0.5. This means that in a stream cipher a sequence of pk-

bits shall make a sequence of meaningful message bits into a

sequence of completely meaningless irrevocable random

cipher bits. The strength of a stream ciphering algorithm lies

essentially on its capability to generate a stream of random

key bits.

Among many stream ciphers, e.g. RC4, HC-128, Grain etc.,

each one has its own algorithm to generate pseudorandom

sequence (p-sequence). RC4 is the oldest one generating 8-bit

p-sequence; HC-128 generates 32-bit p-sequence and the

Grain, the 1-bit p-sequence in hardware. In course of time,

RC4 turns out to be a popular stream cipher. Its algorithm is

very simple and the code is unthinkably short. Possibly, due to

this reason, it is used in many applications. During the last

two decades, RC4 has drawn attentions of many researchers -

some worked to mark its weaknesses [2-4], some analyzed its

strength followed by suggestion to incur small changes in

order to improve its algorithm (RC4A and RC4+) without

sacrificing its inherent simplicity [5-8] and some worked on

hardware design of the original one and also of the improved

ones [9-12].

In the present paper it is planned to use a standard Blum Blum

Shub (BBS) algorithm [13,14] to generate 8-Bit PRBG and to

use Park and Miller (PM) algorithm to generate 8-bit PRNG

[15] and to compare their statistical randomness with RC4. It

may be noted that the BBS algorithm is based on composite

quadratic residue property [16] due to which it exhibits

provable security and is considered to be the best possible

PRBG. It generates 1-bit (LSB) from one random number

generated in each cycle making it a cryptographically secured,

but slow algorithm. A faster BBS is considered here by

choosing 4 bits in one cycle thereby forming 8 bits in two

cycles. On the contrary, the PM algorithm, a number sequence

based on linear congruential property, is considered here even

though it is considered by many as cryptographically weak.

The focus of the present paper is a comparative study on the

degree of statistical randomness of the 8-bit BBS p-sequence

and 8-bit PM p-sequence with RC4.

The comparative study is undertaken using three test modules.

In Sec. 2, the procedures adopted for the three test modules

are described. In Sec. 3, the three algorithms generating 8-bit

p-sequences are discussed. The results obtained from the three

test modules are given in Sec. 4 and the conclusion, in Sec. 5.

2. MODULAR APPROACH OF

 STATISTICAL TEST
A new concept is proposed in Test Module-1 that checks the

probability of 8-bit p-sequences in two tests. The Test

Module-2 undertakes four tests mentioned in [1] and the Test

Module-3 is the CU software [17] based on the NIST

Statistical Test Suite [18-21]. In the study, each one of the

three algorithms detailed in Sec. 3 generates 8-bit 167800 p-

sequences using given non-random keys. Each algorithm

generates 300 such p-sequences using 300 different given

keys. To study the random characteristics of the three

algorithms, the 300 p-sequences generated by each are tested

using the three test modules. Both the test modules 2 and 3

consider 1342400 bit sequence instead of the 167800 8-bit p-

sequences. Brief description of the three test modules follows.

2.1 Test Module-1
In test module-1, there are two tests – both checks the

probability of occurrences of an 8-bit character among 167800

characters in a p-sequence. If probability of occurrences of

each of 256 characters is equal to the expected one, the

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.10, June 2014

33

deviation is zero. A sequence is considered to be random if

the probability of occurrences of each and all 8-bit characters

is close to 1/256. The calculation procedure is as follow.

Let, the probability of ith character is pi and the expected

probability for all characters is pn = 1/256 ≈ 0.0039. The

normalized standard deviation of occurrences of characters (σ)

is obtained as,

 











 


255

0

2

256

1

i n

ni

p

pp
 (1)

First Test: In this test, σ is calculated considering the long

stream of 167800 8-bit characters as a whole. To satisfy the

value of pn = 0.0039, the expected value of occurrences of

each character is about 655 times. If it is assumed to allow

10% deviation and if σ < 0.1024, then the 8-bit p-sequence

stream can be considered as random. The σ is calculated using

eq.(1) above.

Second Test: Calculation procedure of the second test is

similar to the first one. The only difference is that, the 8-bit p-

sequence stream is divided into five blocks and σ is calculated

for each block. The motivation behind this test is to see if the

characters are distributed throughout the whole stream

uniformly or there exist clustering of characters. If clustering

occurs in a particular p-sequence, the sequence fails the

second test, while it may pass the first one. In each block, the

expected value of occurrences of each character is 131 times.

Five σ values are calculated for each stream and if all σ values

are less than 0.1024, the sequence is considered as random.

2.2 Test Module-2
In test module-2, four tests, namely the Frequency test, 2-bit

Serial test, 8-bit Poker test and Runs test are considered

following Menezes [1]. In frequency test, one has to ascertain

if the numbers of 0s and 1s are approximately equal as would

have been for a random sequence. The purpose of the 2-bit

serial test is to see if the overlapping frequencies of

occurrences of 00, 01, 10 and 11 in a bit sequence are

approximately the same as would be expected for a random

bit sequence. The 8-bit Poker test sees if the non-overlapping

frequencies of 28 types of 8-bit patterns appearing in a long bit

sequence are approximately the same as would be for a

random bit sequence. The runs test considers the number of

runs, both of zeros and of ones, of various lengths from 1-bit

to 9-bit and sees if these are approximately the same as would

be for a random bit sequence. The four tests calculate values

X1, X2, X3 and X4 respectively.

The four tests are executed on output sequences of an

algorithm. All the tests of this module check the first 13424

bits from the sequence to get a preliminary understanding

about the randomness of the algorithm. The degrees of

freedom of all the four tests are 1, 2, 255 and 16 respectively.

The significance level α is already set at 0.05 and the

corresponding upper value of 2 for each of the four tests are

3.8415, 5.9915, 293.2478 and 26.2962 respectively following

the table given in [1] for respective degrees of freedom. A

sequence will pass the tests if X1, X2, X3 and X4 values are

lying within the maximum limit 3.8415, 5.9915, 293.2478 and

26.2962 respectively.

2.3 Test Module-3
The test module-3 contains fifteen statistical randomness tests

proposed by NIST [19] – all are important and exhaustive in

nature. In fact, module-3 takes a long time to quantitatively

measure parameters defining the degree of randomness of p-

sequences generated by an algorithm and to draw a

comprehensive decision on randomness of the concerned

algorithm. In the event, one has to choose one or few PRBG

or PRNG algorithms from among many such algorithms, say

10, module-3 takes exhaustively long time. In order to reduce

the total testing time, module-1 and module-2 are considered

as preliminary modules so that bad algorithms can be located

and rejected fast even without applying module-3 on them.

The fifteen tests included in module-3 are not described here

in detail - the interested reader can go through [17-21]. The

test numbers with name of the fifteen tests are given in Table

1 where the minimum length of bit-sequence required for a

particular test is also mentioned following the NIST guideline.

Table 1. Minimum required lengths and used lengths of

bit-sequence for different tests

Each test provides one or more P-value(s) as a statistical

measure for each of 300 bit sequences generated by an

algorithm. From P-values of a particular test, one can estimate

the Observed Proportion of Passing (OPOP) and compare it

with the T-value given in eq.(2). The distribution pattern of

P-values is estimated from the P-value of P-values (POP)

given in eq.(3). These two parameters are considered as the

quantitative measures of degree of randomness of the

concerned algorithm. The T-value depends on the number of

P-values generated by a particular test; hence it differs from

test to test. Tests 1 through 10 and 12 have one P-value, tests

11 and 13 both have two P-values, Test 14 has eight, test 15

has eighteen. In respect to a test, all P-values of the sequences

Test

No.
Test Name

Length of bit-

sequence (n)

Minimum

required

length

Used in

CU

software

1 Frequency Test 100 1342400

2 Frequency Test within a

Block

9000 1342400

3 Runs Test 100 1342400

4 Longest Run of Ones in

a Block

128 1342400

5 Binary Matrix Rank

Test

38912 1342400

6 Discrete Fourier

Transform Test

1000 13424

7 Non-overlapping

Template Test

1048576 1342400

8 Overlapping Template

Test

1000000 1342400

9 Maurer’s “Universal

Statistical” Test

1342400 1342400

10 Linear Complexity Test 1000000 1342400

11 Serial Test 1000000 1342400

12 Approximate Entropy

Test

100 1342400

13 Cumulative Sums

(Cusum) Test

100 13424

14 Random Excursions

Test

1000000 1342400

15 Random Excursions

Variant Test

1000000 1342400

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.10, June 2014

34

will be considered uniformly distributed between 0 and 1, if

POP ≥ 0.0001.

Observed Proportion of Passing (OPOP) of a test based on

P-values: To observe the Proportion of Passing of a test, it is

necessary to consider large number of samples of bit-

sequences generated by an algorithm. If m samples of bit-

sequences obtained from an algorithm are tested by a test

producing one P-value, then a statistical threshold value (T-

value) would be,

m

Tvalue

)1(
3)1(





 (2)

where significance level (α) = 0.01. The size of m should be

greater than inverse of α. If m = 300, T-value = 0.972766.

This means that such a test is considered to be statistically

successful, if at least 292 P-values out of the 300 P-values do

pass the test. If any test produced n number of P-values, then

to calculate T-value in eq.(2), one should consider m×n

instead of m. With same values of α and m, the T-value is

0.983907 for n = 8 (tests 14). Such a test is considered

statistically successful if at least 2362 P-values out of the total

300×8 = 2400 P-values do pass the test.

Distribution pattern of P-values and Estimation of P-value

of P-values (POP): The concept of distribution pattern of P-

values is mentioned in [17-18]. It calculates the POP, where it

is stated that P-values for a particular test can be considered

uniformly distributed, if it’s POP ≥ 0.0001. For computing

POP, χ2 is calculated as















10

1

2

2

10

10

i

i

m

m
s

 ,

where, Si is the number of P-values in sub-interval i, and m is

the sample size. If any test produced n number of P-values,

then m = n×(number of files calculated). Here the degrees of

freedom K = 9. Two parameters are a = K/2 and x = χ2/2 and

the corresponding POP is calculated as,

),(

),(
1






a

xa
POP (3)

3. RC4, PM and BBS ALGORITHMS
In reality, there is no algorithm to produce pure random bits or

numbers. All mathematical algorithms have deterministic

features and the output sequences produced by them are not

expected to be statistically random - at best can be called

pseudorandom. There are different types of pseudorandom

generators, e.g. Linear Congruential, Quadratic Congruential,

etc. A Linear Congruential generator, a Quadratic one along

with RC4 is discussed in this Section.

3.1 RC4 algorithm
The RC4 involves an idea coined by Knuth [22] which states

that a series of 8-bit random numbers can suitably be

generated if number elements of a reasonably large linear

matrix are randomly shuffled for a number of times. Ronald

Rivest translated the concept in two stages, Key Scheduling

Algorithm (KSA) and Pseudorandom Generator Algorithm

(PRGA). In KSA an identity S-Box is chosen with indices as

element values. The element values are shuffled 256 times

within fixed indices considering a role of the given key in the

shuffle. In PRGA, two elements are randomly chosen, modulo

added to give 8-bit random key and then swapped – the

infinite continuation of the process generates a stream of 8-bit

p-sequence.

3.2 Park-and-Miller (PM) algorithm
The Park-and-Miller proposed a linear congruential algorithm

[15] to generate sequence of floating-point random numbers

(fprn) between 0 and 1. The algorithm can be stated as,

 seedi+1 = A × seedi % M (4a)

 fprn = seedi+1 / M (4b)

where M is chosen as a large 32-bit positive integer, (231 – 1)

= 2147483647, a prime number and A is considered as a large

integer (16807) less than square root of M (A < √M).

The algorithm involves choice of an initial non-zero seed

number (seed0). The seed is continuously upgraded by the

remainder obtained by dividing (A×seed) by M. If seed0 is

zero, all remainders become zero and the algorithm fails.

There is another problem - while multiplying A with seed, the

product may not fit into the 32-bit computer memory and the

algorithm may fail due to the storage problem. A technique is

presented in [23] following Schrage [24,25] to handle the

memory overflow problem. The coding is shown below in

PMB block:

PMB block:

Q = M / A;

R = M % A;

k = seed / Q;

r = seed % Q;

if ((A×r – k×R) ≥ 0) seedi+1 = (A×r – k×R);

otherwise, seedi+1 = M + (A×r – k×R);

The PM algorithm generates non-repeating integral seeds

between 0 and M, if and only if the initial seed is non-zero

positive integer less than M. In order that 0 is accepted as an

initial seed, XOR operation between seed and an arbitrary

integer (MASK) is introduced before and after the PMB block

[23]. The code then looks like,

seed = seed^MASK;

PMB block
seed = seed^MASK;

The above algorithm may also fail, if MASK happens to be an

initial seed or an intermediate seed. One can handle such an

eventuality using the following code instead of the previous

one,

if(seed != MASK) seed = seed^MASK;

PMB block
seed = seed^MASK;

Considering the innovation proposed in the coding of the PM

algorithm, the symbolic code narrated above is sound and

shall accept any seed including zero.

3.2.1 PM with Small multiplier (PM-S)
To get an 8-bit random integer key with small multiplier, a

16-bit multiplier is used in eq.(4b) as,

 key = (fprn× multiplier) % 256

This way, an 8-bit p-sequence is produced in each iteration

using small multiplier.

3.2.2 PM with Large multiplier (PM-L)
To get an 8-bit random integer key with large multiplier, the

M itself is virtually used as 32-bit multiplier in eq.(4b) as,

 seedi+1 = A × seedi % M

 key = seedi+1 % 256

This way, an 8-bit p-sequence is produced in each iteration

using large multiplier.

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.10, June 2014

35

3.3 BBS Algorithm
The Blum Blum Shub (BBS) algorithm is a popular and well

known pseudorandom bit generator. It is considered that BBS

generator is a cryptographically secured PRBG and provides

pseudorandom bit stream [13,14]. Brief information of this

generator along with its security is as follows:

Let p and q be two prime numbers and both are congruent to 3

modulo 4, that is,

 p ≡ q ≡ 3 (mod 4) (5)

Now,

 n = p × q (6)

Let s is a randomly chosen seed number relatively prime to n

indicating that neither p nor q is a factor of s. A stream of

BBS bits bi will be produced using the following algorithm:

X0 = s2 mod n;

for i = 1 to ∞

Xi = (Xi–1)
2 mod n;

bi = Xi mod 2;

In each iteration, the LSB is considered as a random key bit.

The computational approach of this algorithm is very simple

and is easy to implement in software as well as in hardware.

There is some evidence that the BBS generator has provable

security [16]. But it is considered as a slow algorithm, since it

produces only one bit at a time. To make it faster, it is proved

that r bits can be extracted at a time if r ≤ log2log2(n) where n

is the modulus used in the algorithm [14]. The generator will

be faster if r ≥ 2. Now let, one intends to extract 4 bits in each

iteration, n ≥

= 216 = 65536. In this paper two sets of p and

q given in eq.(6) are considered for statistical tests – for the

first set n is small with p = 131, q = 499 and for the second set

n is large with p = 42839 and q = 50123.

3.3.1 BBS-1S
In BBS-1S, the smaller value of n is obtained by considering

prime values of p = 131 and q = 499 in eq.(6) and one LSB bit

is extracted in one cycle from the upgraded seed.

3.3.2 BBS-3S
In BBS-3S, the smaller value of n is chosen as is being done

in BBS-1S by considering prime values of p = 131 and q =

499 in eq.(6) and three LSB bits are extracted in one cycle

from an upgraded seed in succession of 3 steps.

3.3.3 BBS-1L
In BBS-1L, the larger value of n is obtained by considering

prime values of p = 42839 and q = 50123 in eq.(6) and one

LSB bit is extracted in one cycle from an upgraded seed.

3.3.4 BBS-4L
In BBS-4L, the larger value of n is obtained by considering

prime values of p = 42839 and q = 50123 in eq.(6) and four

LSB bits are extracted in one cycle from an upgraded seed in

succession of 4 steps.

4. RESULT AND DISCUSSION
Based on the three algorithms discussed in Section 3, seven

set of data each having 300 bit-sequences are generated. The

data set are named as: RC4, PM-S, PM-L, BBS-1S, BBS-3S,

BBS-1L and BBS-4L and these are discussed respectively in

sections 3.1, 3.2.1, 3.2.2, 3.3.1, 3.3.2, 3.3.3 and 3.3.4. The

results obtained by the three test modules are discussed in

sections 4.1, 4.2 and 4.3 respectively.

4.1 Result of Test Module-1
Seven set of data each having 300 bit sequences are tested by

Module-1. For a particular algorithm the best and worst values

of σ calculated by eq.(1) are shown in Table 2 along with the

Proportion of Passing obtained from the probability of

occurrence of 8-bit value. It is seen from Table 2 that, the

value of σ for data set BBS-1S and BBS-3S is always higher

than 0.1024 for both the frequency test and block frequency

test. The results of other data sets are satisfactory.

Table 2. The value of σ in Test Module-1

Of each set of the seven sets, the sequence with least value of

σ (best sequence) are also graphically shown in Figs. 1(a)

through 1(g) of Appendix A using MATLAB, where 8-bit

ASCII value of each characters are plotted in x-axis and their

frequency of occurrences in y-axis. The Figs. 1(d) and 1(e)

corresponds to BBS-1S and BBS-3S respectively and for both

the probability of occurrences of each 8-bit value are seen to

lie within 0 and 2×10–2 – all are not distributed randomly and

uniformly centering around 3.9×10-3. For other sets, the

values are within the range of 0.0039 ± 0.0004. Hence one can

conclude that BBS-1S and BBS-3S do not satisfy the random

properties and can be declared as non-random.

4.2 Result of Test Module-2
In this module, the passing criterion for each test is set at 90%

while it is set at 80% for all the four tests together. Though the

results of BBS-1S and BBS-3S do not satisfy the random

properties under test module-1; yet these are considered here

with a view to see their results with the test module-2. Hence,

module-2 considers the same seven data sets as in module-1.

The results of four tests executed on data of seven sets are

noted in columns 2 through 5 of Table 3 depicting test-wise

percentage of passing data. The last column indicates the

percentage of simultaneously passing data of all the four tests.

The criterion of percentage of passing a test has been

mentioned in Section 2.2. It is seen from Table 3 that BBS-1S

and BBS-3S are unsatisfactory. For all the other five sets, the

results are satisfactory. Hence, as per the results of module-2,

Data set Best

value

Worst

value

Passing

Proportion

Result of frequency test:

Sequence length 166400 characters

RC4 0.0339195

6

0.0442959

4

100.00

PM-S 0.0334897

1

0.0438840

9

100.00

PM-L 0.0339922

5

0.0446135

2

100.00

BBS-1S 1.273882 15.96872 0.00

BBS-3S 0.7244467 9.183318 0.00

BBS-1L 0.0341972

6

0.0445378

1

100.00

BBS-4L 0.0349984

2

0.0445548

3

100.00

Result of block frequency test:

Block length 33280 characters

RC4 0.0857523

1

0.1013203 100.00

PM-S 0.0853362

0

0.1004934 100.00

PM-L 0.0850295

8

0.1021745 100.00

BBS-1S 1.274072 15.96872 0.00

BBS-3S 0.7247481 9.183318 0.00

BBS-1L 0.0853172

4

0.1014229 100.00

BBS-4L 0.0842951

8

0.1043170 99.67

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.10, June 2014

36

both the BBS-1S and BBS-3S can be declared as non-random.

These two are not considered in test module-3.

Table 3. Percentage of passing in Test Module-2

4.3 Result of Test Module-3
In Module-3 five algorithms, namely, RC4, PM-S, PM-L,

BBS-1L and BBS-4L each having 300 bit sequences are

tested. For all the five algorithms, the P-value data of all the

15 tests are presented in Tables 4(a) through 4(e). If P-value <

0.01, then it will be considered as unsuccessful. In Tables 4,

column C0 indicates test number and the P-value data for a

particular test are shown being divided in 11 groups, C1 to

C11. The ranges of groups are C1: 0.00 – 0.01, C2: 0.01 – 0.1,

C3: 0.1 – 0.2, C4: 0.2 – 0.3, C5: 0.3 – 0.4, C6: 0.4 – 0.5, C7:

0.5 – 0.6, C8: 0.6 – 0.7, C9: 0.7 – 0.8, C10: 0.8 – 0.9, and

C11: 0.9 – 1.0. The Observed Proportion of Passing for a

particular test is the ratio of sum of the last ten columns (C2 to

C11) to the total sum of eleven columns (C1 – C11). For each

test, the Observed Proportion of Passing (OPOP) of all the

300 sequences is estimated and presented in Table 5 and if

OPOP ≥ T-value, a particular test is considered as being

passed. The distribution pattern of P-values is estimated

through P-value of P-values (POP) following the

mathematical equations given in eq.(3). The P-values are

uniformly distributed if POP ≥ 0.0001. In OPOP column Y/N

indicates the successful/unsuccessful in Observed Proportion

of passing and in POP column Y/N indicates the

uniformity/non-uniformity of distribution of P-values. From

various observations on test results, it is also understood that

P-values are more uniformly distributed if POP is larger. The

OPOP and POP are the two checking parameters measuring

the degree of randomness of an algorithm.

Regarding the uniformity or non-uniformity distribution of P-

values, one can correlate the POP value shown in Table 5 with

a corresponding visual histogram obtained from the right data

of the tables of Table 4. From Table 5, the test 2 of PM-S is

seen as the best POP obtained from the test 2 data shown in

Table 4(b) – the same data is displayed in a corresponding

histogram in Fig. 2(a) of Appendix B. The uniformity of the

P-value distribution is visually evident. The worst POP is the

test 15 of BBS-4L (vide Table 5). The corresponding data

from test 15 of Table 4(e) is displayed in another histogram in

Fig. 2(b) of the same Appendix. The histogram shows non-

uniform distribution of P-values. In both the histograms, there

are ten columns: first column indicates the number of P-

values lying between 0 and 0.1; second column indicates the

number of P-values lying between 0.1 and 0.2, so on and so

forth. It may be noted that the test 2 has 300 P-values for 300

sequences, while the test 15 has 5400 P-values for 300

sequences. For paucity of space, the number of P-values for

test 15 above 300 is shown in the ordinate axis of Fig. 2(b).

Table 4(a). Frequency distribution of P-values in RC4

C0|C1| C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |C10 |C11

 1| 6 | 24 | 29 | 33 | 38 | 26 | 36 | 32 | 24 | 25 | 27

 2| 1 | 27 | 32 | 31 | 33 | 32 | 31 | 26 | 26 | 25 | 36

 3| 6 | 24 | 29 | 31 | 32 | 25 | 17 | 35 | 32 | 38 | 31

 4| 1 | 36 | 39 | 30 | 23 | 29 | 28 | 30 | 21 | 34 | 29

 5| 3 | 27 | 26 | 33 | 40 | 32 | 27 | 25 | 27 | 31 | 29

 6| 4 | 19 | 43 | 29 | 26 | 28 | 27 | 35 | 37 | 25 | 27

 7| 4 | 25 | 28 | 29 | 28 | 37 | 27 | 34 | 32 | 32 | 24

 8| 4 | 29 | 30 | 28 | 28 | 24 | 37 | 38 | 29 | 25 | 28

 9| 2 | 23 | 30 | 24 | 25 | 43 | 31 | 29 | 28 | 33 | 32

 10| 4 | 29 | 26 | 34 | 29 | 39 | 21 | 28 | 24 | 32 | 34

 11| 5 | 60 | 70 | 62 | 56 | 49 | 51 | 65 | 63 | 62 | 57

 12| 3 | 26 | 38 | 31 | 30 | 27 | 26 | 31 | 31 | 29 | 28

 13| 7 | 54 | 61 | 61 | 44 | 57 | 71 | 55 | 70 | 58 | 62

 14| 29 | 216 | 236 | 248 | 246 | 263 | 252 | 233 | 254 | 207 | 216

 15| 72 | 474 | 543 | 573 | 558 | 561 | 530 | 568 | 503 | 522 | 496

Table 4(b). Frequency distribution of P-values in PM-S

C0|C1| C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |C10 |C11

 1| 5 | 25 | 25 | 24 | 21 | 29 | 40 | 36 | 41 | 22 | 32

 2| 2 | 28 | 30 | 32 | 32 | 29 | 30 | 30 | 28 | 32 | 27

 3| 4 | 27 | 39 | 28 | 23 | 36 | 35 | 26 | 26 | 29 | 27

 4| 2 | 24 | 23 | 25 | 36 | 32 | 22 | 29 | 30 | 42 | 35

 5| 4 | 19 | 26 | 37 | 38 | 35 | 26 | 30 | 26 | 34 | 25

 6| 4 | 27 | 36 | 31 | 23 | 28 | 21 | 38 | 42 | 20 | 30

 7| 0 | 30 | 19 | 35 | 33 | 30 | 40 | 31 | 27 | 25 | 30

 8| 2 | 20 | 39 | 32 | 24 | 31 | 33 | 29 | 25 | 28 | 37

 9| 3 | 22 | 29 | 22 | 48 | 32 | 32 | 26 | 30 | 29 | 27

 10| 5 | 23 | 30 | 33 | 29 | 39 | 33 | 25 | 33 | 23 | 27

 11| 3 | 49 | 60 | 53 | 60 | 54 | 51 | 66 | 69 | 57 | 78

 12| 2 | 26 | 36 | 21 | 28 | 27 | 26 | 34 | 31 | 31 | 38

 13| 6 | 66 | 68 | 72 | 58 | 56 | 61 | 43 | 57 | 51 | 62

 14| 33 | 207 | 215 | 219 | 266 | 242 | 242 | 268 | 239 | 229 | 240

 15| 54 | 441 | 575 | 539 | 561 | 598 | 550 | 527 | 482 | 549 | 524

Table 4(c). Frequency distribution of P-values in PM-L

C0|C1| C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |C10 |C11

 1| 2 | 20 | 32 | 28 | 25 | 32 | 37 | 27 | 31 | 46 | 20

 2| 1 | 26 | 29 | 32 | 30 | 31 | 30 | 29 | 28 | 27 | 37

 3| 1 | 26 | 41 | 29 | 33 | 31 | 30 | 32 | 23 | 25 | 29

 4| 5 | 23 | 22 | 35 | 25 | 33 | 27 | 31 | 42 | 27 | 30

 5| 3 | 28 | 30 | 29 | 37 | 28 | 27 | 28 | 28 | 30 | 32

 6| 6 | 26 | 31 | 27 | 29 | 38 | 24 | 36 | 34 | 27 | 22

 7| 3 | 26 | 32 | 21 | 30 | 23 | 28 | 30 | 39 | 30 | 38

 8| 6 | 32 | 29 | 29 | 22 | 32 | 25 | 27 | 33 | 33 | 32

 9| 6 | 16 | 42 | 30 | 26 | 33 | 39 | 33 | 26 | 30 | 19

 10| 2 | 31 | 32 | 22 | 40 | 31 | 30 | 21 | 25 | 34 | 32

 11| 7 | 61 | 49 | 63 | 80 | 58 | 54 | 46 | 70 | 51 | 61

 12| 3 | 30 | 21 | 30 | 47 | 29 | 23 | 28 | 35 | 24 | 30

 13| 7 | 51 | 64 | 71 | 63 | 61 | 54 | 69 | 68 | 52 | 40

 14| 42 | 260 | 264 | 220 | 231 | 213 | 252 | 259 | 216 | 236 | 207

 15| 93 | 487 | 558 | 557 | 568 | 501 | 544 | 545 | 502 | 544 | 501

Data set
Frequ-

ency

test

Seri-

al

test

Pok-

er

test

Runs

test

All

four

tests

RC4 94.33 93.67 94.67 92.67 81.33

PM-S 94.67 94.67 96.00 90.00 81.00

PM-L 96.00 95.67 97.33 95.00 88.00

BBS-1S 22.33 4.33 0 0 0

BBS-3S 50.33 35.00 0 0 0

BBS-1L 94.67 94.67 95.33 91.33 80.67

BBS-4L 96.67 95.67 96.33 91.67 85.33

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.10, June 2014

37

Table 4(d). Frequency distribution of P-values in BBS-1L

C0|C1| C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |C10 |C11

 1| 4 | 21 | 19 | 27 | 24 | 33 | 27 | 37 | 36 | 32 | 40

 2| 1 | 25 | 23 | 29 | 27 | 34 | 35 | 30 | 28 | 36 | 32

 3| 2 | 20 | 27 | 30 | 31 | 31 | 44 | 28 | 27 | 28 | 32

 4| 8 | 16 | 39 | 25 | 28 | 26 | 33 | 40 | 26 | 28 | 31

 5| 2 | 25 | 37 | 30 | 25 | 31 | 21 | 33 | 23 | 36 | 37

 6| 1 | 23 | 38 | 28 | 27 | 35 | 18 | 36 | 37 | 32 | 25

 7| 2 | 29 | 34 | 31 | 28 | 27 | 33 | 26 | 27 | 29 | 34

 8| 4 | 28 | 24 | 28 | 39 | 22 | 36 | 24 | 34 | 30 | 31

 9| 6 | 32 | 34 | 27 | 35 | 27 | 23 | 23 | 26 | 35 | 32

 10| 1 | 33 | 29 | 24 | 27 | 29 | 33 | 28 | 32 | 36 | 28

 11| 4 | 25 | 53 | 64 | 58 | 66 | 47 | 73 | 69 | 60 | 81

 12| 2 | 12 | 24 | 32 | 31 | 29 | 21 | 36 | 38 | 37 | 38

 13| 12 | 54 | 77 | 56 | 51 | 65 | 73 | 59 | 53 | 45 | 55

 14| 34 | 245 | 241 | 242 | 227 | 215 | 262 | 251 | 220 | 236 | 227

 15| 65 | 427 | 492 | 485 | 555 | 573 | 569 | 546 | 568 | 566 | 554

Table 4(e). Frequency distribution of P-values in BBS-4L

C0|C1| C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |C10 |C11

 1| 5 | 17 | 33 | 33 | 30 | 33 | 41 | 24 | 29 | 21 | 34

 2| 1 | 17 | 30 | 31 | 33 | 25 | 26 | 28 | 23 | 46 | 40

 3| 3 | 33 | 35 | 30 | 27 | 30 | 35 | 21 | 37 | 22 | 27

 4| 3 | 21 | 34 | 30 | 38 | 26 | 20 | 32 | 30 | 35 | 31

 5| 1 | 31 | 31 | 25 | 28 | 24 | 43 | 34 | 33 | 24 | 26

 6| 4 | 33 | 36 | 28 | 36 | 34 | 24 | 29 | 32 | 18 | 26

 7| 4 | 23 | 35 | 32 | 34 | 25 | 23 | 34 | 40 | 27 | 23

 8| 1 | 28 | 27 | 32 | 28 | 32 | 35 | 23 | 28 | 37 | 29

 9| 2 | 27 | 30 | 38 | 23 | 36 | 25 | 26 | 28 | 26 | 39

 10| 2 | 27 | 28 | 30 | 35 | 42 | 32 | 25 | 28 | 27 | 24

 11| 9 | 51 | 38 | 69 | 54 | 61 | 66 | 60 | 53 | 69 | 70

 12| 4 | 24 | 20 | 35 | 28 | 34 | 40 | 25 | 27 | 30 | 33

 13| 4 | 38 | 52 | 67 | 51 | 66 | 68 | 65 | 72 | 55 | 62

 14| 34 | 233 | 220 | 234 | 228 | 269 | 240 | 238 | 219 | 252 | 233

 15| 64 | 479 | 517 | 525 | 508 | 507 | 458 | 545 | 596 | 568 | 633

Table 5. Observed Proportion of Passing (OPOP) and P-value of P-values (POP) in Test Module-3

Test

No. T-value

Observed Proportion of Passing (OPOP) P-value of P-values (POP)

RC4 PM-S PM-L
BBS1-

L

BBS4-

L
RC4 PM-S PM-L BBS1-L BBS4-L

1 0.97277 0.9800

Y

0.9833

Y

0.9933

Y

0.9867

Y

0.9833

Y

6.7178e-1

Y

7.5719e-2

Y

4.5675e-2

Y

1.5091e-1

Y

2.4091e-1

Y

2 0.97277 0.9967

Y

0.9933

Y

0.9967

Y

0.9967

Y

0.9967

Y

9.1997e-1

Y

9.9969e-1

Y

9.7807e-1

Y

8.0434e-1

Y

1.7107e-2

Y

3 0.97277 0.9800

Y

0.9867

Y

0.9967

Y

0.9933

Y

0.9900

Y

3.6692e-1

Y

5.4088e-1

Y

6.0246e-1

Y

3.7250e-1

Y

3.5591e-1

Y

4 0.97277 0.9967

Y

0.9933

Y

0.9833

Y

0.9733

Y

0.9900

Y

4.0120e-1

Y

2.0590e-1

Y

3.7814e-1

Y

3.7250e-1

Y

4.6225e-1

Y

5 0.97277 0.9900

Y

0.9867

Y

0.9900

Y

0.9933

Y

0.9967

Y

7.5976e-1

Y

4.1902e-1

Y

9.7997e-1

Y

3.2933e-1

Y

3.0906e-1

Y

6 0.97277 0.9867

Y

0.9867

Y

0.9800

Y

0.9967

Y

0.9867

Y

2.2093e-1

Y

6.6882e-2

Y

5.3415e-1

Y

1.5376e-1

Y

2.4928e-1

Y

7 0.97277 0.9867

Y

1.0000

Y

0.9900

Y

0.9933

Y

0.9867

Y

8.9300e-1

Y

3.7814e-1

Y

3.9536e-1

Y

9.7394e-1

Y

3.4512e-1

Y

8 0.97277 0.9867

Y

0.9933

Y

0.9800

Y

0.9867

Y

0.9967

Y

6.8558e-1

Y

4.2506e-1

Y

7.0615e-1

Y

4.1303e-1

Y

8.3431e-1

Y

9 0.97277 0.9933

Y

0.9900

Y

0.9800

Y

0.9800

Y

0.9933

Y

4.2506e-1

Y

9.2784e-2

Y

8.2177e-2

Y

4.4967e-1

Y

3.7250e-1

Y

10 0.97277 0.9867

Y

0.9833

Y

0.9933

Y

0.9967

Y

0.9933

Y

4.5594e-1

Y

6.8558e-1

Y

3.3980e-1

Y

9.1141e-1

Y

4.9439e-1

Y

11 0.97781 0.9917

Y

0.9950

Y

0.9883

Y

0.9933

Y

0.9850

Y

6.8213e-1

Y

2.5355e-1

Y

5.0845e-2

Y

1.9136e-4

Y

1.0667e-1

Y

12 0.97277 0.9900

Y

0.9933

Y

0.9900

Y

0.9933

Y

0.9867

Y

9.5278e-1

Y

5.6123e-1

Y

5.7753e-2

Y

1.9631e-2

Y

3.7250e-1

Y

13 0.97781 0.9883

Y

0.9900

Y

0.9883

Y

0.9800

Y

0.9933

Y

4.6542e-1

Y

1.8156e-1

Y

1.5091e-1

Y

8.3867e-2

Y

1.3728e-1

Y

14 0.98391 0.9880

Y

0.9863

Y

0.9825

N

0.9858

Y

0.9858

Y

2.5248e-1

Y

2.7117e-1

Y

1.5885e-4

Y

1.0177e-1

Y

2.3579e-1

Y

15 0.98594 0.9867

Y

0.9900

Y

0.9828

N

0.9880

Y

0.9882

Y

2.2050e-1

Y

1.5498e-2

Y

1.2365e-1

Y

1.1548e-2

Y

4.7966e-6

N

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.10, June 2014

38

5. CONCLUSION
Among the three test modules, the test module-3 is the most

important. It has been possible to discard the BBS-1S and

BBS-3S based on test modules 1 and 2 without trying on it the

test module-3. Based on the results obtained from all the

three modules, one can conclude that the Park-and-Miller

algorithm provides good 8-bit random sequences and can be

used in stream ciphers. From Table 5, one notices that PM-L

has two “N” for test 14 and 15, although numerical values are

very close to the thresholds. Moreover, it has uniform

distribution of P-values for all the fifteen tests. Hence PM can

be considered as random. On the other side, for BBS-4L, the

distribution of P-values in test 15 is not uniform, though it

well satisfies the Observed Proportion of Passing criteria.

Considering the overall result, BBS-4L can also be treated as

random. The RC4, PM-S and BBS-1L have very good result

for all tests of each of the three test modules. From the

observations on test-results, one can mark two points. The

first – if modulus in BBS is larger, it exhibits better

randomness and extraction of 4-bits at a time from BBS

algorithm using 32-bit modulus would give good randomness.

The second one – the Park-and-Miller algorithm is good for

both small and large multipliers. Based on these statistical

tests it is proved that, RC4, PM and BBS with large modulus

are secured from the statistical point of view. Hence these can

be used in stream ciphers.

6. ACKNOWLEDGMENTS
The authors are grateful to the UGC, New Delhi for providing

financial support to the first author, Mr. J K M Sadique Uz

Zaman. The cooperation and supports extended by the Head

of the Department is also greatly appreciated. In connection to

test module-1 the various discussions held with Mr. Sangeet

Saha, Research Scholar at AKCSIT, University of Calcutta is

a pleasure to acknowledge.

7. REFERENCES
[1] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of

Applied Cryptography (CRC Press, 1996) 169-190.

[2] S. Maitra, G. Paul, Analysis of RC4 and proposal of

additional layers for better security margin, Proc.

Indocrypt, 2008, IIT Kharagpur, LNCS 5365, 27-39.

[3] S. Paul, B. Preneel, A New Weakness in the RC4

Keystream. Generator and an Approach to Improve the

Security of the Cipher, Proc. Fast Software Encryption,

2004, Berlin, LNCS 3017, 245-259.

[4] S. Fluhrer, I. Mantin, A. Shamir, Weakness in the Key

Scheduling Algorithm of RC4, Proc. Int. Workshop on

Selected Areas in Cryptography, 2001, Toronto, LNCS

2259, 1-24.

[5] I. Mantin, A. Shamir, A Practical Attack on Broadcast

RC4, Proc. Fast Software Encryption, 2001, Japan,

LNCS 2355, 152-164.

[6] S. Fluhrer, D. McGrew, Statistical Analysis of the

Alleged RC4 Key Stream Generator, Proc. Fast Software

Encryption, 2000, New York, LNCS 1978, 19-30.

[7] L. Knudsen, et al., Analysis Method for Alleged RC4,

Proc. ASIACRYPT, 1998, Beijing, LNCS 1514, 327-

341.

[8] S. Mister, S. Tavares, Cryptanalysis of RC4-Like

Ciphers, Proc. Int. Workshop on Selected Areas in

Cryptography, 1998, Canada,LNCS 1556, 131-143.

[9] S.S. Gupta, K. Sinha, S. Maitra, B.P. Sinha, One Byte

per Clock: A Novel RC4 Hardware, Proc. Indocrypt,

2010, Hyderabad, LNCS 6498, 347-363.

[10] P. Kitsos, G. Kostopoulos, N. Sklavos, O. Koufopavlou,

Hardware Implementation of the RC4 stream Cipher,

Proc. 46th IEEE Midwest Symposium on Circuits &

Systems, 2003, Cairo, Vol.3, 1363-1366.

[11] D.P. Matthews, Jr. System and method for a fast

hardware implementation of RC4, US Patent No.

6549622, Campbell, CA, April 2003.

[12] R. Paul, S. Saha, JKM.S. Zaman, S. Das, A. Chakrabarti,

R. Ghosh, A Simple 1-byte 1-clock RC4 hardware design

and its implementation in FPGA coprocessor for secured

Ethernet communication, Proc. National Workshop on

Cryptology, 2012, India, 61-70.

[13] W. Stallings, Cryptography and Network Security

(Delhi, Pearson Education, 4th Edition, 2008).

[14] L. Blum, M. Blum, M. Shub, A Simple Unpredictable

Pseudo-Random Number Generator, SIAM Journal on

Computing, 15(2), 1986, 364-383.

[15] S. K. Park, K. W. Miller, Random Number Generators:

Good ones are hard to find, Communications of the

ACM, 31(10), 1988, 1192 – 1201.

[16] D.R. Stinson, Cryptography Theory and Practice (Boca

Raton, Chapman & Hall, CRC, 3rd Edition, 2006).

[17] JKM. S. Zaman, R. Ghosh, Review on fifteen Statistical

Tests proposed by NIST, Journal of Theoretical Physics

and Cryptography. 1, 2012, 18-31.

[18] Rukhin A., Soto J., et al, 2010. A Statistical Test Suite

for Random and Pseudorandom Number Generators for

Cryptographic Applications, NIST, US.

[19] http://csrc.nist.gov/publications/nistpubs/800-22-

revla/SP800-22rev1a.pdf

[20] Rukhin A., Soto J., et al, 2008. A Statistical Test Suite

for Random and Pseudorandom Number Generators for

Cryptographic Applications, NIST, Technology

Administration, U.S. Department of Commerce.

[21] http://csrc.nist.gov/groups/ST/toolkit/rng/documentation

_software.html

[22] Donald Knuth, The Art of Computer Programming,

Seminumerical Algorithms, Volume 2, 3rd edition,

Addison Wesley, Reading, Massachusetts, 1998.

[23] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P.

Flannery, Numerical Recipes in C: The Art of Scientific

Computing (New York, Cambridge University Press, 2nd

Edition, 1988) 274-328.

[24] L. Schrage, A More Portable Fortran Random Number

Generator, ACM Transactions on Mathematical

Software, 5(2), 1979, 132-138.

[25] P. Bratley, B.L. Fox, L.E. Schrage, A Guide to

Simulation, (New York, Springer-Verlag, 1983).

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.10, June 2014

39

0 50 100 150 200 250

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

x 10
-3

ASCII value of characters

P
 r

o
b

a
b

i l
 i

t y

o
f

 o
 c

 c
 u

 r
r e

 n
 c

 e

Appendix A: Graphical representations showing the best sequences for each data set

Fig 1(a): Best sample plot of RC4

0 50 100 150 200 250

3.6

3.7

3.8

3.9

4

4.1

4.2
x 10

-3

ASCII value of characters

P
 r

o
b

a
b

i l
 i

t y

o
f

 o
 c

 c
 u

 r
r e

 n
 c

 e

Fig 1(b): Best sample plot of PM-S

0 50 100 150 200 250

3.6

3.7

3.8

3.9

4

4.1

4.2

x 10
-3

ASCII value of characters

P
 r

o
b

a
b

i l
 i

t y

o
f

 o
 c

 c
 u

 r
r e

 n
 c

 e

Fig 1(c): Best sample plot of PM-L

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.10, June 2014

40

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

ASCII value of characters

P
 r

o
b

a
b

i l
 i

t y

o
f

 o
 c

 c
 u

 r
r e

 n
 c

 e

Fig 1(d): Best sample plot of BBS-1S

0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01

0.012

ASCII value of characters

P
 r

o
b

a
b

i l
 i

t y

o
f

 o
 c

 c
 u

 r
r e

 n
 c

 e

Fig 1(e): Best sample plot of BBS-3S

0 50 100 150 200 250

3.6

3.7

3.8

3.9

4

4.1

4.2
x 10

-3

ASCII value of characters

P
 r

o
b

a
b

i l
 i

t y

o
f

 o
 c

 c
 u

 r
r e

 n
 c

 e

Fig 1(f): Best sample plot of BBS-1L

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.10, June 2014

41

0 50 100 150 200 250

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

x 10
-3

ASCII value of characters

P
 r

o
b

a
b

i l
 i

t y

o
f

 o
 c

 c
 u

 r
r e

 n
 c

 e

Appendix B: Histograms for distribution of P-values

Fig 1(g): Best sample plot of BBS-4L

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

300

350

400

450

500

550

600

650

1 2 3 4 5 6 7 8 9 10

Fig 2(a): Histogram for Test no. 2 of PM-S Fig 2(b): Histogram for Test no. 15 of BBS-4L

IJCATM : www.ijcaonline.org

