
International Journal of Computer Applications (0975 – 8887)

Volume 95– No.5, June 2014

1

Provide a New Mapping for Deadlock Detection and

Resolution Modeling of Distributed Database to Colored

Petri Net

Masoomeh Ghodrati
Department of Computer
Engineering, Science and

Research Bushehr Branch,
Islamic Azad University,

Bushehr, Iran

Ali Harounabadi
Department of Computer

Engineering, Tehran Center
Branch, Islamic Azad

University, Tehran, Iran

ABSTRACT

One of the most important applications of distributed systems

is enabling resource sharing between systems. In such

environments, if a sequence of procedures to control resource

allocation is not possible to create a deadlock exists. Deadlock

problem for a distributed database system that uses locking as

a concurrency control algorithm, as there are inherent. The

following new rule for the modeling of the proposed method

using colored Petri nets is presented. In the model proposed

the new rules for mapping TWFG with colored Petri nets for

modeling the deadlocks detection and resolve. Colored Petri

net is considered one of the most widely used formal methods

capable of modeling a wide variety of distributed systems are

concurrent. A lot of work being done to define the

concurrency execution of transactions in Petri nets is that

none of these methods of communication with how mapping

TWFG with colored Petri nets for modeling the deadlocks

detection and resolve.

General Terms

Databases, distributed, deadlocks, detection, colored Petri net,
mapping.

Keywords

Resolution deadlock cycle, colored Petri net mapping, TWFG.
1. INTRODUCTION
In modern computer systems may be multiple transactions

together to compete for a limited number of resources. Upon

request, the request due to the unavailability of a resource if

the resource cannot be assigned to a transaction, the

transaction is expected to be the case. There may be

circumstances, under which transactions are waiting, do not

have a chance to change their situation. This situation can

occur if the requested resource is being held by the

transactions under the same expectation. This situation is

called a deadlock.

In any database system which allows the simultaneous

execution of transactions using locking protocols, deadlock

can occur in the case of a distributed database system today.

In a distributed database system, data will be accessed by

concurrent transactions; these transactions to maintain

consistency of the database are synchronized. This

synchronization using concurrency control algorithms such as

phase locking, timestamp ordering based, optimistic

concurrency control or change in the fundamental algorithms

are obtained.

Therefore, deadlock detection algorithms for centralized

database systems are implemented and enforced.

Some algorithms for deadlock detection in centralized

database systems are based on the discovery of implements

cycles are a TWFG. Using a direct edge that determines the

transactions is waiting in TWFG, if the cycle is detected, you

can select a transaction and the sacrifice victim in the cycle,

the cycle is broken. Transactions are usually allowed to start

again with their original boxes. TWFG operation when a

database is distributed across multiple sites is complicated. In

a distributed database system, although a transaction may all

activities at the site where the activity is started to execute, but

may no longer original sites run. If this happens one agent at a

remote site is created to show the transaction on its website,

this agent is main part of the transaction concurrency control

and recovery purposes.

Previous work carried out in the deadlock detection, the

youngest of the transaction cycle is selected as a victim. But

this choice has the following disadvantages:

• Transaction youngster who victims is selected, it may be

important to the system. For example, the transaction has been

sent from the management.

• Because of aborting Young transactions may be transaction

that cause a deadlock in the system is always present and

always create a deadlock.

• Transaction that has participated in more cycles and selected

as victims may be has paramount importance for the system.

Ghodrati and Harounabadi in [24] provide a mechanism based

on neighbor replication on grid for deadlock detection. After

detecting a deadlock from proposed method, the deadlock

victim's transaction is chosen optimally and aborting. The

solution provided for selecting a victim to break the deadlock

cycle in addition to the ID of priority importance for

transaction systems is also considered. Younger transactions

to avoid starvation constant factor each time aborting the

transaction will be deducted from the amount of the

transaction is restarted. The following new rules for the

modeling of the proposed method using colored Petri nets are

presented. In the model proposed the new rules for mapping

TWFG to colored Petri nets modeling for the detection and

resolve deadlock. In this paper used this algorithm.

The previous work done in this regard has been evaluated.

After stating the disadvantages of previous methods, the

proposed method is speech. The following new rules for the

modeling of the proposed method using colored Petri nets are

presented. Finally, after the conclusions, recommendations

and limitations are described.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.5, June 2014

2

2. RELATED WORKS
Deadlock detection and elimination algorithms have been

proposed so far are as follows.

2.1 Chandy Algorithm
The algorithm in [3] the TWFG for transactions at local sites

and the probes used to detect global deadlock. If there is a

deadlock, the probe is calculated by calling transaction Ti is

executed. A probe is sent if a transaction is waiting for

another transaction. Deadlock detection probe requests and

responses are separate.
Each transaction at any stage eventually sends a probe. If

probe starter achieve probe again, there is a deadlock. This

design with deadlock detection is wrong, even if the

transaction does not use 2-phase locking protocol.

2.2 Sinha Theory
This algorithm [4] is developed Chandy algorithm based on

the priorities of transactions. Using the priorities, the number

of messages required for deadlock detection considerably

reduced.

The numbers of messages in the best and worst conditions are

easily identified. This model includes transaction manager and

data. The data manager is responsible for taking and releasing

locks. A transaction requests a lock on a data item is sent to

the manager if the application is not accepted, the

administrator starts the deadlock is calculated. To do this a

probe transaction is holding a lock on data item is sent as

requested. If priority of holder transaction is higher than

requester transaction then transaction inserts this probe to

probe Q that holds this. When the probe is sent to the data

manager data item, it waits. In this phase of the calculated

deadlock, priority transactions to decide whether or not to

release the probe will be used. If the Starter priority is greater

than the item holder priority then will be release probe. When

a transaction is waiting for a lock then all probe are expanded

from its queue. when a data manager received self-starter

probe again, dead lock detect. Since the probe includes

younger transactions priority in cycle then younger

transaction aborted.

2.3 Obermack Algorithm
This algorithm [5] makes and analyzes TWFG in each site

directly. Distinct nodes at each site used a node that called

external nodes. This node was used to display part of TWFG

that is external (unknown) for site. Because at any time

created waiting graph does not provide an overview of the

Global TWFG. Detection algorithm in each site follows these

steps:

• Build TWFG.

• To obtain and add the information received from other sites

such as string to TWFG.

• Create edge waiting-for from external node to each node of

representing agent from transaction that waiting for send on

communication link.

• Create edge waiting-for from external node to each node of

representing agent from transaction that waiting for received

on communication link.

• Analysis of all cycle elements of TWFG.

• Select a victim to break each cycle that not containing

external nodes. As a result any victim who is selected deleted

all cycles that containing victim.

• For every cycle Ex T1T2… TxEx contains nodes

"outside", if the T1 transaction ID is greater than Tx then

string Ex, T1, T2. . . Tx send to Tx site that are waiting to

received.

2.4 Theory Menasce
This algorithm [6] was used initially to summarize TWFG,

vertices represent transactions and arcs represent

dependencies between transactions. The algorithm fails to

detect some of the deadlock and possible to detect deadlock

wrong.

The algorithm is described using the following rules:

Rule A:

Event: Transaction has T requests rd source in Sk site and rd

kept by Transactions T1, T2. . . And Tn currently.

Action: an edge added from significant node to each

transaction T1, T2. . . And Tn. if it causes a cycle in the TWF

(k) then the deadlock exists.

Rule B:

Event: a pair of blocks (T, T ') has been received at site Sk.

Action: If the result was a cycle, deadlock is detected, then an

edge from T to T ' in TWF (k) is added.

2.5 Ho Algorithm
In this algorithm [7], Table of transaction per sites hold

information about resources held and waiting by local

transactions and Selected a site as the central controller for

deadlock detection for local transactions Waiting periodically.

The problem with this approach is that it requires a number of

4n messages, where n is the number of sites in the system.

2.6 Kawazu Algorithm
This algorithm [8] is based on two-phase locking protocol. In

first phase local deadlock and in second phase global in the

absence of local deadlock are diagnosed.

This theory sees from ghost of deadlock harmful because

every local waiting graph due to communication delays on

time will not be collected. Also one transaction at a time,

waiting is more than one source, after the global deadlock

detection started even if no local deadlock is not detected, it

may not detect some global deadlocks.

2.7 VGS Algorithm
This theory [9] is based on the lack of permission create such

choices transaction deadlock victim is not the optimal way to

resolve deadlock. This paper proposes a new algorithm for

solving the deadlock that does not create any immediate

repeal or rollback. The algorithm is based on "mutual sharing

transactions". The disadvantage is that safe mode does not

provide for concurrent execution of transactions.

2.8 Monjurul Algorithm
In this theory [1, 2], a distributed database system is a

collection of data objects that are spread among a number of

sites. These sites are connected with each other through

messages. Each site includes a data object controller

(scheduler) and data manager. This method is attempted

transaction that is involved in more cycles to be selected as

victims. The proposed technique is based on the following

calculations:

• Linear Transaction Structure for each local site

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.5, June 2014

3

• Distributed Transaction Structure for Global Resources

connected transactions

• Priority ID for each transaction at each site

• Local and global cycles

• The victim aborted in the transaction cycle.

2.9 Ghodrati Algorithm
This algorithm [24] provides optimal choice of aborting the

transaction as a deadlock victim. The proposed method is

compared with previous work raises a good idea to choose a

victim.

2.10 Other Algorithms
Bracha, Mitchell and Krivokapic algorithms for deadlock

detection distributed database systems have been proposed

that are not properly evaluated [1].

Some algorithms have been proposed in recent years [16-18]

have previously described a new mechanism not only have

issues. The algorithm presented in [14] and [23] has used the

idea of the grid is not implemented. In [10] described a

method for concurrency execution of transactions in colored

Petri nets connection that no relation with TWFG mapping to

Petri nets for detect and resolve the deadlock. As observed in

previous work to resolve deadlock, the youngest of the

transaction in cycle is selected as a victim. But this choice has

disadvantages that in this paper provide a solution to solved

this problem.

3. PROPOSED MODEL
A colored Petri net is widely used formal methods for the

modeling capabilities in many types of distributed and

concurrent systems. In the proposed method can be model and

evaluate all the issues related to transactions resource requests

and manage deadlock in databases distributed on colored Petri

nets.

The proposed model for each transaction is a transaction

manager intended to perform operations related to the

transaction. Transaction manager hold information related to

transaction, priority transaction ID and importance of

transaction for system. Transaction manager assigned to a

node. In the initial state, all transactions in TWFG create

probe and send. These probes send for all transactions that

current transaction waiting for them. Destination transaction

after receive the probe send the probe for all transactions that

are waiting for them.

RequestTrans indicates which transaction has received the

probe. Each transaction manager after receiving probe will

check whether or not the current transaction is same

Transaction initiated probe. If not be probe starter then will

examine whether the current transaction in the list (the list of

transactions maintained by the current probe (ProbeQueue)

exists or not. if current transaction exist in ProbeQueue then

deadlock has been detected that starter transaction plays no

role in deadlock. Thus, current transaction prevent of expect

the probe to another transaction. Because possible declare a

deadlock victim wrongly. It is noted that this deadlock will be

detected by other probes. If current transaction exists in

ProbeQueue then send probe will continue.

If starter transaction equal with current then deadlock cycle is

detected. The victim transaction in probe that has been named

as Victim Trans selected and aborted.

Each transaction in time to send probe, change probe values

and send probe for all transactions that are waiting for current

transaction. Current transaction before sending the probe, set

own for last transaction defines in probe and adds to

ProbeQueue. if Sign amount of current transaction is higher of

the victim transaction then current transaction selected as a

victim in the probe.

IN [24] for the selection of the victim transactions must be

calculated for each transaction value of S.

S = α × Sign + (1 - α) × PTid (2)

Sign: importance (significance) of the transaction to the

system

 PTid: Sequence number of transactions entry the system

α: important factor Select most important transaction as

victim

PTid younger transaction number is higher. Transaction with

Sign higher value is less important for systems. Transaction

with Sign lower value is less important for systems.

Each transaction must be get priority of the transaction ID that

called PTId and a significant amount of the transaction that

called a Sign from transaction manager.

By entering a transaction in the system younger transaction

may be a low priority; then this transaction whenever from

system is aborting from transaction Sign constant β

(multiplication factor of victim transactions) is low.

Sign = Sign-β (3)

This causes the victim to begin again more significant

transactions and transactions to prevent starvation.

It should be noted that the appropriate values of β and α are

determined by the distributed database management.

Determine appropriate values for β and α has a significant

impact on system resource usage by transactions. For

example, if a low priority transaction that is older and has a

lot of resources of the system used to be the victim, the

system will impose large costs.

 As a result, the values of β and α must be determined in such

a way that the victimization of young and old transactions and

transactions are less important to create more balance.

This article proposed a new method for mapping model based

on neighbor replication on grid to colored Petri net to

modeling identify and resolve the deadlock. Since the model

is based on TWFG can be done by mapping TWFG to colored

Petri net is based on the Grid. Fig.4 Proposed models for

mapping TWFG with colored Petri net is presented to

modeling identify and resolve the deadlock.

In Fig.4, status of implementation of the transaction mapped

to Execute place and victim transaction mapped to victim

place. Type of color set selected for these places is

SITExTRANSACTIONxTIdxTSign. AbortVictim transition

is responsible for the aborted victim's transaction. This

transition will remove the victim from the color set TWFG

place. ExitTransition transition used to end transaction after it

has been run. This transition removed transaction color from

color set TWFG place. SequenceOfRequests Place task is

responsible for the transaction request signals. The location of

the color of the color set are selected PROBE.

Fig.4: Proposed model for detecting and resolve deadlock

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.5, June 2014

4

Color sets for this model are as follows:
val TransactionsNO = 3;

val SitesNO = 3;

colset STATE= string;
colset TRANSACTION = index Trans with 1. . TransactionsNO;

colset SITE = index Site with 1. . SitesNO;

colset SiteLIST = list SITE;
colset SITExTRANSACTION = product SITE*TRANSACTION;

colset TRANSLIST = list SITExTRANSACTION;

colset SITExTRANSACTIONxSITExTRANSACTION=product
SITExTRANSACTION*SITExTRANSACTION;

colset TRANSACTIONxTRANSLISTxSTATE= product

SITExTRANSACTION*TRANSLIST*STATE;
colset TWFGList = list

SITExTRANSACTIONxSITExTRANSACTION;
colset TId= int;

colset TSign= real;

colset SITExTRANSACTIONxTIdxTSign= product
SITExTRANSACTION*TId*TSign ;

colset PROBE = product

SITExTRANSACTION*SITExTRANSACTION
*SITExTRANSACTION *TRANSLIST*

SITExTRANSACTIONxTIdxTSign;

colset Boolean =bool;
colset SEQUENCE = int;

Variables for greater flexibility in system modeling are

introduced. Variables are defined for colors set required to

implement the model variables are defined as follows:

var T, Tv, NT : SITExTRANSACTION;

var Victim, NVictim, ReadyTrans :

SITExTRANSACTIONxTIdxTSign;

var state, Nstate : STATE;

var TL, NTL, ProbeQueue, NProbeQueue : TRANSLIST;

var S, R, StarterT, LastT, RequestT: SITExTRANSACTION;
var Otwfg, Ntwfg, twfg: TRANSACTIONxTRANSLISTxSTATE;

var Ids, Idv: TId;

var Ss, Sv : TSign;
var Abort, BroadCast, Ready : Boolean;

Transition capacity led to the assignment of variables to

colors from input edge markup.

Calling functions in the model are defined as follows:

fun intToReal i = (IntInfToReal FloatPoint (IntInf. fromInt i))

IntToReal function converts the input value from int to real.

The number of decimal digits displayed is determined by

FloatPoint. Here FloatPoint out of 5.
fun getTransIndex(t, h::L) : int =

 let val i =0
 in if (h=t) then i

 else

 if (getTransIndex(t, L) <> ~1) then
 getTransIndex(t, L) +1

 else ~1

 end
| getTransIndex(_, []) = ~1;

getTransIndex function return position index of T transaction

in the list h :: L.

fun eliminateTrans (T, L)= let val index = getTransIndex(T, L(

 in if (index <> ~1) then List. take(L, index)^^List.

drop(L, index+1(

 else L end

EliminateTrans removed T transaction from the list L.

fun isExists(T, TL) = let val n = getTransIndex(T, TL)

 in if n <> ~1 then true else false end ;

IsExists function will check whether existing T transaction in

the TL transactions list is.

fun BroadCastMessage(translist, starterT, s, probequeue, victim =)
if translist=[] then

 empty

else 1`(starterT, s, hd(translist), probequeue, victim)
++BroadCastMessage(tl(translist), starterT, s, probequeue, victim);

BroadCastMessage function creates probes.

fun CheckVictimIsInRequestListTransaction ((Vsite, Vtrans), (t,
translist, state=))

let in if isExists((Vsite, Vtrans), translist) then

 true else false end;

CheckVictimIsInRequestListTransaction function will

check availability victim transition in request transitions in

TWFG place. If available, the function returns true and false

otherwise.
fun CheckVictim ((Ssite, Strans), probequeue, ((Vsite, Vtrans), Vid,
Vsign) : SITExTRANSACTIONxTIdxTSign,

((Csite, Ctrans), Cid, Csign) : SITExTRANSACTIONxTIdxTSign,

transList) =
val a=0. 5; idv=intToReal Vid; idc=intToReal Cid; sV = a * Vsign + (

1. 0 - a) * idv; sC = a * Csign + (1. 0 - a) * idc ; index =

getTransIndex((Csite, Ctrans), probequeue(
in

if ((Ssite, Strans)= (Csite, Ctrans) andalso probequeue <> []) then

 if (sV>sC) then
 (((Vsite, Vtrans), Vid, Vsign), ((Csite, Ctrans), Cid, Csign),

probequeue, true, false, false)

 else
 (((Csite, Ctrans), Cid, Csign), ((Csite, Ctrans), Cid, Csign),

probequeue, true, false, false)

else
 if (transList <> []) then

 if (index = ~1) then
 if (sV>sC) then

 (((Vsite, Vtrans), Vid, Vsign), ((Csite, Ctrans), Cid,

Csign), (Csite, Ctrans) :: probequeue, false, true, false)
 else

 (((Csite, Ctrans), Cid, Csign), ((Csite, Ctrans), Cid, Csign),

(Csite, Ctrans) :: probequeue, false, true, false)
 else

 (((Vsite, Vtrans), Vid, Vsign), ((Csite, Ctrans), Cid, Csign), (Csite,

Ctrans) :: probequeue, false, false, false)
 else

 (((Vsite, Vtrans), Vid, Vsign), ((Csite, Ctrans), Cid, Csign),

(Csite, Ctrans) :: probequeue, false, false, true)
end;

The model in Fig.5 implements a new method for

mapping TWFG to colored Petri net is deadlock detection and

resolution; TWFG requests for third transaction has

implemented.

Fig.5: The model has been implemented using CPN

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.5, June 2014

5

In Fig.6, T1 transaction mapped to CPN.

Fig.6: Mapping T1 transaction to CPN

In Fig.7, each transaction manager mapped to CPN.

Fig.7: Mapping each transaction manager to CPN

In Fig.8, wait-for graph mapped to CPN.

Fig.8: Mapping wait-for graph to CPN

3.1 Mapping T1 transaction manager
CPN model module T1 transaction is a transition that example

is as follows.

Fig.9: CPN model T1 transaction manager

3.2 Mapping ExitTransition module
CPN model ExitTransition module is as follows.

Fig.10: CPN Model module ExitTransition

3.3 Mapping module

ExecutionTransactionsManagement
CPN model ExecutionTransactionsManagement module is as

follows.

Fig.11 : CPN Model module

ExecutionTransactionsManagement

3.4 Mapping module AbortVictim
CPN model AbortVictim module is as follows.

Fig.12: CPN model module AbortVictim

3.5 Implementation model places colors set
CPN is a set of colors assigned to each specifies place that can

be included. Mark a place as a "multi- set" that the presented

model is defined as follows:
val P_High = 1000;

val P_Normal = 100;

val T1Requests = 1 `((Site (1), Trans (1)), [(Site (1), Trans (2))], "
Enable "; (

val T2Requests = 1 `((Site (1), Trans (2)), [(Site (1), Trans (1))], "

Enable "; (
val T3Requests = 1 `((Site (1), Trans (3)), [(Site (1), Trans (1))], "

Enable "; (

val InitialTWFG = T1Requests ^ ^ T2Requests ^ ^ T3Requests;
val T1ID = 1 `((Site (1), Trans (1)), 1, 1. 0 (;

val T2ID = 1 `((Site (1), Trans (2)), 2, 4. 0 (;

val T3ID = 1 `((Site (1), Trans (3)), 3, 3. 0 (;
val InitialSignificance = T1ID ^ ^ T2ID ^ ^ T3ID;

val FloatPoint = 5;

val InitialProbe =

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.5, June 2014

6

 1 `)) Site (1), Trans (1)), (Site (1), Trans (1)), (Site (1), Trans (1)),

[]: TRANSLIST, ((Site (1), Trans (1)), 1, 1. 0)) + +1 `)) Site (1),
Trans (2)), (Site (1), Trans (2)), (Site (1), Trans (2)), []: TRANSLIST,

((Site (1), Trans (2)), 2, 4. 0 ((

+ +1 `)) Site (1), Trans (3)), (Site (1), Trans (3)), (Site (1), Trans (3)),
[]: TRANSLIST, ((Site (1), Trans (3)), 3, 3. 0))

Proof of correctness:

Deadlock detection and resolution algorithms must make the

following two conditions have to be considered:

• Security - The algorithm correctly diagnoses and solves the

deadlock.

• Life - or dissolve detection algorithm identified all the

deadlock ends in the limited time to solve.

This condition is usually examined under the assumption that

all abortions there in the system created by the algorithm,

wherever there is no spontaneous abortion. It is proved that

any algorithm has the ability to play up the security conditions

are not considered unless spontaneous abortion [21].

The model of detection and resolution of deadlock is working

correctly.

4. COMPARE THE PROPOSED

METHOD WITH EXISTING METHODS
Obermack algorithm does not work correctly because it detect

wrong deadlock because general overview of TWFG global

does not display any moment. Menasce theory fails to

recognize some cycles may cover deadlock wrong. HO

algorithm transaction tables and table references per site to

keep information resource uses. The disadvantage to this

approach is that it requires the 4n messages, where n is the

number of sites in the system. Kawazu the ghost deadlock

graph algorithms suffer because waiting times due to

communication delay time is not collected and not found a

local deadlock, some of the diagnosed may not be deadlock

ends Global. Transaction deadlock detection algorithms

presented in most of the young people who choose to cycle as

a victim. Younger transactions may be important if the victim

is selected, the system is high. It may also be because young

aborting transaction, the transaction is responsible for the

deadlock, the deadlock created in the system and constantly

present and it is possible that the transaction more cycles, and

the company has been selected victim, the system of is high.

In algorithm used in the model that has been presented by

Ghodrati, the iterative technique is used neighbor replication

on grid. This method for solving the problems should be a

priority identifier for each transaction in addition, the amount

of the transaction to the system (Sign) will also be considered.

Sign aborting the transaction whenever the system is its low

transaction constant β. To choose a victim, the system must

strike a balance between ID and Sign establish priorities. This

technique ensures that deadlock detection and global deadlock

nothing to do with the local algorithm does not detect any

false deadlock actual deadlock is detected.

A lot of work being done to define the concurrency execution

of transactions in Petri nets is that none of these methods of

communication with Petri nets for modeling how to detect and

resolve the mapping TWFG not deadlock. This paper presents

an approach to transforming TWFG the Petri net. The probe

has been used to implement some of the previous methods.

The victim is chosen to account for the transaction in the

event of deadlock detection is no need to re- route the

transaction to select the victim is dead.

5. CONCLUSION
In this paper, a new method for mapping TWFG to colored

Petri net for modeling detect and resolve deadlock using

colored Petri net is presented better to use.

Petri nets for modeling and analyzing systems that have issues

with parallelism, and synchronization face encounters are very

powerful and convenient. Knowing the mapping rules

presented TWFG can easily be converted to a colored Petri

nets. Mapping rules are applied in a real case shows the

feasibility of mapping rules.

6. LIMITATIONS
In this paper, the bases of all decisions based on the current

state of the system and are TWFG. Given that no

comprehensive assessment to compare all available methods

to detect and resolve deadlock in distributed databases with

the same condition does not exist, no comprehensive

comparison of all the methods of different states of.

7. SUGGEST FUTURE WORK
As future work, we can consider the following:

• The use of intelligent algorithms to determine the optimal

value of α (the coefficient is chosen as the victim of the most

important transactions) and β (a factor of increasing

importance victim restarting transaction) given the current

state of the database.

• Mapping of all operations related to distributed databases to

colored Petri nets.

8. REFERENCES
[1] B. M. Monjurul Alom, Frans Alexander Henskens and

Michael Richard Hannaford, "Optimization of Detected

Deadlock Views of Distributed Database", First

International Conference on Data Storage and Data

Engineering, Vol. 41, pp. 44-48 2010.

[2] B. M. M. Alom, F. Henskens, and M. Hannaford,

"Deadlock Detection Views of istributed Database", in

6th International conference on Information Technology

& New Generartion (ITNG-2009) Las Vegas, USA.

IEEE Computer Society, pp. 730-737, 2009.

[3] K. M. Chandy, J. Misra, and L. M. Hass, "Distributed

Deadlock Detection", ACM Transaction on Computer

Systems, Vol. 1, Issues. 2, pp. 144-156, 1983.

[4] M. K. Sinha and N. Natarjan, "A Priority Based

Distributed Deadlock Detection Algorithm" IEEE

Transactions on Software Engineering, Vol. 11, Issues. 1,

pp. 67-80, 1985.

[5] R. Obermarck, "Distributed Deadlock Detection

Algorithm", ACM Transaction on Database Systems,

Vol. 7, Issues. 2, pp. 187-208, 1982.

[6] D. A. Menasce and R. R. Muntz, "Locking and Deadlock

Detection in Distributed Data Bases” IEEE Transactions

on Software Engineering, Vol. 5, Issues. 3, pp. 195-202,

1979.

[7] G. S. HO and C. V. RAMAMOORTHY, "Protocols for

Deadlock Detection in Distributed Database Systems "

IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, Vol. 8, Issues. 6, pp. 554-557, 1982.

[8] S. Kawazu, S. Minami, K. Itoh, and K. Teranaka, "Two-

Phase Deadlock Detection Algorithm in Distributed

Databases", VLDB, the fifth International Conference on

Very Large Data Bases – Vol. 5, pp. 360-367, 1979.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.5, June 2014

7

[9] Kunwar Singh Vaisla and Menka Goswami and Ajit

Singh, “VGS Algorithm - an Efficient Deadlock

Resolution Method”, International Journal of Computer

Applications, Vol. 44, Number. 1, pp. 29-33, April 2012.

[10] Saeid Pashazadeh, “Modeling and Verification of

Deadlock Potentials of a Concurrency Control

Mechanism in Distributed Databases Using Hierarchical

Colored Petri Net “, International Journal of Information

and Education Technology, Vol. 2, No. 2, pp. 77-82,

April 2012.

[11] B. B. Sarkar and N. Chaki, ” Transaction Management

for Distributed Database using Petri Nets”, International

Journal of Computer Information Systems and Industrial

Management Applications (IJCISIM), ISSN. 2150-7988,

Vol. 2, pp. 069-076, 2010.

[12] K. Maabreh and and A. Hamami, “Implementing New

Approach for Enhancing Performance and Throughput in

A Distributed Database”, Vol. 10, Issue. 3, pp290-296,

IAJIT, 2011.

[13] D. Gupta and V. K. Gupta, ” Approaches for Deadlock

Detection and Deadlock Prevention for Distributed

systems”, Research Journal of Recent Sciences, Vol. 1,

pp. 422-425, 2012.

[14] Noriyani Mohd Zin, A. Noraziah, A. H. Beg, Ainul Azila

Che Fauzi, “Deadlock Detection and Resolution in

Neighbour Replication on Grid”, IACSIT, Vol. 5 No. 22,

pp. 350-357, 2011.

[15] V. Geetha and N. Sreenath, ” Distributed Deadlock

Detection using Fault Informing Probes “, International

Journal of Computer Applications, Vol. 41, No. 8, pp. 6-

11, March 2012.

[16] Arun Kumar Yadav and Dr. Ajay Agarwal, “A

Distributed Architecture for Transactions

Synchronization in Distributed Database Systems “,

International Journal on Computer Science and

Engineering, Vol. 02, No. 06, p. 1984, 2010.

[17] Himanshi Grover and Suresh Kumar, “ANALYSIS OF

DEADLOCK DETECTION AND RESOLUTION

TECHNIQUES IN DISTRIBUTED DATABASE

ENVIRONMENT”, International Journal of Computer

Engineering & Science, Vol. 2, Issue 1, pp. 17-25, Sept

2012.

[18] Srinivasan Selvaraj and Rajaram Ramasamy, “An

Efficient Detection and Resolution of Generalized

Deadlocks in Distributed Systems”, International Journal

of Computer Applications, Vol. 1 – No. 19, pp. 1-7,

2010.

[19] M. Tamer Ozsu and Patrick Valduries, “Principles OF

Distributed Database System“, Springer, Third Edition,

pp. 387-394, 2011.

[20] Pooja Sapra and Suresh Kumar and R K Rathy,

“Deadlock Detection and Recovery in Distributed

Databases”, International Journal of Computer, Vol. 73,

No. 1, pp. 32-36, July 2013.

[21] Gupta and Swati, "Deadlock Detection Techniques in

Distributed Database System", International Journal of

Computer Applications. Jul2013, Vol. 74 Issue 1-21,

pp41-45, 2013.

[22] Knapp. E., “Deadlock Detection in Distributed

Databases”, ACM Computing Surveys, Vol. 19, no. 4,

pp. 303-328, Dec. 1987.

[23] Noriyani Mohd Zin, A. Noraziah, Ahmed N. Abdalla and

Ainul Azila CheFauzi, "Solving Two Deadlock Cycles

through Neighbor Replication on Grid Deadlock

Detection Model ", Journal of Computer Science, Vol. 8,

No. 2, pp. 265-271, 2012.

[24] Masoomeh Ghodrati and Ali Harounabadi, “A New

Method for Optimization of Deadlock resolution of

Distributed Database with Formal Model”, International

Journal of Electronics Communication and Computer

Engineering, Vol. 5, no. 1, pp. 220-228, Jun. 2014.

IJCATM : www.ijcaonline.org

