
International Journal of Computer Applications (0975 – 8887) 

Volume 95– No.21, June 2014 

36 

Towards an Automatic Evaluation of UML Class 

Diagrams by Graph Transformation 

 
Anas Outair 

National School of Applied 
Science 

Tangier, Morocco 

 

Abdelouahid Lyhyaoui 
National School of Applied 

Science 
Tangier, Morocco 

 

Mariam Tanana 
National School of Applied 

Science 
Tangier, Morocco 

 
 

ABSTRACT 

Object-oriented modeling plays an important role in computer 

science, particularly in the context of software development 

projects. It is for this reason that the UML (Unified Modeling 

Language), and therefore the design of UML diagrams, is 

necessarily present in the majority of computer science’s 

courses in university. As the number of university students 

enrolled in such courses is growing, the evaluation of UML 

diagrams produced by students is often experienced by 

teachers as a difficult and tedious task. In this paper we 

propose a method for transforming these diagrams to UML 

graph in the sake of a better representation, and then assist the 

teacher during the evaluation process of these diagrams. 

Keywords 

Learner assessment; UML Diagrams; Transformation of 

graphs; 

1. INTRODUCTION 
UML is one of the most important courses in higher 

education; the objective of this course is to introduce to the 

students how UML diagrams are created from case studies. In 

this research work, we are interested in the evaluation of 

UML diagrams produced by the students. 

In this paper, we start by defining some methods and tools to 

evaluate the learner in general. Then we will present this 

working context, in particular UML diagrams. Later we 

explain after a method of transforming an UML diagram, 

namely a class diagram, in a graph that will be easier to 

handle and evaluate than the original one. Finally some 

conclusions and coming perspectives are drawn. 

The learning assessments occupy a very important place in the 

education. The knowledge acquired by the students can be 

tested by the teacher in the form of a: 

 Formative assessment or diagnostic testing  is a range of 

formal and informal assessment procedures employed by 

teachers during the learning process in order to modify 

teaching and learning activities to improve student 

attainment [1]; 

 Summative assessment is commonly used to refer to 

assessment of educational faculty with the object of 

measuring all teachers on the same criteria to determine 

the level of their performance [2]. 

Bloom's taxonomy identifies three main learning domains: 

cognitive, affective and psychomotor. The cognitive domain 

describes the knowledge and the development of the 

intellectual abilities and skills (knowledge and know-how), 

the affective domain describes the aptitudes or self-

management skills, and the psychomotor domain describes the 

physical and motor abilities. In what follows, we are 

interested in the cognitive domain since it is the most 

requested at the time of the establishment of learning 

objectives in the educational system [3]. 

When a teacher wants to evaluate a learner, he begins by 

determining the aimed educational objective. Next, according 

to the cognitive level of this objective, he will choose one or 

several types of exercises. The higher the cognitive level to 

evaluate is, the more it is necessary to give freedom to the 

learner. 

The aim of this work is to evaluate the skills of the learner, 

which corresponds to the cognitive level « application » of 

Bloom‘s taxonomy. We are interested in tools adapted to this 

choice. Indeed, the main objective is to develop tools helping 

the teacher to realize an evaluation, which is the most 

objective possible, of the students’ know-how/ skills. 

The chosen field of application is the UML diagrams, where 

the implementation of case studies is necessary for a good 

understanding of the basic notions of the UML design and 

modeling. The students have to conceive these case studies. 

The teacher’s work will consist at evaluating the obtained 

results. It is a tedious task because the correction of an UML 

diagram created by a student is difficult to understand, 

especially if there are several possible solutions. 

Since UML does not provide the methodology for modeling, 

the students have difficulties during the construction of a class 

diagram. When students construct an UML diagram, which 

has several solutions, it might be presented in different ways 

and point of views. 

For this reason, this paper offer assistance to the teacher in the 

task of evaluating the UML diagrams produced by students. 

Firstly, we are interested in class diagrams because it is the 

most complicated part in the diagram design. 

In the following section, we will present the different view of 

a system model, and the categories of elements of class 

diagram. 

2. DIAGRAMS OVERVIEW 

2.1 UML Diagrams 
The Unified Modeling Language (UML) is a set of graphical 

notations based on a metamodel for specifying, visualizing 

and documenting object-oriented software systems. It defines 

a notation that represents the syntax of the language modeling 

and a meta-model which provides additional evidence to 

clarify the meaning of the ratings [4].  

The UML diagrams represent two different views of a system 

mode [5]: 

http://en.wikipedia.org/wiki/Diagnostic_testing


International Journal of Computer Applications (0975 – 8887) 

Volume 95– No.21, June 2014 

37 

 Static view: emphasizes the static structure of the 

system using objects, attributes, operations and 

relationships. The structural view includes class 

diagrams and composite structure diagrams. 

 Dynamic view: emphasizes the dynamic behavior of 

the system by showing collaborations among 

objects and changes to the internal states of objects. 

This view includes sequence diagrams, activity 

diagrams and state machine diagrams. 

2.2 Class Diagram 
UML language organizes the elements of class diagrams into 

two broad categories [6]: 

 Classifier is a category of   UML elements that have some 

common features, such as attributes and operations, and 

can be linked by relationships. 

 Relationship is a general term covering the specific types 

of logical connection found on class diagrams. The figure 

1 shows the types of  relationships:  

 

Fig 1: Different kinds of relationships 

2.3 Assessment of differences between class 

diagrams 
We start by focusing on the evaluation of the class diagram, 

because it is the most used, and considered as the most 

important of object oriented modeling. To demonstrate this 

approach, an example model containing a teacher’s class 

diagram and a student’s class diagram, to detect all 

differences between them. 

Thereafter, we will illustrate the use of class diagrams with an 

example of a case study on «Library management” produced 

by teacher and student. Thus, we analyzed the operation of the 

library to get the list of rules and following assertions: 

 The library includes a set of documents and a set of 

members ; 

 New documents are added regularly to the library by 

the librarian. They are either books or dictionaries. 

Each document is characterized by title, author, 

ISBN number and inventory; 

 Only books are for borrowing. A book has more of 

an attribute on the state of the borrowing; 

 A member can borrow or return back books. At any 

time, we can know which books are borrowed by a 

member; 

 The date of returning back a borrowed book is set at 

the time of the borrowing. This date may be 

extended upon request; 

 The borrowing is always performed by the librarian 

who works at the library. After identifying the 

borrower, they know if the borrowing is possible 

and if  the borrower has priority; 

Figure 2 shows a class diagram of the teacher modeled from a 

text statement, this reference diagram is not optimal, there 

may  be alternative solutions with semantic equivalence but 

structurally different. First of all the focus is on a single 

solution of teacher’s class diagram to find the differences with 

the class diagram produced by a single student, which is 

illustrated in Figure 3. 

 

 

 

 

 

3. TYPESET TEXT 

3.1 Normal or Body Text 
 

 

Fig 2: Teacher class diagram 

 

 

 

 

 

 

 

 

Fig 3: Student class diagram 

The detected differences of modeling and representation are 

significant. The differences between the teacher and student 

class diagrams are expressed in the following list: 

 Class “Librarian” is not represented, nor its  

association relationships with class “ library” and 

class “member”; 

 Association class  is not represented, nor its 

attributes, its operations and its association 

relationships with class “Library” and ‘Librarian’; 

 A composition relationship connects the classes 

"Library" and "Document" instead of an aggregation 

relationship, and its orientation is reversed; 

 

 

http://en.wikipedia.org/wiki/Class_diagram
http://en.wikipedia.org/wiki/Class_diagram
http://en.wikipedia.org/wiki/Composite_structure_diagram
http://en.wikipedia.org/wiki/Sequence_diagram
http://en.wikipedia.org/wiki/Activity_diagram
http://en.wikipedia.org/wiki/Activity_diagram
http://en.wikipedia.org/wiki/UML_state_machine
http://en.wikipedia.org/w/index.php?title=UML_element&action=edit&redlink=1


International Journal of Computer Applications (0975 – 8887) 

Volume 95– No.21, June 2014 

38 

 An association relationship "registered" is inserted 

between the classes "Member" and "Library", while 

it should be inserted to connect the class "Member" 

with the class "Librarian";  

 The direction of the inheritance relationship 

between the classes "Document" and "Book" is 

reversed; 

 The multiplicity of the association end "0..2" of the 

class "Book" is replaced by "1..*". 

The differences were developed from a manual comparison; 

several differences have been found in class, attribute, 

method, relationship, orientation relationships and 

multiplicities. The differences can be expressed as insertion, 

omission, inversion and replacement. 

The student’s class diagram is incomplete; he omitted to 

represent some elements of the diagram. These omissions are 

for instance the absence of a class which implies that the 

attributes, operations and relations that connect them to other 

classes in the diagram are also absents. It may be that the 

student has omitted to represent attribute inherited by 

subclasses of the superclass, then these classes will also be 

incomplete. However, the insertion of an element or 

relationship in the diagram constructed by the student refers to 

the fact that he did not respect the case study, or that he made 

a mistake. Table 1 illustrates an example of general 

differences between the teacher’s class diagrams and the 

student’s class diagram. 

Table 1. The general differences between two class 

diagrams  

Differences noted by the 

teacher 
feedback 

Omission {Librarian}  

 
Omission of class and 

elements associated with this 

class 

Omission {works 

(Librarian  Library)} 

Omission {registered 

(Librarian  Member)} 

Omission {Borrow}  

 Omission of association 

class and elements 

associated with this 

association class  

Omission {do (Librarian 

 Borrow)} 

Omission {know (Library 

 Borrow) 

{ have (Library  

Document) } REVERSE { 

have (Document  

Library) }  

 

Reversing the direction of a 

aggregation relationship  

 

{ Dictionary Document} 

REVERSE { Document 

Dictionary) }  

 

Reversing the direction of a 

generalization relationship  

 

 

Those differences have been done manually, if we want to do 

it automatically or semi-automatically, it will be difficult with 

the graphic form of these diagrams. Thereafter, we would like 

to represent it in an easier and handle able format. Indeed, the 

class diagrams contain several links between classes and each 

class has several attributes or operations. Links can be of 

different types (combination of inheritance, aggregation, 

composition and simple association) and be labeled 

differently (role, multiplicity, and navigability) [8]. For this 

reason, we will introduce in the next section, a method that 

transform UML class diagram to an UML graph. 

3. TRANSFORMATION OF UML 

DIAGRAMS INTO A GRAPH 
We have described some differences between two UML class 

diagrams analyzed during the design of a case study. In the 

discussed learning environment, the models developed by 

students during a modeling activity are class diagrams 

analysis level graphics. In this section, we examine some 

possible representations of the UML class diagram. We 

propose a correct graphical representation of this exercise. 

Then we focus on how UML class diagrams can be 

represented as graphs in particular to be saved and analyzed 

by computer systems. 

We will start with some basic definitions and notations on 

graphs that we will use later in this paper. Indeed, the graphs 

are often used to model objects in various scientific and 

engineering fields such as the treatment and recognition of 

images, information search and text documents, the 

representation of scientific data [7]. The purpose of these 

representations is to have an easier formalism to handle the 

initial representation of the object. 

3.1 Graph theory  
3.1.1 Multidigraph 
A multidigraph is a directed graph which is permitted to 

have multiple arcs, i.e., arcs with the same source and target 

nodes. A multidigraph G is an ordered pair G= (V, A) with: 

 V a set of vertices or nodes, 

 A multiset of ordered pairs of vertices 

called directed edges, arcs or arrows [8]. 

A labeled multidigraph G is a multigraph with labeled vertices 

and arcs [9]. 

3.1.2 Labeled graph 
A labeled graph is a directed graph such that vertices and 

edges are associated with labels. Without loss of generality, 

we shall assume that every vertex and edge is associated with 

at least one label: if some vertices (resp. edges) have no label, 

one can add an extra anonymous label that is associated with 

every vertex (resp. edge) [10]. More formally, given a finite 

set of vertex labels LV , and a finite set of edge labels LE, a 

labeled graph will be defined by a triple G =(V, RV , RE ) such 

that:  

 V is a finite set of vertices; 

 RV ⊂ V x LV is the relation that associates vertices 

with labels, i.e., RV is the set of couples (vi , l) such 

that vertex vi has label  l; 

RE ⊂ V x V x LE is the relation that associates edges with 

labels, i.e., RE is the set of triples (vi , vj , l) such that edge (vi , 

vj) has label  l. Note that from this edge relation RE, one can 

define the set E of edges. 

3.2 Graphical representation 
The transformation of graphs was introduced to computer 

science in the late 60s [11]. The modification is done by graph 

transformation rules. Numerous studies on the transformation 

of graphs have been applied in many areas of computer 

science such as visual modeling [12], the modeling of 

distributed [13] systems, functional [14]. 

In particular, the transformation graphs can easily model the 

graph structure. It has become a modeling tool, often used in 



International Journal of Computer Applications (0975 – 8887) 

Volume 95– No.21, June 2014 

39 

the case of complex systems that involve many 

communicating objects. Detailed individual applications 

processing approaches are represented in graphs [15]. 

Figure 4 shows an attributed class diagram with two classes 

connected by an association on the right-hand side, and the 

corresponding simplified version of that diagram on the left-

hand side (multidigraph) [16]. The class names are 

represented by vertices, the attribute names are represented by 

edges, the attribute types are represented by nodes and the 

link between classes are represented by edge.  

The advantage of this representation provides graphs with 

some vertices and edges. However, it has disadvantages: 

 A N-ary association cannot be represented in 

this formalism as an arc of a graph is binary;  

 An association class cannot be shown because it 

is both a top and edge of the graph;  

 Operations, attributes and end of association 

cannot be represented. An attribute can for 

example have a name, a type, visibility. 

 

Fig 4: An attributed graph in two different notations 

As class diagrams are a little more complex than the graph 

structure, we will present in the next section a method of 

representing these diagrams before turning them into an UML 

labeled graph. 

4. TRANSFORMATION OF CLASS 

DIAGRAM TO UML METAMODEL  

4.1 Related work  
This section will present the transformation of UML class 

diagram. In addition, the advanced class diagrams features 

(such as interfaces, constraints, etc.) will be ignored.  

Moreover, The UML language lacks a formal mathematical 

methodology. Different works can be found to address this 

issue to provide a formal semantics of UML language. In [17] 

presents a number of concrete of transformations over the 

Unified Modeling Language. The work in [18] presents an 

elegant and simple semantics of UML class and object 

diagrams based on graph structures that are as close as 

possible to familiar notions in graph theory. An integrated 

semantics for UML class, object and state diagrams based on 

graph transformation in [19]. In [20] a translation UML 

models into graph transformation systems is presented. 

The meta-model in Figure 4 shows the main bases of class 

diagrams [20]. The corresponding class diagram elements 

(classes, attributes, operations, associations, ends association) 

exist at the whole range of this diagram. Each attribute and 

operation is connected to its class or one of its super classes 

contains. Thus, attributes and operations are inherited from 

super classes to subclasses, they characterized by name and 

type. A class is associated with more association ends. Each 

end of an association has properties that specify its role, 

multiplicity. An association is composed of at least two 

association ends and may be named. 

 

Fig 5: Metamodel of class diagram 

4.2 Improvement of the UML metamodel 
The representation above is incomplete because several 

elements are not defined in this metamodel, as the visibility of 

attributes and operations, the type of association (simple 

association, aggregation, composition) and the association 

class.  

Based on the extracted UML metamodel of the figure 4, we 

can enhance this metamodel by adding:  

 Visibility at attribute element; 

 Type of association and navigability at end 

association element; 

 Association class element; 

 Attribute element and operation element 

connected with association class element. 

 

Fig 6: Improving metamodel class diagram 

Figure 6 shows the new metamodel that contains all elements 

of class diagram which we need. 

In the next section, we will apply the method of 

transformation of class diagram to an UML graph of the case 

study of library management, and we can save it in an XML 

format. 

5. TRANSFORMATION OF CLASS 

DIAGRAM TO UML GRAPH 
In this section, we present the transformation of the class 

diagram of the case study “library management”. Based on the 

extract of the previous metamodel, we can transform a class 

diagram to an UML graph where all the elements and their 

direct links are made explicit by means of vertices and edges. 



International Journal of Computer Applications (0975 – 8887) 

Volume 95– No.21, June 2014 

40 

The representation of the majority of elements (class, 

associations, attributes, and operation for association) is 

vertices of the graph. Edges are inheritances, and 

relationships between various elements. A class (vertex)  

has attributes (vertices) that can be typed by classes. 

Associations (vertices) have association ends (vertices) 

which can be typed by classes (vertices). The Figure 6 

shows the UML graph of library management. The 

graph representation clearly expresses links of their 

elements and of their characteristics in the UML 

diagrams. Each edge connects several nodes and has a 
direction. Vertices and edges are characterized by labels 

representing their attributes and operations (name, 

visibility, type), their association ends (role, multiplicity, 

type of association, navigability). This representation is 

semantically equivalent with the class diagram, and 

naturally meets the requirements described in the UML 

metamodel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7: Representation of class diagram in the form of an UML graph

6. CONCLUSION AND FUTURE WORK 
The objective of this work was to analyze the student 

productions as part of learning to help teachers in the 

evaluation process and more specifically in the context of class 

diagram construction activity. The contribution revealed in this 

work, is the proposal of a transformation method of class 

diagram into a graph.  To demonstrate this approach, an 

example of a model with teacher's diagram and student's 

diagram for qualifying the correspondence with the taxonomy 

of differences. Compared to existing model transformation 

method, the proposed method has improved more precisely 

transformation using a previously defined UML metamodel. 

Then we did represent and save the UML graphs (with the 

extension. Uml2) in XMI format to respect the current standard 

UML 2.x. 

The next goal is to compare the two UML graph, the 

comparison is akin to the models matching process. The 

matching consists at identifying relationships between several 

elements of graph, that is to say a set of mappings between two 

or more elements. Different techniques were tested in the areas 

of matching graphs, we want to explore such techniques to 

define an automatic or semi-automatic matching method, 

which takes as input graphs UML and returning as output a 

mapping of their matched patterns and their list of the 

differences. 

7. REFERENCES 
[1] Cowie, Bronwen, and B. Bell, A model of formative 

assessment in science education. Assessment in 

Education: Principles, Policy & Practice, vol. 6, no 1, p. 

101-116, 1999. 



International Journal of Computer Applications (0975 – 8887) 

Volume 95– No.21, June 2014 

41 

[2] C. Hadji, L’évaluation démystifiée. ESF, 2 édition. Pages 

126, 1999. 

[3] Bloom, Taxonomy of educational objectives: The 

classification of educational goals. Handbook I, cognitive 

domain. Longman, New York, 1956. 

[4] OMG, OMG Unified Modeling Language Specification, 

Version 1.5, March 2003, Object Management Group, 

Inc., Framingham, MA, <http://www.omg.org>, 2003.  

[5] Holt. J, UML for Systems Engineering: Watching the 

Wheels IET, Institution of Electrical Engineers, 2004, 

ISBN 0-86341-354-4. p.58. 

[6] OMG Unified Modeling Language (OMG UML) 

Superstructure, Version 2.3: May 2010. Retrieved 23 

September 2010. 

[7] Conte. D., Foggia. P., Sansone. C. and Vento. M, Thirty 

years of graph matching in pattern recognition. 

International Journal of Pattern Recognition and 

Artificial Intelligence, 18(3):265–298, 2004. 

[8] Sorlin. S and Solnon. C, "Reactive tabu search for 

measuring graph similarity." Graph-Based 

Representations in Pattern Recognition. Springer Berlin 

Heidelberg, 172-182, 2005. 

[9] Diestel, Reinhard; Graph Theory, Springer; 2nd edition, 

ISBN 0-387-98976-5, February 18, 2000.  

[10] Champin. P. A and Solnon. C, Measuring the similarity 

of labeled graphs. In Case-Based Reasoning Research 

and Development (pp. 80-95). Springer Berlin 

Heidelberg, 2005. 

[11] Pfaltz. J. L and Rosenfeld. A,. "Web 

grammars." Proceedings of the 1st international joint 

conference on Artificial intelligence. Morgan Kaufmann 

Publishers Inc., 1969. 

[12] P. Bottoni & M. Minas. Workshop on Graph 

Transformation and Visual Modeling Techniques. In 

ICGT ’02 : Proceedings of the First International 

Conference on Graph Transformation, pages 445–449, 

London, UK, 2002. Springer-Verlag. 

[13] H. X. Lin. Graph transformation and designing parallel 

sparse matrix algorithms beyond data dependence 

analysis. Sci. Program., vol. 12, no. 2, pages 91–100, 

2004. 

[14] M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. 

Kreowski, S. Kuske, D. Plump, A. Schurr & G. Taentzer. 

Graph transformation for specification and 

programming.Science of Computer Programming, vol. 

34, pages 1–54, 1999. 

[15] G. Rozenberg, editeur. Handbook of graph grammars and 

computing by graph transformation, volume 1: 

Foundations. World Scientific, Singapore, 1997. 

[16] R. Heckel, J.M. Kuster, G. Taentzer, Confluence of 

typed attributed graph transformation systems, in: A. 

Corradini, H. Ehrig, H.-J. Kreowski, G. Rozenberg 

(Eds.), Graph Transformation, First International 

Conference, ICGT 2002, Barcelona, Spain, October 7–

12, 2002, Proceedings, Lecture Notes in Computer 

Science, vol. 2505, Springer, Berlin, 2002, pp. 161–176. 

[17] Jon Whittle, Transformations and Software Modeling 

Languages: Automating Transformations in UML, 2002, 

(ISBN 978-3-540-44254-7). 

[18] RENSINK, Arend and KLEPPE, Anneke. On a graph-

based semantics for uml class and object 

diagrams. Electronic Communications of the EASST, 

2008, vol. 10. 

[19] KUSKE, Sabine, GOGOLLA, Martin, and 

KOLLMANN, Ralf, l. An integrated semantics for UML 

class, object and state diagrams based on graph 

transformation. In: Integrated Formal Methods. Springer 

Berlin Heidelberg, 2002. p. 11-28. 

[20] K. Hölscher, Paul Ziemann, Martin Gogolla, On 

translating UML models into graph transformation 

systems, Department of Computer Science, University of 

Bremen, Bremen, Germany Accepted 9 November 2005. 

 

IJCATM : www.ijcaonline.org 

http://en.wikipedia.org/wiki/Special:BookSources/0863413544
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://en.wikipedia.org/wiki/Special:BookSources/0387989765

