
International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

13

Microarrays Data Analysis for Cancer Disease on a

Cluster of Computers

Amal Khalifa, Ph.D
College of Computer & Information

Sciences
Princess Nora University

Riyadh, KSA

 Dina Elsayad
Faculty of Computer & Information

Sciences
Ain Shams University

Abbassyia, Cairo, Egypt

ABSTRACT

Clustering problem is one of the hottest research fields in

microarrays data analysis. In Clustering, a set of observations

are assigned into subsets (called clusters) such that

observations in the same cluster are similar in some sense.

One of the clustering approaches is based on the minimum

spanning tree (MST). The MST-based clustering techniques

consist of three main phases; MST construction, inconsistent

edges identification and clusters identification.

The CLUMP algorithm (Clustering through Minimum

spanning tree in parallel) is one of the MST-based clustering

algorithms, which have been enhanced in the iCLUMP

algorithm was improved using the cover tree data structure.

This paper presents another improvement called iCLUMP-2

to enhance the edge inconsistency measure employed by both

CLUMP and iCLUMP.

The performance of the implemented algorithm was tested on

a 45 nodes cluster using cancer microarrays data sets. The

results showed that the proposed algorithm outperformed both

CLUMP and iCLUMP providing better speedup and

efficiency. Furthermore the quality of cluster produced by the

iCLUMP-2 algorithm is much better that those produced by

both CUMP and iCLUMP.

General Terms

Bioinformatics, Microarrays data analysis, High performance

computing.

Keywords

Clustering, microarrays, cancer, parallel algorithm, minimum

spanning tree

1. INTRODUCTION
Bioinformatics is defined as the application of information

technology to the field of molecular biology in order to

manage the processing and the analysis of both genomic and

molecular biological data. Bioinformatics is a very rich filed

of research that includes so many areas such as: Genome

annotation, sequence analysis, Computational evolutionary

biology, Analysis of gene expression, Analysis of protein

expression, Prediction of protein structure, and so on [1].

The microarray is a chip (usually made of glass or silicon)

that assays large amounts of biological material using high-

throughput screening methods [2]. This is a technology that

allows studying the behavior of thousands of genes

simultaneously under different conditions. The type of the

microarray is determined based on the biological material

used on the microarray chip: DNA microarrays [3], MMChips

[4], Protein microarrays [5], Tissue microarrays [6], Cellular

microarrays [7], Chemical compound microarrays [8],

Antibody microarrays [9], and Carbohydrate arrays

(glycoarrays) [1].

The biological material in DNA microarrays is DNA

fragments, cDNA or oligonucleotides depending of chip

construction technology [10]. In fact, this type of Microarrays

is of special interest because it provides a useful tool in gene

expression analysis that has been used effectively to discover

the subsets of genes that are associated with occurrence of

certain diseases such as cancer. However, the analysis of the

microarrays data remains a big challenge because of the huge

volume of data it produces. As shown in Fig. 1 The analysis

process of microarrays data involves various computational

tasks such as extracting differentially expressed genes,

searching similar patterns of genes with a target gene, network

analysis, clustering, and component analysis [11].

The clustering process aims to organize genes such that genes

with similar expression patterns are grouped together to

identify biologically relevant groups of genes inferring a

common function or regulatory element [11].

A large number of clustering techniques have been proposed

to solve the clustering process for the purpose of gene

expression analysis. Generally speaking, clustering techniques

can be classified into Hard and fuzzy clustering. In hard

clustering each object belongs to only one cluster, while in

Fuzzy clustering (also called soft clustering) an object can

belong to more than one cluster with associated membership

level [12]. Hard clustering can be further categorized into a

number of subclasses including Hierarchical clustering

[13][14][15], partitional clustering [16], graph based

clustering [17] , and density-based clustering [18]. Many of

these clustering algorithms are based on parallel computations

because of the high dimensionality of the microarray data.

This paper presents a parallel Minimum spanning tree –based

clustering algorithm. The algorithm; iCLUMP-2, is actually

an enhancement over the CLUMP [19] in an attempt to

improve its clustering quality. Another improvement was

proposed previously by the authors in [20]

Figure 1. Computational tasks of microarrays data

analysis.

The remaining of the paper is organized as follows; section2

provides a deep literature review on the minimum spanning

tree (MST)-based clustering techniques. Section 3 provides an

illustration of the used methods. Section 4 shows the

experimental result. Finally section 5 shows the conclusion.

http://en.wikipedia.org/wiki/Hierarchical
http://en.wikipedia.org/wiki/Partition_of_a_set

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

14

2. RELATED WORK
Generally speaking the gene expression data can be clustered

in three ways [21]. First: genes clustering, similarly expressed

genes across the samples are grouped together, where the gene

function can be inferred. Second: samples clustering, the

samples that have similar expression across the genes are

grouped together. Third: Bi-Clustering (also called co-

clustering or two-way clustering), cluster the genes and

samples simultaneously based on their inter-relationship. In

other words, if the data is represented as a 2-D matrix, the

rows and the columns are clustered simultaneously where the

result is a sub matrix. Using bi-clustering, we can extract

genes that have similar behavior (co-express) under specific

conditions.

Graph based clustering methods attracted a special interest in

the field of gene expression analysis because of the intrinsic

similarity between the microarrays data and the matrix

representation of the adjacency information of a graph.

Among the proposed techniques, minimum spanning tree

(MST) based clustering has the advantage of the little impact

of the cluster boundary shape, since the algorithm does not

assume that data points are grouped around centers or

separated by a regular geometric curve. As shown in Fig. 2,

MST-based clustering algorithms consist of three main steps:

MST construction, inconsistent edges identification, and

finally the clusters are identified by removing the inconsistent

edges from MST.

Figure 2 MST-based clustering algorithm steps

In this case, Microarrays data are represented as a fully

connected undirected graph that consists of a set of N points

in Rd where N is the number of genes and d is the number of

samples. Using some distance measure; such as the Euclidian

distance, the distance between each pair of genes is calculated.

The resulting distance matrix is upper triangular matrix

because the distance between the ith gene and jth gene d(Gi,

Gj) is the same as the distance between the jth gene and ith

gene d(Gj, Gi). Furthermore, the distance d(Gi,Gi) is neglected

because it has no meaning to measure the distance between

the gene and itself. To construct the graph each gene is

represented as a vertex where each pair of genes is connected

by an edge whose weight is the distance between the two

genes. Now the MST can be constructed from the resultant

graph using either Kruskal or Prim algorithm [22].

The second phase of MST based clustering is the inconsistent

edges identification. Inconsistent edges are the edges that may

connect objects belonging to different clusters. The main

difference between various MST-based clustering algorithms

is the measure used to quantify edge inconsistency. One

approach to do this is to exclude the edges with the highest

weight [23]. That is, the removal of the longest edge results in

two clusters, the removal of the next longest edge results in

three clusters and so on. Sometimes the selection of these

inconsistent edges depends on some threshold value. So, the

clustering phase iteratively removes inconsistent edges from

MST, calculate the ratio between the intra-cluster distance and

inter-cluster distance and update the threshold value. This

process is repeated until the threshold value is maximum and

there are no edges to be deleted.

Although this approach has no specific requirements of prior

knowledge of certain parameters nor the dimensionality of the

data sets, its drawback resides in the fact that this edge

removal policy may lead to a partition without sufficient

evidence. To solve this problem, Zhong et al. proposed using

two rounds of minimum spanning trees [24]. According to

their approach two MSTs (T1 and T2) are constructed, then

merged to construct the final MST (T). The clustering process

works on the final T, where at least two edges must be

removed in each step of which at least one edge comes from

T1 and T2, respectively. This restriction provides more

evidence in each cut. A two-round-MST based clustering is

not affected by the sizes, shapes nor the densities of clusters

but, it is not robust to outliers and cannot detect overlapping

clusters.

Zhao and Zhang provided their yet robust MST-based

clustering algorithm [25]. This algorithm is based on the

direct clustering concept where the K needed clusters are

constructed without the MST construction. The main idea of

the direct clustering concept is implemented by selecting n-K

(K ∈ [2, K]) shortest edges from the edge- weight matrix; then

the nodes, linked by the same edge are combined together in a

cluster. Although this algorithm performance is effective, but

normally it’s difficult to know the number of clusters in

advance.

Xu et al. presented another MST-based clustering algorithm.

The main idea of this approach is that each cluster

corresponds to a sub-tree in the MST [26]. However the most

challenging problems facing this kind of clustering algorithms

is the limit on the size of the data sets they can effectively

handle. Therefore, Olman et al [19] presented a parallel MST

based clustering algorithm called CLUMP (clustering through

MST in parallel). This algorithm identifies dense clusters in a

noisy background and does not need prior information on the

clusters or even the numbers of clusters. However, their

parallelization effort focused only on the MST construction

phase, leaving a lot of chances for more enhanced

performance. Furthermore the clump algorithm still doesn’t

solve three types of clustering problems which are the well-

separated cluster, connected cluster and the relaxed well-

separated cluster.

Although, Wang et al [27] presented an algorithm that

achieved satisfactory clustering results regarding these

problems, the solution is still based on a sequential

implantation. Hence, in this paper we focus on enhancing the

performance of the CLUMP algorithm from two different

points of view. The iCLUMP [20] algorithm enhances the

parallel MST construction phase using efficient data structure

called Cover Tree. Second, iCLUMP-2 enhances the

clustering quality by using another metric for inconsistent

edges identification.

3. METHODS

3.1 CLUMP Algorithm
Just like the rest of MST-based clustering algorithms, the

CLUMP algorithm consists of three main steps as shown in

Fig. 2. The graph construction phase is done according to

Algorithm 1 in which the data is represented as a fully

connected undirected graph G. Then according to Algorithm

2, the graph is partitioned into n sub-graphs Gi each of size k

(k = number of vertices /n, if there is remaining vertices it’s

MST Construction

Inconsistent edges
identification

Cluster Identification

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

15

added to the last sub-graph). The sub-graphs are combined in

pairs (Gi , Gj) to construct a bipartite graph (Bij).

The number of the constructed sub-graphs and bipartite

graphs is proportional to n requiring (n (n-1)/2) processing

nodes to be working in parallel during the MST construction

phase. More specifically, n processing nodes will be

concerned with MST construction (Ti) for the sub-graphs Gi

while the rest of the processing nodes will construct MST

(Tij) for the bipartite graphs Bij. Then all the local MSTs are

merged into one graph from which the final MST (T) is

constructed providing the MST of the original graph. MST is

constructed using Prim [22] algorithm and Fibonacci heap

[22] data structure.

Thus, the complexity for constructing each sub-graph Gi can

be expressed in eq. 1, while eq. 2 describes the complexity for

each bipartite graph Bij.

O(|Ei|+|Vi| log(|Vi|)) (1)

O(|Vi||Vj|+(|Vi|+|Vj|) log(|Vi|+|Vj|)) (2)

The cluster identification phase is described in Algorithms 3

and 4. Notice that a cluster is identified by two edge indexes

(left index and right index) where each cluster is partitioned

recursively until the cluster size is less than or equal to the

minimum cluster size. In this case, an inconsistent edge is

defined as the one that has the max weight in the cluster

range.

3.2 iCLUMP Algorithm
Even after a parallel implantation is employed, the MST

construction phase is still considered the computational

bottleneck of the CLUMP algorithm [19]. Therefore, an

enhanced version of the CLUMP algorithm (called iCLUMP)

has been proposed in [20]. The algorithm focused on speeding

up the MST construction phase in CLUMP algorithm using

the cover tree data structure [28]. The cover tree of a set S of n

points is a leveled tree where each level is indexed by an

integer i which decreases as the tree is descended. It was

proved that the cover tree is constructed in O(c6 n log n)

requiring O(n) space and answers the nearest neighbor query

in O(c12 log n), where c is the expansion constant [29] and n

is the number of nodes in the graph. Furthermore, William et

al. succeed to use the cover tree to build the Euclidean MST

in O(n log n) [28].

Hence, the iCLUMP algorithm proposed to enhance the

nearest neighbor search step in the MST construction phase of

the original CLUMP algorithm using the Cover tree

(Algorithm 5) instead of the Fibonacci heap. More

specifically the Algorithm 5 will replace steps 4.4.1, 4.4.2 and

5 in Algorithm 2. Therefore, the complexity of the MST

construction will enhance (expressed in eq. 3 and, eq. 4) as

compared with their respective ones in eq.1 and eq.2.

O(|Vi|) (3)

O((|Vi|+|Vj|)) (4)

3.3 iCLUMP-2 Algorithm
The edge inconsistency measure is the same in both CLUMP

and iCLUMP. It is based on removing the longest edge

resulting in two clusters, the removal of the next longest edge

results in three clusters and so on. The removal of these edges

depends on some threshold selection. The drawbacks of this

strategy are the insufficient evidence, the difficulty of

threshold selection and the inability to solve a clustering

problem if one or more clusters are composed of sparse points

[27]. Therefore, we propose another algorithm iCLUMP-2

that focuses on enhancing the inconsistency measure used in

the CLUMP and iCLUMP algorithms. That is, to remove an

edge ‘i’ it must satisfy the following criteria [27]:

 Wi>Wi-1 and Wi>Wi+1

 Wi > me + q σe

Where me and σe represent respectively the mean and

standard deviation of all the edges that lie at most k

steps away from the edge, and q is a predefined

threshold. An inconsistent edge must simultaneously

satisfy the two criteria.

Hence, here we propose Algorithm 6 to replace Algorithm 3

in order to enhanc the cluster identification phase in both the

CLUMP and iCLUMP algorithm. Using this edge

inconsistency measure, the proposed algorithm iCLUMP-2

can successfully solve the well-separated cluster, connected

cluster and relaxed well-separated cluster problems [27].

Algorithm 1: Graph Construction

Input Data set of N points in Rd

Output G(V,E): undirected fully connected graph, where V is the vertices set and E is the edges set

Step 1: Add each point v as a vertex to V

Step 2: d(u, v) = the distance between each pair of points u and v
Step 3: Connect each pair of points (u, v) by edge e(u, v) where the weight of the edge is d(u, v)

Step 4: Add e(u,v) to E

Algorithm 2 : MST Construction

Input G(V, E): undirected fully connected graph

n: the partitions number

Output MST T of G(V, E)

Step 1: Calculate partition size K = |V|/n

Step 2: Partition G into n sub-graphs Gi = (Vi, Ei) each sub-graph of size K vertex

Step 3: If |V| is not evenly divided by K

Add the remaining vertices to the last sub-graph

End if
Step 4: Construct the MSTs for sub-graphs Gi and bipartite graphs Bij in parallel

Step 4.1: Assume that the distributed system consists of a set of processing nodes Pi (1 ≤ i ≤ n(n-1)/2)

Step 4.2: Distribute the work among the nodes :

Step 4.3: If Master Node:
Step 4.3.1: x = n

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

16

Step 4.3.2: For i = 0 to n-1

 Send Gi to Pi where i > 0
 For j = i+1 to n-1

 Send Gi and Gj to Px

 Increment x
 End for

 End for

Step 4.3.3: Construct MST T0 for G0
Step 4.3.4: Wait till all worker nodes send their MSTs

Step 4.3.5: Reduce and merge the whole MSTs in one graph M

 End if
Step 4.4: If Worker node:

Step 4.4.1: If receive a graph Gi

 Construct MST Ti
 Send Ti to the master node

 End if

Step 4.4.2: If receive a two graphs Gi and Gj

 Define a bipartite graph Bij = (Vi U Vj, Eij) where Eij ⊂ E is the set of edges between Vi and Vj

 Construct MST Tij for bipartite graph Bij

 Send Tij to the master node

 End if
 End if

Step 5: Construct MST T of M

Algorithm 3: Cluster identification

Input N: the number of edges in MST

min_size: cluster minimum size

Output C: the set of the data clusters where each cluster Ci is defined by edge ranges {Li, Ri}

Step 1: Initialization:
 let the first cluster C0 consists of the whole MST edges

 L0 = 1, R0 = N

Step 2: Call the routine Cluster_Partition (L0,R0,min_size)

Step 3: Build the hierarchical structure of the clusters in C

Step 4: Clean the clusters (C`)

Step 5: Rebuild the hierarchical structure of clusters in (C`)

Algorithm 4: “Cluster_Partition” Routine

Input Li, Ri: the left and right cluster ranges
 min_size: cluster minimum size

Output C: set of clusters

Step 1: Let max_index be the index of edge with maximum weight in range {Li+1, Ri}

Step 2: Let Left_valley contains all edges in the range {Li , max_index -1}

Step 3: Add the cluster Left_valley to C
Step 4: If size of Left_valley >= min_size

Step 4.1: Cluster_Partition(Li, max_index -1, min_size)

 End if
Step 5: Let Right_valley contains all edges in the range { max_index, Ri}

Step 6: Add the cluster Right_valley to C

Step 7: If size of Right_valley >= min_size
Step 7.1: Cluster_Partition(max_index , Ri, min_size)

 End if

Algorithm 5: Prim algorithm using Cover Tree

Input G(V,E): undirected fully connected graph, where V is the vertices set and E is the edges set

Output MST T(VT,ET)

Step 1: Construct the cover tree CT

Step 2: Initialization:
 Let VT consists of an arbitrary node from V

 VT = {X}

Step 3: While |VT| ≠ |V|
Step 3.1: Let p an arbitrary node from VT

Step 3.2: Let Q∞ points to the root level of CT
 Q∞ = C∞

Step 3.3: For i from ∞ to -∞

Step 3.3.1: Let Q be the children of the ith level of CT
 Q = {Children(q) : q ϵ Qi and q ∉ VT}

Step 3.3.2: Find the cover set and exclude the points from Q that may not contain the nearest neighbor
 Qi-1={ q ϵ Q: d(p,q) ≤ d(p,Q) + 2

i}

 End for

Step 3.4: Find the node q ϵ Q-∞ such that d(p,q) is minimum for all

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

17

Step 3.5: Add q to VT

Step 3.6: Add e(p,q) to ET
 End while

Algorithm 6: iCLUMP-2 Cluster identification

Input N: the number of edges in MST

q: threshold value
k: max step size

Output C: the set of the data clusters where each cluster Ci is defined by edge ranges {Li, Ri}

Step 1: Initialize Q to be an empty set

Q = {}

Step 2: Q1 = set of edges that satisfy inequality Wi>Wi-1 and Wi>Wi+1
Step 3: For each edge e in Q1

Step 3.1: Let Q2 contains all neighbors of e that are at most K steps away

m = mean of edges in Q2
var = variance of edges in Q2

If we > m + q * var

Add e to Q
End if

End for

Step 4: Get the clusters
Step 4.1: let the first cluster C0 consists of the edges from first edge till the first edge e in Q

 L0 = 1, R0 =(index of the first edge e) -1

Step 4.2: For each e in Q
Step 4.2.1: Li =(index of e) +1

Step 4.2.2: Ri = (index of the next e) -1

Step 4.2.3: Add the cluster Ci = {Li,Ri} to C
Step 5: Build the hierarchical structure of the clusters in C

Step 6: Clean the clusters (C`)

Step 7: Rebuild the hierarchical structure of clusters in (C`)

4. EXPERIMENTAL RESULTS
In this section, some experiments were conducted to evaluate

the performance of the proposed MST-based clustering

algorithms iCLUMP and iCLUMP-2 against the original

CLUMP. The algorithms were implemented using C++ with

MPI. The experiments were conducted on a 45 processing

nodes cluster. Each node is Intel ® Xeon® CPU E5620 @

2.40 GHZ. Six large microarrays datasets were used for

comparison, five of them are breast cancer datasets and one

ovarian cancer. These datasets are publicly available on the

GEO database (http://www.ncbi.nlm.nih.gov/) through their

accession numbers. Table 1 shows the accession number and

the size of each dataset.

Table 1: Microarrays datasets used for comparison

No. Accession No. Size (No. genes x No. samples)

1 GSE7390 22283 x 189

2 GSE2034 22283 x 256

3 GSE3494 22645 x 252

4 GSE6532 54675 x 88

5 GSE9195 54675 x 78

6 GSE6008 22283 x 104

The run times of the three algorithms were measured for the

six data sets using different numbers of processing nodes. The

number of nodes (p) depends on the number of partitions n

where p = n(n-1)/2 . Also the speedup (Sp) and efficiency

(Ep) were calculated in each case. The speedup is calculated

using eq. 5. The speedup ranges from 1 to p, reflecting how

much a parallel algorithm is faster than the sequential one.

When Sp reaches p it’s an ideal speedup case. However,

according to the Amdahl’s law (expressed in eq. 6) the

maximum expected speedup that can be achieved by N

processing nodes is limited by the sequential part time (1-P).

Sp = Ts/Tp (5)

 (6)

Where Ts is the runtime of the sequential algorithm

and Tp is the runtime of the parallel one. While tp

indicates the parallel portion of the algorithm and (1-

tp) is the sequential part of the algorithm.

Efficiency is another performance metric that can be

calculated using eq. 7. It ranges between zero and one to

estimate how the processors are well-utilized to solve the

problem in hand compared to how much effort is wasted in

communication and synchronization.

Ep = Sp/p (7)

Table 2 shows the runtime, the speedup and efficiency of the

three algorithms applied on the fourth data set with accession

number GSE6532. Where the measured sequential time of the

CLUMP algorithm was Ts = 283.47 seconds. As indicated

from the results, the iCLUMP-2 algorithm outperformed both

iCLUMP and the original CLUMP achieving better speedup

and efficiency for all the tested values of p. For example, at p

= 45 the achieved speedup was 11.44 compared to 9.21 and

7.51 the iCLUMP and CLUMP achieved respectively.

Although, this value seems to be too far from the ideal

speedup (Sp=45), the upper bound of Sp specified by

Amdahl’s law (eq. 6) wouldn’t exceed 12. That is, according

to the CLUMP formulation only 93% of the algorithm would

actually benefit from the parallel implantation pushing the

speedup away from the ideal one. Although, the Sp increases

as the number of processing nodes increase, the efficiency Ep

decreases due to the synchronization overhead. That is, as

discussed before, the parallel part of the CLUMP algorithm

focuses only on the MST construction phase (Algorithm 2)

assigning the partitioned graphs Gi to n processing nodes

while the rest of the nodes ((n-1)/2) work on the bipartite

http://www.ncbi.nlm.nih.gov/

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

18

graphs Bij. Since, the bipartite graph contains double the

number of nodes in any partition graph Gi, it needs double the

time to construct their MSTs. This inherent load imbalance

greatly affects the efficiency as the number of partitions

increase.

With the variety of the clustering algorithms, there is a strong

need for cluster assessment techniques to decide which

clustering algorithm is suitable than the others. One of these

assessment techniques is called the Silhouette index [36],

which is a confidence indicator for the membership of the

sample to a specific cluster. This method assigns to each

sample a quality measure called Silhouette width s(i) that is

expressed in eq. 8. When s(i) is close to 1, the sample has

been well-clustered, the value close to -1 implies that the

sample has been misclassified; while the value close to zero

indicates that the sample may be assigned to the nearest

neighbor cluster. At the cluster level, the cluster Silhouette Sj;

expressed in eq. 9, characterizes the heterogeneity and

isolation properties of a cluster. Thus, the global Silhouette

value GS; expressed in eq. 10, can be used to indicate the

quality of the clustering algorithm as a whole. In fact, the

greater the value of GS, better the clustering result achieved

by that specific algorithm.

s() =

 (8)

Sj =

 (9)

GS =

 (10)

Where a(i) is the average distance between the ith

sample and all of the samples included in the same

cluster, b(i) is the minimum average distance

between the ith sample and all the samples included

in other clusters, m is the number of samples in the

cluster, and c is the number of clusters.

The same experiment was repeated for all the datasets using

45 processing nodes. The results are listed in table 3, while

fig. 4 and fig. 5, show respectively the computed speedup and

efficiency for the three algorithms. The results show that the

iCLUMP-2 provides the best performance in terms of both

speedup and efficiency over all the datasets. Furthermore, the

4th and 5th data sets achieved a better performance over the

other datasets, because the cover tree data structure works

better on the data with high dimensionality [29].

Table 3 shows the global Silhouette values for the iCLUMP

and iCLUMP-2 algorithms. It is worthy to note that the

quality of clusters produced by CLUMP and iCLUMP is the

same because they actually employ the same edge

inconsistency measure. Nevertheless, the results show that the

clustering quality of iCLUMP-2 is much better than the other

two algorithms where the global Silhouette value GS reached

54.35 with approximately 85% improvement over both

CLUMP and iCLUMP.

Table 2: The runtime, speedup and efficiency of the CLUMP, iCLUMP and iCLUMP-2 applied on dataset with accession

number GSE6532

p

CLUMP iCLUMP iCLUMP-2

Tp Sp Ep Tp Sp Ep Tp Sp Ep

3 172.78 1.64 0.55 102.87 2.76 0.92 95.78 2.96 0.99

6 90.10 3.15 0.52 61.11 4.64 0.77 56.04 5.06 0.84

10 80.42 3.52 0.35 46.93 6.04 0.60 41.72 6.79 0.68

15 53.45 5.30 0.35 39.92 7.10 0.47 35.53 7.98 0.53

21 48.43 5.85 0.29 37.08 7.64 0.36 31.67 8.95 0.43

28 43.98 6.45 0.23 32.82 8.63 0.31 27.06 10.47 0.37

36 40.00 7.09 0.20 31.23 9.08 0.25 25.15 11.27 0.31

45 37.73 7.51 0.17 30.79 9.21 0.20 24.78 11.44 0.25

Table 3: The speedup, efficiency and GS of the CLUMP, iCLUMP and iCLUMP-2 when applied on 6 different datasets using

45 processing nodes

No. Ts

CLUMP iCLUMP iCLUMP-2

Sp Ep GS Sp Ep GS Sp Ep GS

1 68.39 4.34 0.1 24.23 5.29 0.12 24.23 6.01 0.13 32.54

2 58.67 5.30 0.11 17.34 5.54 0.12 17.34 5.88 0.13 26.45

3 96.81 5.50 0.12 30.47 6.43 0.14 30.47 6.73 0.15 42.78

4 283.47 7.51 0.17 42.78 9.21 0.20 42.78 11.44 0.25 50.36

5 412.69 10.43 0.23 47.98 11.18 0.23 47.98 13.25 0.29 58.89

6 64.82 5.77 0.13 51.45 7.52 0.17 51.45 8.17 0.18 65.34

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

19

Figure 4. The speedup of the three algorithms CLUMP, iCLUMP and iCLUMP-2 on 45 processing nodes.

Figure 5. The Efficiency of the three algorithms CLUMP, iCLUMP and iCLUMP-2 on 45 processing nodes.

5. CONCLUSIONS
This paper presented another improvement over the iCLUMP

algorithm providing lower complexity and higher clustering

quality for microarrays datasets. Although, the iCLUMP

algorithm successfully used the cover tree data structure to

reduce the complexity of the MST construction phase from

O(|Ei|+|Vi| log (|Vi|)) to become O(Vi log Vi), the proposed

algorithm iCLUMP-2 successfully reduced the runtime with

more cluster quality by employing another inconsistent edge

measure other than the longest edge approach. Using a

number of cancer microarrays data sets, the experimental

results showed that iCLUMP-2 outperformed both CLUMP

and iCLUMP algorithms in terms of speedup and efficiency.

For example, on a cluster of 45 processing nodes, the speedup

reached 11.44 compared to 9.21 and 7.51 achieved by the

iCLUMP and CLUMP respectively. In addition, iCLUMP-2

enhanced the clustering quality of both CLUMP and iCLUMP

by approximately 85%.

6. REFERENCES
[1] Aluru, S. Handbook of computational molecular biology.

CRC Press, 2006.

[2] Culf, A.S. and Cuperlovic-Culf, M. and Ouellette, R.J.

Carbohydrate microarrays: survey of fabrication

techniques. OMICS: A Journal of Integrative Biology

2006; 10(3): 289-310.

[3] Schena, M. and Shalon, D. and Davis, R.W. and Brown,

P.O. Quantitative monitoring of gene expression patterns

with a complementary DNA microarray. Science 1995;

270(5235): 467-470.

[4] Meenakshisundaram, K. and Carmen, L. and Michela, B.

and Diego, D.B. and Rosaria, V. and Gabriella, M.

Existence of snoRNA, microRNA, piRNA characteristics

in a novel non-coding RNA: x-ncRNA and its biological

implication in Homo sapiens. Journal of Bioinformatics

and Sequence Analysis 2009; 1(2): 31-40.

[5] Stoevesandt, O. and Taussig, M.J. and He, M. Protein

microarrays: high-throughput tools for proteomics.

Expert Review of Proteomics 2009; 6(2): 145-157.

[6] Camp, R. L. Charette, L. A. Rimm, D. L. Validation of

Tissue Microarray Technology in Breast Carcinoma.

0

2

4

6

8

10

12

14

1 2 3 4 5 6

Sp
e

e
d

u
p

Dataset

CLUMP

iCLUMP

iCLUMP2

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6

Ef
fi

ci
e

n
cy

Dataset

CLUMP

iCLUMP

iCLUMP2

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

20

LABORATORY INVESTIGATION 2000; 80(12):

1943-1949.

[7] Chen, D.S. and Davis, M.M. Cellular immunotherapy:

Antigen recognition is just the beginning. Springer

seminars in immunopathology 2005; 27(1): 199-127.

[8] Ma, H. and Horiuchi, K.Y. Chemical microarray: a new

tool for drug screening and discovery. Drug discovery

today 2006; 11(13): 661-668.

[9] Rivas, .A. and arc a-Villadangos, . and oreno-

Pa , . and Cru - il, P. and me -Elvira, J. and Parro,

V. A 200-Antibody Microarray Biochip for

Environmental Monitoring: Searching for Universal

Microbial Biomarkers through Immunoprofiling.

Analytical Chemistry 2008; 80(21): 7970-7979.

[10] Li, S. and Li, D. DNA microarray technology and data

analysis in cancer research. World Scientific Pub Co Inc,

2008.

[11] Yang, Y. and Choi, J.Y. and Choi, K. and Pierce, M. and

Gannon, D. and Kim, S. BioVLAB-Microarray:

Microarray Data Analysis in Virtual Environment. IEEE

Fourth International Conference on eScience, 2008, 159-

165.

[12] D. Dembele and P. Kanstner. Fuzzy C-means method for

clustering microarray data. Bioinformatics 2003; 19(1):

973-980.

[13] Ivan G. Costa, Francisco de A.T. de Carvalho and

Marcilio C.P. de Souto. Comparative Analysis of

Clustering Methods for Gene Expression Time Course

Data. Genetics and Molecular Biology 2004; 27(4): 623-

631.

[14] Carlos Cotta, Pablo Moscato. A memetic-aided approach

to hierarchical clustering from distance matrices:

application to gene expression clustering and phylogeny.

Biosystems 2003; 72(1): 75-97.

[15] Sudip Seal, Srikanth Komrina, Srinivas Aluru. An

optimal hierarchical clustering algorithm for gene

expression data. Information Processing Letters, 2004;

39(3): 143-147.

[16] C.M. Bishop. Neural Networks for Pattern Recognition.

Oxford Univ.Press, 1995.

[17] Kanungo, S. and Sahoo, G. and Gore, M.M. A Co-

Clustering Technique for Gene Expression Data Using

Bi-Partite Graph Approach. International Conference on

Bioinformatics and Biomedical Engineering 2010; 1-5.

[18] De Bin, R. and Risso, D. A novel approach to the

clustering of microarray data via nonparametric density

estimation. BMC bioinformatics 2011; 12(1): 49-56.

[19] Olman, V. and Mao, F. and Wu, H. and Xu, Y. Parallel

clustering algorithm for large data sets with applications

in bioinformatics. IEEE/ACM Transactions on

Computational Biology and Bioinformatics 2009; 6(2):

344-352.

[20] Elsayad, D. Khalifa, A. Khalifs, M.E, El-Horbaty, E.-S.

An improved parallel minimum spanning tree based

clustering algorithm for microarrays data analysis. 8th

International Conference on Informatics and Systems

(INFOS), May 2012; 66-72.

[21] Kerr, G. and Ruskin, H.J. and Crane, M. and Doolan, P.

Techniques for clustering gene expression data.

Computers in biology and medicine 2008; 38(3): 283-

293.

[22] K.H. Rosen. Handbook of Discrete and Combinatorial

Mathematics. CRC Press, 1999.

[23] Jana, PK and Naik, A. An efficient minimum spanning

tree based clustering algorithm. Proceeding of

International Conference on Methods and Models in

Computer Science 2009; 1-5.

[24] Zhong, C. and Miao, D. and Wang, R. A graph-

theoretical clustering method based on two rounds of

minimum spanning trees. Pattern Recognition 2010;

43(3): 752-766.

[25] Zhao, W.L. and Zhang, Z.G. An Improved Algorithm for

Clustering Gene Expression Data Using Minimum

Spanning Trees. Applied Mechanics and Materials 2010;

29(1): 2656-2661.

[26] XY. Xu, V. Olman, and D. Xu. Clustering Gene

Expression Data Using a Graph-Theoretic Approach: An

Application of Minimum Spanning Tree. Bioinformatics

2001; 18(4): 526-535.

[27] Wang, G.W. and Zhang, C.X. and Zhuang, J. and Yu,

D.H. Clustering based on sequential representation of

minimum spanning tree. International Conference on

Wavelet Analysis and Pattern Recognition (ICWAPR),

2011.

[28] William B. March and Parikshit Ram and Alexander G.

Gray. Fast Euclidean minimum spanning tree: algorithm,

analysis, and applications. In Proceedings of KDD 2010;

603-612.

[29] D. Karger and M. Ruhl. Finding nearest neighbors in

growth restricted metrics. Proceedings of the 34th

Annual ACM Symposium on Theory of Computing

(STOC) 2002; 741–750.

IJCATM : www.ijcaonline.org

