
International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

1

UML based Test Case Generation Methods: A Review

 Neha Pahwa Kamna Solanki
 M.Tech Student Assistant Professor
 University Institute of Engg and Technology University Institute of Engg and Technology
 M.D University, Rohtak, India M.D University, Rohtak, India

ABSTRACT
Testing guarantees the quality of software to be developed in

terms of presence of errors. A difficult part of software testing

entails the generation of test cases. A good test case should

have the quality to cover more features of test objective. There

are number of methods for test case generation. The use of a

model to describe the behavior of a system is a proven and

major advantage to test. In this paper, various test case

generation techniques based on UML (Unified Modeling

Language) are explained. The focus will be on effective use of

UML techniques and test-case generation in order to make

suitable executions.

General Terms
Software Testing: Software Testing is any process or activity

aimed at evaluating a system or attribute or capability of a

program and determining through the purpose to find that

whether it satisfies or meets the specified requirements or not.

Keywords

Test case; test case generation; UML Diagrams

1. INTRODUCTION
The evolution of computer-based systems and products in the

current scenario of globalization is derived from software

which is one of the most important technologies and has

grown from being a mere problem solving tool, a lot is yet to

be done on the development of quality software that performs

the right job at the right time. It is here that software

engineering intends to provide a structured framework for

building high quality software [1].It is with this intention that

the Software Development Life Cycle (SDLC) is framed,

which is a series of steps that are to be followed in an order to

produce efficient software which is cheaper . Amongst the

different steps in SDLC, software testing is a very important

yet a mandatory step, which ensures the proper working of the

software.

For evaluating a system or attribute or capability of a program

software testing is the capable process and also for

determining through the purpose to find that whether it

satisfies or meets the specified requirements or not. In simple

words testing is executing a system in order to discover any

errors gaps or missing requirements in contrary to the actual

requirements desire output[2]. Software testing consists of

following steps: design of test cases, preparing the test data,

execution of program with test data, and the last but not the

least comparing the result with that of test case. Design or

generation of test cases is a challenging part.

To pen down entire coverage to the application and test all

possible combinations in the application the user can be

helped by test cases. A test case is a pair consisting of test data

to be input to the program and the expected output. Whereas a

test suite is a collection of test cases that are grouped for test

execution purposes. Test case generation plays a vital role in

the engineering of test harnesses. In particular, specification-

based or black-box test case generation is a mainstream

approach, in which test cases are generated according to

information derived from the specification without the need to

know the implemented code. Another approach for test case

generation is white box testing in which testing of

implemented code is done. Generating test cases early helps

test engineer to find ambiguities and inconsistencies in the

requirements specification and design documents [3]. The test

case generation or the process of designing test is the first and

the most important process in software testing [4].

The various types of test case generation techniques are

random approaches, goal- oriented technique, specification-

based techniques, sketch diagram based techniques and source

based techniques[5]. UML diagrams derive test cases in

Sketch diagram based techniques. The UML diagrammatic

technique is commonly used in the software design phase.

Many diagrams are used in generating a set of test cases, such

as use case diagram, activity diagram, class diagram and state

chart diagram[6]. Model-based testing which uses UML

(Unified Modeling Language) design specifications for test

case generation overcomes the shortcomings that the system

state information is very difficult to identify, either from the

requirement specifications or from the code, and has emerged

as a promising testing method.

2. RELATED WORK
H.S Hong et al. presented a specification-based approach to

class testing using UML state diagrams. They proposed a

transformation method from UML state diagrams into flow

graphs and showed that conventional flow analysis techniques

can be applied to test case generation from UML state

diagrams. Using this transformation, they flatten the

hierarchical and concurrent structure of states and broadcast

communication while preserving both control and data flow in

UML state diagrams. The resulting set of test cases provides

the capability of checking that classes are correctly

implemented against specifications written in UML state

diagrams testing whether class implementations established

the desired control and data flow specified in the specification

[7].

Aditya P. Mathur et al. provides a new program execution

based approach to generate test data for a given branch in a

program is presented in this paper. The method dynamically

switches to a path that offers relatively less resistance to

generation of an input to force execution through it to reach

the given branch. the method is general and applicable to

programs with general non linear expressions. Being

execution based, it can handle different programming

language features. It is suitable for automation and has

potential to provide a practical solution to the test data

generation problem [8].

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

2

 A. Bertomated et al. proposed a method to generate test cases

using the UML use case and interaction diagrams. It basically

aims at integration testing to verify that the pretested system

components interact correctly. They use category partition

method and generate test cases manually following the

sequences of messages between components over the

sequence diagram [9].

M. Sarma et al. presented an approach of generating test cases

from UML design diagrams. A UML use case diagrams

transformed into a graph called use case diagram graph

(UDG) and sequence diagram into a graph called the sequence

diagram graph (SDG) and then integrating UDG and SDG to

form the System Testing Graph (STG). The STG is then

traversed to generate test cases for system testing. They have

used state-based transition path coverage criteria for test case

generation. Having stored all essential information for test

generation in the STG, they now traverse the STG to generate

test cases. The Test Suite Generation algorithm, traverse the

STG at 2 levels. The traversal begins with the UDG. This

traversal visits all use cases and generate test cases for

detecting initialization faults. At level 1, if a use case

initialization faults occur then it was assume faults in its

operation and therefore no need to apply test cases

corresponding to the operation. At level 2 traversal, starting

from a use case node the corresponding SDG was visited and

test cases were generated to detect operational faults [10].

Chen et al. proposed a technique in which they use UML

activity diagrams as design specifications, and consider the

automatic approach to test case generation. Instead of deriving

test cases from the UML activity diagram directly, they

presented an indirect approach which selects the test cases

from the set of the randomly generated test case according to a

given activity diagram. In this method, they first randomly

generate abundant random test cases. Then, by running the

program with these test cases, they will get the corresponding

program execution traces. Last, by comparing these traces

with the activity diagram according to the specific coverage

criteria, they can prune some redundant test cases and get a

reduced test case set which meets the test adequacy

criteria[11].

D. Samanta et al, proposed an approach for generating test

cases using UML 2:0 activity diagrams. In this, they

considered a coverage criterion called activity path coverage

criterion. Generated test suite following activity path coverage

criterion aims to cover more faults like synchronization faults,

faults in a loop than the existing work [12].

R. Mall et al. proposed a novel technique, which generates the

test cases from the UML use case diagrams and sequence

diagrams in which test requirements and coverage criteria are

derived from UML models[13]. It covers all the specification

requirements.

Chandran et al. proposed a model to generate test cases for the

object diagrams. In this methodology various steps were

evolved. Object diagrams were constructed, stored and object

are named. The tree was build using these object names which

further applied with crossover operator of GA. These new

generation trees are converted into binary tree and traversed

using DFS technique and this gave all the valid, invalid and

termination sequences for a given application [14].

 A comparative evaluation of test cases generated from

different UML diagrams is done to understand the roles of

different UML diagrams in test case generation. To achieve

this goal, test cases that are generated from UML state-charts

and sequence diagrams are used both at unit and integration

level testing, and their fault revealing capabilities are

compared. This experiment is designed from the perspective

of a researcher, and is carried out as a case study (single

project) by [15].

R. Mall et al., presented a technique that enhances the

integration testing of classes by accounting for all possible

states of interacting objects. They proposed a new

intermediate representation named state-activity-diagram

(SAD). In SAD, the control flow information during the

execution of a use case is shown through a combination of

state transitions and activities. It is derived by synthesizing

UML state-chart diagrams of different objects involved in a

particular use case with an activity diagram. The states are

extracted from the state-chart diagrams and control flow is

extracted from the activity diagram. To handle concurrent

execution, some new types of nodes have been introduced

[16].

P. Samuel et al., proposed a method to generate test cases by

applying dynamic slicing on UML sequence diagrams. In this,

they describe how dynamic slicing can be used for test case

generation in the object oriented context [17].

 Y. Wang et al., proposed a methodology to generate the test

case from a design level class diagram and an interaction

diagram. A car rental example is used to illustrate the test case

generation [18] .

H.S Hong et al., presented a specification-based approach to

class testing using UML state diagrams. They proposed a

transformation method from UML state diagrams into flow

graphs and showed that conventional flow analysis techniques

can be applied to test case generation from UML state

diagrams [7].

 A.V.K. Shanthi et al. presented the test case generation by

means of UML Sequence diagram using Genetic Algorithm in

which best test cases are optimized. Their approach is

significant to identify location of a fault in the

implementation, thus reducing testing effort. Moreover this

method inspires the developers to improve the design quality,

find faults in the implementation early, and reduce software

development time [19]. L. Wang et al., gave an approach to

generate test case from UML activity diagrams based on

Gray-Box method. It demonstrates a systematic method to

generate test cases directly from UML activity diagrams, and

many parts of this method could be automated [20].

J. Offutt et al. has introduced new integration-level analysis

and testing techniques that are based on design descriptions of

software component interactions. There are relatively few

formal testing criteria that are based on design descriptions.

The techniques in this paper are innovative in that they utilize

formal design descriptions as a basis, and have practical value

because they can be completely automated from the widely

used design notation of collaboration diagrams. Tools already

exist for constructing collaboration diagrams, and tools for

performing the analysis and testing described here can be built

with relative ease. This paper also includes an algorithm for

instrumentation of a program that is implemented from

collaboration diagrams. The instrumentation will ensure that

tests satisfy the formal testing criteria developed in this

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

3

research, and also help ensure traceability from the design

artifacts to the code [21].

JA Whittaker described a clearer view of some of software

testing’s inherent difficulties in his paper, testing can be done

in four phases: Modeling the software’s environment,

Selecting test scenarios, Running and evaluating test scenarios

and Measuring testing progress. The first and most important

thing to be done is to recognize the complex nature of testing

and take it seriously. The author advised to hire the smartest

people, help them get the tools and training they need to learn

their craft, and listen to them when they tell about the quality

of the software [22].

J.Offutt et al. introduces a new technique for generating tests

from formal software specifications. Formal specifications

represent a significant opportunity for testing because they

precisely describe the functionality of the software in a form

that can be easily manipulated by automated means. This

research addresses the problem of developing formalizable,

measurable criteria for generating tests from specifications.

Results from applying the criteria and process to a small

example were presented. This case study was evaluated using

Atac to measure decision coverage, and the technique was

found to achieve a high level of coverage. It was also used to

successfully detect a large percentage of faults. These results

indicate that this technique can benefit software developers

who construct formal specifications during development [23].

Alexander Pretschner et al. presented their continuing efforts

in specification based test sequence generation and its

embedding in an incremental Software development process.

The class of systems is neither restricted to finite nor to

deterministic ones: recursive data types or real numbers are

handled in exactly the same way as finite enumeration types

(with the problem of finding appropriate instantiations); non-

determinism is handled by the backtracking mechanisms in

CLP (with the problem of properly formulating verdicts).

Experience with our industrial partners shows that customized

management systems for (regression) testing are at least as

important as a systematic generation of test cases; this is,

however, not the focus of our current work. In order to assess

the scalability of our CLP based approach, we are carrying out

an industrial size case study with a large German

manufacturer of smart cards; first results give us some reason

to be optimistic but show that more intelligence in the process

of search is necessary [24].

Umar Farooq et al. this research surveys and analyzes

empirical studies on evaluation of testing techniques and

proposes a uniform classification technique and identify asset

of factors which helps in selecting appropriate testing

technique. Results indicate that there is no perfect technique

and every technique has its weaknesses, but combination of

different techniques is more effective solution to increase

reliability in Software [25].

Saru Dhir had provided a brief explanation of the testing UML

2.0. The UML 2.0 provides the different techniques and tools

for generating the test cases. In this paper, the focused on the

different techniques used for generating test cases that

minimize the number of test cases in behavioral and Structural

diagrams. Behavioral elements from UML 2.0 can be used to

specify the dynamic nature of test cases. These include

interaction, state chart and activity diagrams. Structural

elements includes: class diagram, object diagram and

implementation diagrams [26].

Hajar Homayouni et al. represented two different

classification frameworks for the existing automatic test case

generation approaches, and also have a brief look at each one.

They described how to evaluate generated test cases, and

introduce a classification of evaluation approaches. The

results show that different approaches should be selected

based on types of applications, features of software we want

to test, technique’s complexity, and other features. Although

there have been lots of researches on automatic test case

generation problem, but for real world systems more

researches are still needed[27].

Zhanqi Cui et al. In this paper, an aspect-oriented approach for

modeling and integrating crosscutting concerns as sequential

and parallel aspect models based on UML activity diagrams is

presented. They add lightweight extensions to standard

activity diagrams with stereotypes and tag values. An aspect

model is designed as pairs of point cut model and advice

model with extended activity diagrams. Advice models are

woven into primary models according to corresponding point

cut models. Two case studies have been conducted to

demonstrate the feasibility of our approach. Concerning the

future work, they will focus on verifying integrated models

against system requirements and testing system

implementation against the verified models. They also intend

to build an aspect model repository of typical crosscutting

concerns. The aspect models can then be reused in different

applications [28].

Raluca Lefticaru et al. presented an approach for automatic

generation of test data, using state diagrams and genetic

algorithms. The strategy is simple, the derivation of the fitness

function is straightforward and so could be easily adopted in

industrial software development. Furthermore, experimental

evidence show that the test data obtained can cover difficult

paths in the machine and a slightly different design of the

fitness function can be used for specification conformance

testing [29].

3. UNIFIED MODELING LANGUAGE
The Unified Modeling Language (UML) is a collection of

languages for specifying, visualizing, constructing, and

documenting the artifacts of software systems [30]. Here

complex systems are designed and modeled through a

collection of views of a model. The UML defines nine

separate graphical diagrams to specify and design software.

UML has a broad spectrum of usage. It can be used for

business modeling, software modeling in all phases of

development and for all types of systems, and general

modeling of any construction that has both a static structure

and dynamic behavior. For achieving these wide-ranging

capabilities, the language is defined to be extensive and

generic enough to allow for the modeling such diverse

systems, avoiding the too specialized and too complex [31].

The overview of UML has the following different parts:

Views: Views show different aspects of the system that

modeled. It is not a graph, but an abstraction consisting of a

number of diagrams. Only by defining a number of views,

each showing a particular aspect of the system, can a complete

picture of the system be constructed. To link the modeling

language to the method/process chosen for development the

views are used.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

4

Diagrams: The graphs that describe the contents in a view are

called diagrams. UML has nine different diagram types that

are used in combination to provide all views of the system.

Model elements: The concepts used in the diagrams are

model elements that represent common object-oriented

concepts such as classes, objects, and messages, and the

relationships among these concepts including association,

dependency, and generalization. A model element is used in

several different diagrams, but it always has the same meaning

and symbol.

General mechanisms: General mechanisms provide extra

comments, information, or semantics about a model element;

they also provide extension mechanisms to adapt or extend the

UML to a specific method/process, organization, or user [31].

3.1 UML Based Test Case Generation

Methods
A popular approach, use of UML models for test case

generation is discussed in [32] [33] [34] [35] [36] and[37].

Most of the approaches of UML-based methods for test case

generation are originally developed for automatic generation

of test cases, but they also help to think in a way of applying

these methods to hardware-based system test case generation

and come up with a methodological approach. Some

standardized models for the generation of test cases are

required for automation of tests. Scenarios and use cases

which are the elements of UML do not only feed

requirements, but they also build the bases for testing [35].

The use case models are transferred to behavioral diagrams,

these diagrams are refined according to method specifications

and these refined diagrams are used to generate system-level

test cases. Test cases for black-box testing that is functional

behavior of the system [32][35][36][37] are generated through

these methods.

3.1.1 Test Case Generation Using State Machines
By considering theirs preconditions, post conditions,

extensions and variations use cases are generated. The

scenarios that the use cases contain are transferred to state

diagrams (or state machines). These state machines have

transitions specifying pre and post conditions and message

transfers between states and test cases gathered from these

state diagrams [32]. A similar approach to system testing is

advised. Again, use case diagrams and use cases are generated

and these diagrams are converted to state diagrams. The state

diagrams are converted to a defined diagram named as usage

graph. A directed graph with a start node and an end node is a

usage graph and usage states between them. Usage states are

connected to each other with transitions which are actually

user actions. Usage models are used in generating test cases

by executing the transitions (user actions) between the usage

states. Furthermore, white-box testing issues are discussed

which are concentrated on structural behavior of software

systems which is out of scope of this thesis work [35].

3.1.2 Test Case Generation Using Activity

Diagrams
The approach described, tests the system from the user’s

viewpoint. First, use cases are gathered from requirements,

which are then going to be used to build activity diagrams.

Then, activity diagrams are converted to interaction flow

diagrams (IFD), which can be defined as an intermediate step

to generate test plans. IFD, as it can be understood from its

name, reduce the activity diagrams by subtracting

intermediate steps (for example interaction between system

modules) between user interaction steps. At the end, IFDs are

converted to interaction flow graphs (IFG) which are based on

a tree structure with no loops in order to have distinct

scenarios for the corresponding use case which can be also

defined as test cases. To ensure that each cycle is executed

once [33] then this test tree is executed based on a Depth-

First- Search algorithm.

3.1.3 Test Case Generation Using Sequence

Diagrams
The approaches having use UML sequence diagrams, which

include the information of interaction of system with actors, in

order to generate test cases. The approach defines a special

diagram gathered from sequence diagram to clearly define the

scenario paths and uses the diagram to cover the user-system

interactions. The approaches in [18] and [19] includes the

black-box testing and white-box testing issues together,

considering the structural behavior and functional behavior of

the system under test and does not advice a method to reduce

the whole testing issue to a functional system testing

process[36][37].

3.1.4 Test Case Generation Using Use Cases
For test case generation from use cases another approach is

discussed here. The approach is based on the rule for test

cases that each scenario or instance of a use case should

correspond to a test case and this approach brings the

advantage of preventing the consequences of incomplete,

incorrect and missing test cases as other approaches also

provide. The approach offers first building a system boundary

diagram depicting the interfaces between the software being

tested and the individuals, systems and other interfaces;

secondly use cases are generated for all actors defined in

system boundary diagram. At the end, test cases are generated

in a way that there exist at least two test cases for one use case

which are successful execution of test case and unsuccessful

execution of test case. Clearly, much more test cases can be

generated for a use case for exceptions and alternative courses

[34].

Furthermore, there are also approaches for functional testing

for SPL. A set of software intensive systems which shares a

common and managed set of features satisfying the specific

needs of a particular market segment or mission is called an

SPL.A large number of studies has been done for SPL testing

which are covering all the testing levels in the lifecycle of

software and unit testing to functional testing. The most

important ones of those works about this thesis work’s scope

are functional testing approaches. A lot of methods are

discussed, but mostly studies have been done using UML

diagrams which have already been discussed above [38].

4. METHODOLOGY FOR TEST CASE

GENERATION

The method for generating test cases from different diagrams,

include number of activities. This is a process. The main

activities are shown in Fig 1.

4.1 Construction of Intermediate Model
Several strategies have been reported to generate test cases

using a variety of models. However, in many cases the test

cases based on more than one model type. In such cases, it

becomes necessary to first construct an integrated model

based on the information present in different models.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

5

4.2 Generation of Test Scenarios
The test cases which are generated from models are present in

the form of sequences of test scenarios. Test scenarios specify

a high level test case rather than the exact data to be input to

the system. For example, in the case of FSMs, it can be the

sequence in which specifies states and transitions must be

undertaken to test the system-called a transition path. The

sequences of different transition labels along the generated

paths form the required test scenarios. Similarly the message

paths can be generated from the sequence diagrams. Also

shown are the exact sequence messages in which the classes

must interact for testing the system.

4.3 Test Generation
The difficulty of generating tests from a model depends on the

nature of the model. Models that are useful for testing usually

possess properties making test generation effortless and

automatable frequently. For some models, all that is required

is to go through combinations of conditions described in the

model, which require simple knowledge of combinatory.

There are a variety of constraints on what constitutes a path to

meet the criteria for tests. It includes having the path start and

end in the starting state, restricting the number of loops or

cycles in a path, and restricting the states that a path can visit.

 Fig. 1 Activities of Test Case Generation

4.4 Automatic Test Case Execution
In certain cases the tests can even be performed manually.

Manual testing is labor-intensive and time consuming.

However, for manual execution the generated test suite is

usually too large. Moreover, a key point in UML based

technique is the frequent regeneration and re-running of the

test suite whenever the underlying model is changed.

Accordingly for achieving the full potential, automated test

execution is required. Usually by using the available testing

interface for the software, the abstract test suite is translated

into an executable test script. Automatic test case execution

also involves test coverage analysis so that the tests generation

step may be fine-tuned or different strategies may be tried out.

4.5 Test Coverage Analysis
Each test generation method targets certain specific features of

the system to be tested. Using test coverage analysis the extent

to which the targeted features are tested can be determined

using test coverage analysis. The important coverage analysis

based on a model can be the following: all model parts (or test

scenarios) coverage is achieved when at least once the test

reaches every part in the model.

Important test coverage required based on UML models can

be the following: path coverage, message path coverage,

transition path coverage, scenario coverage, dataflow

coverage, polymorphic coverage, inheritance coverage. When

the test executes every scenario identifiable in the model at

least once then scenarios coverage is achieved.

5. CONCLUSION
In this paper, an explanation of testing techniques based on

UML has been provided. The UML provides different

techniques and tools for generating the test cases. In this

paper, the focus is also on the different techniques used for

generating test cases that can minimize the number of test

cases. The study shows that UML can be used to specify the

dynamic and static nature of test cases. These include

interaction, state-chart, use case, class and activity diagrams.

In future, there is a plan to develop a new technique for

generating test cases from UML.

6. REFERENCES
[1] R. Pressman, Software Engineering: A Practitioner's

Approach.: Mc-GrawHill, 2005.

[2] tutorialpoint. [Online].

www.tutorialspoint.com/software_testing

[3] Karambir et al, "survey of sotware test case generation

techniques," International journal of advanced research

in computer science and software engineering, 2013.

[4] I Sommerville, Software Engineering. England: Addison-

Wesley, 2000.

[5] Prasanna, M. et al, "A survey on automatic test case

generation," Acad. open Internet J., 2005.

[6] Jirapun Daengdej, "A Test Case Generation Process And

technique," Academic Journals Inc., 2010.

[7] H.S Hong, Y.G Kim,S.M Cho, D.H Bae, S.D Cha, "Test

Case Generation from UML state Diagrams," , Korea,

1999.

[8] Neelam Gupta, AdityaP.Mathur,Marry lon Soffa,

"Generating Test Data for Branch Coverage," ,

Pittsburgh, 2000.

[9] F. Basanieri, A. Bertomated ,E. Marchetti, A. Rinoline,

G. Lombardi, "An Automated Test Strategy Based on

UML Diagrams," , Sweden, 2001.

[10] M. Sarma, R. Mall, "Automatic Test Case Generation

from UML Models," , 2007.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

6

[11] Chen Mingsong, Qiu Xiaokang, and Li Xuandong,

"Automatic Test Case Generation for UML Activity

Diagrams".

[12] Debasish Kundu, Debasis Samanta, "A Novel Approach

to Generate Test Cases from UML Activity Diagrams,"

vol. 8, no. 3, 2009.

[13] R. Mall et al., "Test Case Generation Based on Use case

and Sequence Diagram".

[14] Prasanna M., Chandran K.R, "Automatic Test Case

Generation for UML Object Diagrams using Genetic

Algorithm ," vol. 1, 2009.

[15] Jeff Offutt, Aynur Abdurazik, Andrea Baldini,Supaporn

Kansomkeat, "A Comparative Evaluation of Tests

Generated from Different UML Diagrams".

[16] Santosh Kumar Swain, Durga Prasad Mohapatra, Rajib

Mall, "Test Case Generation Based on State and Activity

Models," 2010.

[17] Philip Samuel, Rajib Mall, "A Novel Test Case Design

Technique Using Dynamic Slicing of UML Sequence

Diagrams," vol. 2, no. 1, 2008.

[18] Yiwen Wang, Mao Zheng, "Test Case Generation from

UML Models".

[19] A.V.K. Shanthi, G. Mohan Kumar, "Automated Test

Cases Generation from UML Sequence Diagram," ,

Singapore, 2012.

[20] L. Wang, J. Yuan, X. Yu, J. Hu, X. Li, and G. Zheng,

"Generating Test Cases from UML Activity Diagram," ,

2004.

[21] J. Offutt, A. Abdurazik, "Using UML Collaboration

Diagrams for Static Checking and Test Generation," ,

USA, 2000.

[22] James A Wittaker, "What Is Software Testing? And Why

Is It So Hard?," vol. 17, no. 1, 2000.

[23] J.Offutt,Y.Xiong,S.Liu, "Criteria for Generating

Specification based Tests".

[24] Alexander Pretschner, Heiko L¨otzbeyer, Jan Philipps,

"Model Based Testing in Evolutionary Software

Development," 2001.

[25] U. Farooq, Evaluating Effectiveness of Software Testing

Techniques with Emphasis on Enhancing Software

Reliability , 2012.

[26] Saru dhir, "IMPACT OF UML TECHNIQUES IN TEST

CASE GENERATION," vol. 2, no. 2, 2013.

[27] Mohammad Reza Keyvanpour, Hajar Homayouni,

Hossein Shirazee, "Automatic Software Test Case

Generation: An Analytical Classification Framework,"

vol. 6, no. 4, 2012.

[28] Zhanqi Cui, Linzhang Wang, Xuandong Li, "Modeling

and Integrating Aspects with UML Activity Diagrams".

[29] Raluca Lefticaru, Florentin Ipate, "Automatic State-

Based Test Generation Using Genetic Algorithms".

[30] (1999, June) Object Management Group. [Online].

www.omg.org/uml/

[31] Jim A., Ila N., UML 2 AND THE UNIFIED PROCESS.:

Pearson, 2006.

[32] Fröhlich, P., Link, J., "Automated Test Cases Generation

from Dynamic Models," , Berlin, 2000.

[33] Heinecke, A., Brückmann, T., Griebe, T., Gruhn, V.,

"Generating Test Plans for Acceptance Tests from UML

Activity Diagrams," , 2010.

[34] W.E. Perry, Effective Methods for Software Testing.:

Wiley, 2006.

[35] Riebisch, M., Philippow, I., Götze, M., "UML-Based

Statistical Test Case Generation," , Berlin, 2003.

[36] Sarma, M., Kundu, D., Mall, R., "Automatic Test Case

Generation from UML Sequence Diagrams," , 2007.

[37] Sarma, M., Mall, R., "System Testing using UML

Models," , 2007.

[38] Lamancha, B.P., Usaola, M.P., Velthius, M.P, "Software

Product Line Testing: A Systematic Review," , 2009.

IJCATM : www.ijcaonline.org

