
International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 15, June 2014

1

Parallel Implementations for Solving Shortest Path

Problem using Bellman-Ford

Gaurav Hajela

Department of Computer Science and Engineering
Maulana Azad National Institute of Technology

Bhopal, India

Manish Pandey
Department of Computer Science and Engineering

Maulana Azad National Institute of Technology
Bhopal, India

ABSTRACT

In this paper, different parallel implementations of Bellman-

Ford algorithm on GPU using OpenCL are presented. These

variants include Bellman-Ford for solving single source

shortest path (SSSP) having two variants and Bellman-Ford

for all pair shortest path (APSP) problems. Also, a

comparative analysis of their performances on CPU and GPU

is discussed in this paper.Write-write consistency in Bellman-

Ford is overcome using synchronization mechanism available

in OpenCL and by explicit synchronization by modifying the

algorithm.An average speed up of 13.8x for parallel bellman

ford for SSSP and an average speed up of 18.5x for bellman

ford for APSP is achieved by proposed algorithm.

Keywords

Shortest path problem , OpenCL , Graphical processing

unit(GPU).

1. INTRODUCTION
Single source shortest path problem finds application in large

domains of scientific and real world. Common applications of

these algorithms are in network routing [6], VLSI design,

robotics and transportation, they are also used for directions

between physical locations like in google maps. Here all the

applications mentioned generally involve positive weights but

some applications are there where weights can be negative

like currency exchange arbitrage and some other areas where,

edge represents something other than merely distance between

two entities. In such application areas Bellman-Ford algorithm

can be used. Bellman-Ford algorithm[12] is applicable on

graphs with negative weights and can also detect negative

cycles where majority of algorithms fail. Bellman-Ford is also

used in wireless sensor networks and other ad hoc networks as

distributed Bellman Ford [7] can be used there. Distributed

Bellman-Ford is also used as first ARPANET routing

algorithm in 1969 [14].

Most of the above application areas specified are real time

applications and need results in a quick time so the

performance of algorithm need to be improved so that it

consume less power and time. Parallel computing on GPU is

one of the technologies which is used for high performance

computing at a reasonable cost and considerable speed up of

performance. GPU is currently used for a variety of purposes

apart from graphical processing and gaming. That’s why GPU

is referred as General Purpose Graphical programming unit

(GPGPU)[10] as it provides high performance computing can

be programmed using standard frame work like OpenCL and

CUDA. OpenCL [11] is a framework which is for all GPU

while, CUDA is meant specifically for NVIDIA GPUs only.

Thus, OpenCL is used for GPU implementation due to its

portability and open-ness.

1.1 Bellman Ford Algorithm
Consider a graph G(n,E,V) where, n is the number of vertices,

E is the set of edges and V is the set of vertices. Adjacency

matrix representation of graph is used here, as it is well suited

for GPU. Here, Cost is the adjacency matrix for graph.

Initially, Dist will contain direct edges from the source ‘s’.

Afterwards, Dist[v] of ‘kth’ iteration means distance from ‘s’

to ‘v’ going through no more than ‘k’ intermediate edges.

Finally, after successful completion of algorithm Dist will

contain the shortest path to all the vertices ‘v’ in V from

source ‘s’. For each edge(u,v) in set E, Relax(u,v) is called

(n-1) times. So, Relax() is called E(n-1) times, thus majority

of time of the algorithm is spent in this procedure. The

algorithm for Bellman Ford is illustrated in Algorithm 1.

Algorithm BellmanFord (s,Dist,Cost,n)

{

1. for i=1 to n do

2. Dist[i] = Cost[s,i];

3. End for

4. for k=1 to n-1 do

5. for each (u,v) in E do

6. Relax(u,v)

7. End for

8. End for

}

Relax (u,v)

{

1. if Dist[v]> Dist[u] + Cost[u,v]

2. Dist[v] = Dist[u] + Cost[u,v]

}

Algorithm 1: Algorithm for Bellman-Ford.

Time complexity of above algorithm if adjacency matrix

representation is used will be O(n3) .

All pair shortest path using bellman ford algorithm could also

be calculated if above algorithm for all the vertices in the

graph is called.

For each s in V

 Call BellmanFord(s,Dist,Cost,n);

End for

Organization of the paper: In Section 2, the previous

modified algorithms have been discussed along with the

improvements made on Bellman Ford algorithm by different

authors. In Section 3, identified parallelism in standard

Bellman Ford algorithm and other write-write conflict issues

in parallelization of the algorithm are presented. In Section 4,

proposed parallel algorithm along with OpenCL kernel is

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 15, June 2014

2

explained for both SSSP and APSP. Comparative analysis and

results are shown in Section 5.

2. RELATED WORK
Bellman Ford is introduced by Richard Bellman and Lester

Ford Jr. in 1958 since then several modifications and

improvements were made on this algorithm. One of the

famous modifications include Yen’s modification in 1970

[5].Other modifications include topological scan algorithm for

Bellman Ford [2] in 1993, which outperforms the standard

algorithm in most of the cases. A hybrid implementation of

Bellman Ford and Dijkstra’s algorithm is given which is

asymptotically better than Bellman Ford in [7]. In 2001, A.S.

Nepomniaschaya presented a STAR procedure for Bellman

Ford on a parallel system with vertical data processing

(STAR- machine) [3] and managed to reduce the complexity

to O(n2). In 2011, Michael J. Bannister and David Eppstein

[1] proposed a randomized variant of algorithm which is

improved by a factor of 2/3 over Yen’s modification(1970)

[4,5]; they have termed this speedup as randomized speedup.

Several parallel implementations on GPU for SSSP

algorithms were proposed. Aydın Buluc, John R. Gilbert and

Ceren Budak [8] have proposed parallel implementations for

SSSP and APSP using CUDA. A CUDA implementation for

Bellman_Ford is given in [13] and by making algorithm

suitable for parallelism they have got speedup of about 10x.

Recently, Andrew Davidson [9] have presented several work

efficient methods for SSSP problems and got considerable

speedup over serial implementation and other traditional GPU

implementations also.

In this paper parallel implementation of Bellman Ford for

SSSP and APSP using OpenCL are proposed and comparison

between implicit synchronization mechanism provided by

OpenCL with explicit synchronization is done and also, a

comparative analysis of speedup with serial implementations

has been given as well.

3. IDENTIFIED PARALLELISM IN

 BELLMAN FORD ALGORITHM AND

 OTHER ISSUES
There is inherent parallelism in standard Bellman Ford

algorithm which lies in Relax() procedure. If Relax() is called

for all the edges in E in parallel then performance can be

increased considerably. For this lets re-write Relax(u,v) as:

Relax(u,v)

{

Distk[v] = min (Distk-1[v], Distk-1[u] + Cost[u,v])

}

As kth value of Dist depends on k-1 iteration value so, outer

loop can’t be removed. All the parallelism which is possible is

in Relax() procedure. Two levels of parallelism are possible

here :

First: In kth iteration value of Distk[v1] and Distk[v2] doesn’t

depends on each other for any v1 and v2 in set V.

Second: For all the u in set V Distk-1[u] + cost[u,v] can be

calculated in parallel as this also doesn’t depends on each

other. The only issue arises here is how to calculate minimum

of all these ‘n’ values. So rather than calculating the minimum

which will increase the time of algorithm its better to

synchronize the write operations on Distk[v] for all ‘u’ such

that minimum value resides in Distk[v] at the and of Relax()

procedure. This issue is referred as write-write consistency.

Another thing which is a vital factor in algorithm is space

used for Dist matrix. As there are n vertices in G and in every

iteration previous values are accessed so Dist[2][n] is used

instead of Dist[n-1][n]. The row to be accessed will be

adjusted according to the iteration, which is explained in

detail in section 4.

4. PARALLEL BELLMAN FORD FOR

SHORTEST PATH PROBLEMS

4.1 Single Source Shortest Path (SSSP)

Problem
In SSSP shortest path from a source say, ‘s’ to all other

vertices in a graph are calculated. For parallel implementation

host algorithm is given in Algorithm 2 and kernel algorithm in

Algorithm 3. As there are n vertices in graph and graph is

represented by adjacency matrix there can be n*n possible

pairs of (u,v) where u and v ϵ V.

So here for SSSP workgroup of size {n,n} if formed so that

each work item will represent a pair (u,v). And kernel will be

called for all the work items in work group in parallel.The

outer loop of n-1 iterations is implemented on host side

algorithm.

 Algorithm OpenCL_Parallel_BellmanFord_SSSP

 {

1. For k from 1 to n-1 do

2. For all v in V such that (u,v) belongs to E in

parallel do

3. Call KERNEL_BELLMAN_SSSP(Cost,Dist,k)

4. End for

5. End for

}

Algorithm 2: Algorithm for host code of Bellman

Ford for SSSP

As there will be n*n work items invoked in parallel the id of

work item which will be unique for every work item in a work

group is captured. Initially, first row of Dist will contain the

direct edges from source ‘s’; in first iteration values are

updated in second row. In next iteration second row values are

Dist1; and Dist2 are updated in first row. So odd iteration will

read from first row (Dist[0][v]) and update in second row

(Dist[1][v])) and opposite will be the case for even iteration.

KERNEL_BELLMAN_SSSP(Cost,Dist,k)

{

 u = get_global_id(0)

 v = get_global_id(1)

 if k is odd then

 // synchronization is done here

 Dist[1][v] = min(Dist[0][v], combine(Dist[0][u] +

Cost[u][v]))

 if k is even then

 // synchronization is done here

 Dist[0][v] = min(Dist[1][v], combine(Dist[1][u] +

Cost[u][v]))

}

Algorithm 3: Algorithm for kernel of Bellman Ford for

SSSP

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 15, June 2014

3

Combine function is simply to perform the addition of two

values it takes in 2 arguments and return the addition if both

are not infinity and returns infinity if any one of the value is

infinity. As all the values will be of integer type, INT_MAX

is considered as infinity.

Synchronization: As explained above, synchronization is

needed to bring write-write consistency, two types of

synchronizations have been used:

First: OpenCL provides some synchronization

mechanism for both host side and kernel side. Here barrier

function (CL_GLOBAL_MEM_FENCE) is used on kernel

side so as to order the read and write operations to and from

global memory [13].

Second: Here, work items with id (*, v) where *

will vary from 0 to n-1 will have write-write conflict for a

particular ‘v’. Work items with different value of ‘v’ for same

‘k’ won’t have any conflict and wont effect each other and

need not to be synchronized. But Barrier function can’t be

applied to selected work items in a work group so all work

items need to wait on barrier function which will result in

unnecessary slowness of algorithm. This drawback is

overcome using explicit synchronization mechanism using a

array for every ‘v’.

4.1.1 Explicit synchronization mechanism for

 SSSP implementation
All the work items having id (*, v) will share a array in local

memory of size n. And value of v will also vary from 0 to n-1

Each work item before comparing its values with Dist[][v]

value will check whether the work item with id one less than

it has updated its value or not. Thus they all will write in a

particular sequence and remove write-write conflict in

Bellman-Ford.So using this only work items having same ‘v’

will wait for synchronization so overall time used in

synchronization will be reduced.

So, host code will be same for this implementation also except

one more matrix will be passed which is Syn[n][n] used for

synchronization and kernel algorithm is shown in Algorithm

4. Initially all the elements of the matrix Syn will be zero. In

addition to Syn all the work items will have one more variable

temp which is in private memory for every work item.

KERNEL_BELLMAN_SSSP_SYN(Cost,Dist,Syn,k)

{

 u = get_global_id(0)

 v = get_global_id(1)

 temp = combine(Dist[0][u] + Cost[u][v])

 if k is odd then

 Untill (Syn[v][u-1] == 1)

 Dist[1][v] = min(Dist[0][v], temp)

 if k is even then

 Untill (Syn[v][u-1] == 1)

 Dist[0][v] = min(Dist[1][v], combine(Dist[1][u] +

Cost[u][v]))

 }

Algorithm 4: Algorithm for kernel of Bellman Ford for

SSSP using explicit synchronization

Here, there is no restriction on combine operation, so work

items will wait only to update the value and will take less time

as its has only one compare operation to do.

4.2 All Pair Shortest Path (APSP)

 Problem
For APSP using Bellman Ford 3D work group is used as

SSSP is applied for all the vertices in graph to calculate

APSP. So previous work group size will be increased by a

factor ‘n’ and final work group size becomes {n,n,n}. Host

algorithm is same but instead of calling kernel for a single

source here it is called for all the vertices. So n*n*n work

items will execute in parallel. Host algorithm for APSP is

shown in Algorithm 5 and kernel algorithm is shown in

Algorithm 6.

 Algorithm OpenCL_Parallel_BellmanFord_APSP

{

1. For k from 1 to n-1 do

2. For all v in G such that (u,v) belongs to G in parallel

do

3. Call KERNEL_BELLMAN_APSP(Cost,Dist,k)

4. End for

5. End for

 }

Algorithm 5: Algorithm for host code of Bellman Ford for

APSP

As for every source 2*n matrix is needed for Dist and here

every vertex will be source for its n*n threads for computing

APSP .So overall 2*n*n matrix will be needed in combine for

all vertices. First two rows will be for vertex number ‘0’ next

will be for ‘1’ and so on. So a variable offset is used to

point to correct row corresponding to vertex ‘s’ which is

acting as source.

KERNEL_BELLMAN_APSP(Cost,Dist,k)

{

 u = get_global_id(0)

 v = get_global_id(1)

 s = get_global_id(2)

 offset = s*2*n

 if k is odd then

 // synchronization is done here

 Dist[1][v] = min(Dist(offset + [0][v]),

combine(Dist(offset + [0][u]) + Cost[u][v]))

 if k is even then

 // synchronization is done here

 Dist[0][v] = min(Dist(offset + [1][v]),

combine(Dist(offset + [1][u]) + Cost[u][v]))

}

Algorithm 6: Algorithm for kernel of Bellman Ford for

APSP

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 15, June 2014

4

Table 1: Speedup comparison with respect to serial

implementation on specified CPU for SSSP.

5. COMPARATIVE ANALYSIS AND

 RESULTS
All the OpenCL parallel implementations are tested on

following GPU and CPU:

AMD Radeon HD 6450(GPU): 2 Compute units, 625 MHz

clock, 2048MB Global Mem., 32KB Local Mem., 256 work

group size on a system having Intel Core i5 CPU 650 @ 3.2

GHz and 2048MB RAM with AMD APP SDK v2.8.

Implementations are done using using Visual Studio 2010

with OpenCL SDK 1.2. Serial implementations are tested on

the above specified CPU. All other implementations are tested

on randomly generated graphs having edge weights between -

10 to 10 where bellman ford has successfully detected

negative cycles if present in graph. Rest of the results are

taken on graphs without negative cycle in which only kernel

execution time is considered.

Comparative analysis of execution time of different variants

of algorithm is shown in Figure 1 and Figure 2. For parallel
implementations only kernel execution time is considered.

Speedup of different variants for SSSP and APSP is shown in

Table 1 and Table 2 respectively.

Our explicit synchronization mechanism provide a speedup of

1.58 over synchronization mechanism provided by OpenCL.

Table 2: Speedup comparison with respect to serial

implementation on specified CPU for APSP.

NO. OF

VERTICES

PARALLEL_CPU PARALLEL_GPU

64 4.218 12

128 5.103 14.933

256 5.292 17.406

512 6.100 22.101

1024 7.300 26.300

AVERAGE 5.602 18.548

6. CONCLUSION AND FUTURE WORK
Among all the variants of Bellman Ford parallel

implementation on GPU for SSSP and APSP has got

considerable speed up of 13.8x and 18.5x respectively.We

will look for hybrid implementation of parallel Bellman Ford

on CPU and GPU by carefully partitioning the algorithm and

dividing the work on CPU and GPU in a proportion so both

take equivalent amount of time and also apply some

optimization techniques on parallel implementations like

vectorization to get further speedup.

NO. OF

VERTICES

PARALLEL

_CPU

PARALLEL

_EXPLICIT

_SYN (CPU)

PARALLEL

_GPU

64 3 4 12

128 2.451 3.619 10.857

256 3.449 4.535 8.827

512 3.683 6.442 16.389

1024 3.755 6.718 17.378

2048 3.671 6.875 17.611

AVERAGE 3.335 5.365 13.843

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 15, June 2014

5

Figure 1: Comparative analysis of execution time of different variants of Bellman Ford for SSSP

Figure 2: Comparative analysis of execution time of different variants of Bellman Ford for APSP.

7. REFERENCES
[1] Michael J. Bannister and David Eppstein , “Randomized

Speedup of the Bellman Ford Algorithm” in

arXiv:1111.5414v1 [cs.DS] 23 Nov 2011.

[2] Andrew V. Goldberg, Tomasz Radzik , A Heuristic

improvement of the Bellman Ford algorithm. Appl. Math.

Lett. Vol. 6, No. 3, pp. 3-6, 1993.

[3] A.S. Nepomniaschaya, An Associative Version of the

Bellman-Ford Algorithm for Finding the Shortest Paths

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 15, June 2014

6

in Directed Graphs, V. Malyshkin (Ed.): PaCT 2001,

LNCS 2127, pp. 285–292, 2001.

[4] J. Y. Yen., An algorithm for finding shortest routes from

all source nodes to a given destination in general

networks. Quarterly of Applied Mathematics 27:526-530,

1970.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.

Stein. Problem 24-1: Yen's improvement to Bellman

Ford. Introduction to Algorithms, 2nd edition, pp. 614-

615. MIT Press, 2001.

[6] R. Bellman. On a routing problem. Quarterly of Applied

Mathematics 16:87-90,1958.

[7] Yefim Dinitz , Rotem Itzhak , Hybrid Bellman-Ford-

Dijkstra Algorithm.

[8] Aydın Buluc , John R. Gilbert and Ceren Budak ,

“Solving Path Problems on the GPU” , Journal Parallel

Computing Volume 36 Issue 5-6, June,2010 Pages 241-

253.

[9] Andrew Davidson , Sean Baxter, Michael Garland , John

D. Owens , “Work-Efficient Parallel GPU Methods for

Single-Source Shortest Path “ in International Parallel

and Distributed Processing Symposium, 2014

[10] Owens J.D., Davis, Houston, M., Luebke, D., Green, S.,

“GPU Computing”, in: Proceedings of the IEEE,

Volume: 96 , Issue: 5 , 2008.

[11] A. Munshi, B. R. Gaster, T.G. Mattson, J. Fung, D.

Ginsburg, “OpenCL Programming Guide”, Addison-

Wesley pub., 2011.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.

Stein, Introduction to Algorithms, Second Edition. The

MIT Press, Sep. 2001.

[13] Kumar, S.; Misra, A.; Tomar, R.S. ,”A modified parallel

approach to Single Source Shortest Path Problem for

massively dense graphs using CUDA” in Computer and

Communication Technology (ICCCT), 2011 2nd

International Conference on , vol., no., pp.635,639, 15-

17 Sept. 2011.

[14] Atul Khanna, John Zinky , “The Revised ARPANET

Routing Metric”, in 1969 ACM.

IJCATM : www.ijcaonline.org

