
International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 14, June 2014

25

ADA: Applications Define ASIP

Manoj Kumar Jain
Associate Professor

Department of Computer Science
Mohanlal Sukhadia University, Udaipur, India

ABSTRACT

Interest in Application Specific Instruction set Processors or

ASIPs has increased significantly. Sincere efforts have been

put in improving ASIP design methodologies in industry as

well as in academia. By the close observation and analysis of

these approaches, it was found that though the existing

approaches are focusing on making the process automatic and

providing better GUI to help the designers, core technique

used in deciding the suitable architecture (processor and

memory) is based on design space exploration. This

exploration is done with the help of estimators. Such

estimators are either simulator based or scheduler based. This

study identifies that both types of techniques are very far from

the ideal dream technique in which applications should have

defined the suitable architecture configuration and these

techniques are becoming unsuitable in current scenario. Each

problem has a solution hidden in it. This scenario motivated

us to propose a novel and revolutionary ASIP design

technique making the dream true. The Proposed technique

does not focuses on design space exploration, it focuses on

directly defining processors for given applications rather than

searching for suitable configuration in a jungle of

configurations can be suggested by the architecture design

space.

General Terms

Computer Architecture, Processor Design, Processor Design

Technology.

Keywords

Application Specific Instruction Set Processor (ASIP),

Embedded System Design, Real-time systems, Design Space

Exploration.

1. INTRODUCTION
General Purpose Processors or GPP are not suitable for most

of the real-time systems. Strict timing constraints are defined

for such systems. Real-Time Operating System (RTOS) will

not allow to proceed the applications further as violation of

these constraints lead to a major disaster in such systems.

Applications Specific Integrated Circuits or ASICs provide a

solution to meet out such constraints but at the cost of

rigidness. Due to this rigidness, ASICs also become

unsuitable for such systems. Application Specific Instruction

set Processors or ASIPs provide a solution in such a case

which gives performance better than GPPs and also provide

the flexibility which is not provided by ASICs.

Jain et al. surveyed ASIP design methodologies, and

identified five key steps as application analysis, design space

exploration, instruction set generation, software tool set

generation and hardware synthesis. They have also classified

the existing techniques. The most challenging step is design

space exploration as this decides the processor and memory

configuration suitable for given applications. Most of the

approaches estimate performance and other parameters using

various estimates to know how a particular configuration will

behave. Various configurations (processor + memory) are

chosen one by one and estimates are generated with the help

of estimators. The main estimator is the performance

estimator which estimates the performance of a selected

configuration. Performance estimation is usually performed

using a simulator based technique. In this technique, a

simulation model of architecture based on selected features is

generated and the application is simulated on this model to get

the performance estimates.

As simulator based performance estimators are usually slower

(as simulations are slower) and the design space explored is

also limited due to limitations of the tools used in this

approach, another technique emerged as scheduler based

approach. In this approach, a retargetable estimator is used to

estimate the performance of various configurations.

All design space exploration techniques use a parameterized

architecture model. Day by day, the number of parameters and

the range of these parameters is increasing. It is leading into

exploding the architecture design space. Now it is not a

surprise to explore millions of configurations. None of the

existing techniques is suitable in the present scenario.

We are presenting a novel technique to handle this situation.

The proposed technique will be very useful and will prove to

be a revolution in the processor design techniques.

2. RELATED WORK
An Application Specific Instruction set Processor (ASIP) is a

processor designed for one particular application or for a set

of applications usually from a particular domain. ASIPs are

also known as domain specific processors and custom

processors. Since the input applications are limited in number,

it gives an opportunity to exploit special characteristics of

given application(s) to meet out the desired performance, cost

and power consumption requirements. ASIPs are balance

between two extremes, namely, General Purpose Processors

(GPPs) and Application Specific Integrated Circuits (ASICs).

ASIPs provide the required flexibility which is not provided

in ASICs, and they meet out the performance requirements

which cannot meet out by GPPs.

Jain et al. surveyed the state of art in ASIP design

methodologies, and identified five key steps as application

analysis, design space exploration, instruction set generation,

software tool set generation and hardware synthesis [1-3].

According to this survey a typical approach is shown if Figure

1.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 14, June 2014

26

Fig. 1: ASIP Design Methodology

An application written in high level language is analyzed

statically and dynamically. The analyzed information is stored

in a suitable format and is used in the next steps of ASIP

design. All approaches consider a parameterized architecture

model for design space exploration. Information generated

from the application analysis step, input design constraints

and the defined architecture design space are used by the

explorer to select suitable architecture or suggest a set of

possible architectures. These architectures can be further

studied in detail to get the desired architecture configuration.

The selection process typically can be viewed to consist of a

search technique over the design space driven by a

performance estimator. The instruction set is generated either

by synthesis or by selection technique. A retargetable

compiler is used to generate code. The hardware is

synthesized using the ASIP architecture starting from a

description in VHDL/ Verilog using standard synthesis tools.

Design Space Exploration: A typical design space explorer

takes application parameters extracted in the application

analysis as input. It picks up one configuration from the

suggested designs in the architecture design space. An

estimator will be core part of the design space explorer. This

estimator generates estimates for the selected configuration.

Based on this estimate and the given design constraints, it is

decided that the configuration under evaluation is a candidate

or not of the possible designs to be suggested. There is a

search controller which will try to trim some options in the

design space. An explorer with performance estimator is

shown in Figure 2. Examples of such approaches are [4-15].

Explorer

Fig. 2: Design Space Explorer

Performance Estimation: Performance estimation is done in

two ways, namely, simulator based and scheduler based

techniques. In the simulator based approach, a simulation

model of architecture based on the selected features is

generated and the application is simulated on this model to get

the performance. Such an approach is shown in Figure 3.

Fig. 3: Simulator based performance estimator

It is important to note that such techniques need and fully

dependent on retargetable compilers and retargetable

simulators. There are mainly two problems associated with

such approaches. Practically it is not possible to get

retargetable compilers and retargetable simulators which can

address a reasonably large architecture design space

(consisting of processor and memory configurations).

Hypothetically, even if it is assumed (which is not true) that

such tools are available then also the problem is the time

required to perform simulation. So this technique which is

being used by most of the researchers in industry and

academia who are working on ASIP design is becoming

unsuitable for design space exploration. Though a lot of work

is done on automation of the method, developed better GUIs

for the designers, their core technique which is simulator

based is becoming obsolete.

Considering the problems associated with the simulator based

approaches, another technique proposed is the scheduler based

approach. In this approach, the problem is formulated as a

resource constrained scheduling problem with the selected

architecture components as the resources and the application

code is scheduled to generate an estimate of the cycle count.

Profile data is used to obtain frequency of each operation.

Such an approach is shown in Figure 4. Examples of such

approaches are [16-19].

Fig. 4: Scheduler based performance estimator

Application(s) and

Design Constraints

Application Analysis

Code Synthesis Hardware Synthesis

Architecture Design Space Exploration

Processor Description Object Code

Design constraints Application Parameters

Architecture Design Space

Suggested architecture(s)

Performance

Estimator
Search Control

Application(s) in C

Retargetable Compiler

Object Code

Retargetable Simulator

 Trace Data

Architecture

Description

Architecture

Description

Application(s) in C

Retargetable Simulator

 Trace Data

Profiler

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 14, June 2014

27

Since this technique is a bit newer and very few details of

architectures are included is the model. So it is not possible to

explore large design space using this approach.

Considering problems associated with all the existing

approaches of design space exploration and their unsuitability

for deciding a suitable architecture configuration in present

scenario, some other novel and revolutionary technique is

deadly required. An attempt is being made to present such a

technique in this study.

3. ADA (APPLICATIONS DEFINE ASIP)

A NOVEL ASIP DESIGN TECHNIQUE

Fig. 5. ADA: Applications Define ASIP [New Technique]

In this Section, a novel ASIP design technique is presented.

The idea is simple but its implementation is challenging. After

sometime, when the existing techniques will be absolutely

unsuitable due to reasons already mentioned in the paper, this

new technique will play a vital role in the coming years.

Proposed technique is shown in Figure 5.

3.1 Application Analysis
Application or a set of applications need to be analyzed,

putting more efforts. One can get advantage of small number

of applications which is given to user while designing ASIP.

Even short time to prototype and short time to market

constraints allow us to perform detail analysis of applications.

Though this step is already a part of ASIP design technique

but it is not being used in a manner it is supposed to be used

Application to be analyzed statistically (without running it,

just analyzing application and its code), and dynamically by

running it on the host machine as there are many parameters

which can be purely extracted from the application only

without getting any details of the target architecture. Some

parameters which can be extracted directly from the

application and has important role in deciding processor

configuration are as follows.

 P1 number and types of operation performed and

proportion to the total number of operations .

 P2 data types used and the sites required to store

them in memory.

 P3 register needs (locally and globally)

 P4 parallelism available in the applications

 P5 pattern of operations executed frequently

 P6 memory reference trace

3.2 Define Processor and Memory

Configuration
Parameter P1 will decide the kind of operations to be

performed by the ALU of the proposed ASIP. This is in

conjunction with parameter P5 will help in deciding the

instructions and corresponding hardware to perform this

operation will be provided in the ALU . Parameter P2 in

conjunction with P6 will decide almost all the features of

memory to be synthesized. Parameter P3 will decide the

structure and size of the register file. Parameter P4 will decide

the parallelism in the proposed ASIP. If the parameters list is

closely observed, it seems that all the parameters except P3

(register needs) hardly depends on the processor architecture.

Interestingly, this parameter can also be found out without

knowing details of proposed ASIP architecture. Following sub

section describes how that is done.

3.3 Estimating the Register Needs
We have earlier studied how to register needs can be

extracted. Estimates generated by our proposed approach were

validated using standard tool sets for vast range of processors

eg. a RISC processor (ARMTTDMI), a VLIW (Trimedia TM-

1000), and a processor with register windows (LEON). Due to

limitation of the space and the work is already reported [17],

is not being reproduced the same here.

The register needs estimated in this way help in many folds.

One obvious use is in deciding the size and structure of

register file for the desired ASIP. Other advantages are also

significant. Once the register file is decided, it helps in

deciding the instructions as a typical RISC instruction format

includes three register addresses. If our study reveals the fact

that there would be some ‘spare’ register as hardware

synthesis allows taking number of registers as power of two.

These ‘spare registers’ and specially ‘addresses of these spare

Application(s) in C and Design

Constraints

Application Analysis

Application Parameters

Define Processor and Memory

Configuration

Suggested Processor and Memory

Configuration for ASIP

Software Toolset

Generation
Hardware Synthesis

Software Toolset including

Operating System, Compiler,

Editor, Debugger, Simulator

etc.

ASIP

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 14, June 2014

28

registers’ can be used in many ways. Few registers can be

used as special purpose registers like status registers. Some

‘spare register addresses’ can be used to simplify coprocessor

interface. Such a study is already reported in the literature

[20].

3.4 Software Toolset Generation
This step generates software toolset required to make the

ASIP useable. Software toolset include essential software like

Operating System, Compiler, Editor, Debugger, and Simulator

etc. It is important to note the major difference between the

existing approaches and the proposed approach. In future, it is

proposed to generate software toolset only for the suggested

ASIP. In contrast to this, the existing approaches are

expecting compilers and simulators for each and every

configuration of the possible architecture design space.

3.5 Hardware Synthesis
ASIP is synthesized using standard synthesis tools. For this a

synthesizable hardware description of the desired ASIP is

provided.

4. CONCLUSION
Interest in ASIP design has increased significantly recently. In

this study, the existing ASIP design methodologies have been

studied and the kinds of challenges faced by them are

identified. These methodologies are soon going to become

unsuitable to meet out upcoming challenges, so a novel a

novel ASIP design technique is proposed in this study in

which each possible architecture configuration is not

evaluated and judged for suitability. A suitable architecture is

directly suggested. Many more parameters from the

applications will be considered in future so most of the ASIP

configuration may be decided easily. When the ideal situation

will be reached, complete ASIP configuration will be decided

without design space exploration.

5. REFERENCES
[1] Jain M.K., Balakrishnan M., and Kumar A., 2001, “ASIP

Design Methodologies: Survey and Issues”, In

Proceedings of the IEEE/ ACM International Conference

on VLSI Design. (VLSI 2001), pages 76-81.

[2] Gour Deepak, Jain M.K., 2011, “ASIP Design Space

Exploration: Survey and Issues”, International Journal of

Computer Science and Information Security, Vol. 9, No.

3, 2011, pages: 141-145.

[3] Jain M.K., and Gour Deepak, 2012, “Comparison

between the Simulator and Scheduler based approach of

Design Space Exploration for Application Specific

Instruction set Processor”, International Journal of

Computer Applications, IJCA, ISSN: 0975-5887, Vol.

43, No. 5, April 2012, Pages 14-19.

[4] Halambi A., Grun P., Khare A., Ganesh V., Dutt N.,

Nicolau A,, 1999, “EXPRESSION: A Language for

Architecture Exploration through Compiler/Simulator

Retargetability”, In Proceedings of the Design

Automation and Test in Europe (DATE), March 1999,

pages 485–490.

[5] Pees S., Zivojnovic V., Meyr H., 1999, “LISA- Machine

Description Language for Cycle Accurate Models of

Programmable DSP Architectures”, In Proceedings of the

Design Automation Conference (DAC), June 1999,

pages 933–938.

[6] Hoffmann A., Kogel T., Nohl A., Braun G., O.

Schliebusch O., Wahlen O., Wieferink A., Meyr H.,

2001, “A Novel Methodology for the Design of

Application-Specific Instruction-Set Processors (ASIPs)

Using a Machine Description Language”, In IEEE

Transactions on Computer Added Design of Integrated

Circuits and Systems, 20(11), November 2001, pages

1338–1354.

[7] Radhakrishnan S., 2006, “Customization of application

specific heterogeneous multi pipeline processors”, In

Proc. EDAA 2006, pp. 746 – 751.

[8] Yoonjin Kim, Mary Kiemb, Kiyoung Choi, 2005,

“Efficient Design Space Exploration for Domain-

Specific Optimization of Coarse-Grained Reconfigurable

Architecture”, In Design, Automation and Test in

Europe, 2005. Proceedings, 7-11 March 2005, page(s):

12 – 17.

[9] Bossuet L., Gogniat G., and Philippe J.L.,

“Communication-Oriented Design Space Exploration for

Reconfigurable Architectures”, In EURASIP Journal on

Embedded Systems, Volume 2007, Article ID 23496.

[10] Pasricha S., and Dutt N., “A Framework for Memory and

Communication Architecture Co-synthesis in MPSoCs”,

In Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on Volume 26, Issue 3,

March 2007 Page(s):408 – 420.

[11] Kenshu Seto and Masahiro Fujita, “Custom instruction

generation for configurable processors with limited

numbers of operands”, IPSJ Transactions on System LSI

Design Methodology Vol. 3, 57-68, Feb 2010.

[12] Jain M.K., and Ramnani V., 2013, “Design Space

Exploration for a Custom VLIW architecture”,

International Journal of Computer Applications, IJCA,

ISSN: 0975-5887, Vol. 61, No. 8, January 2013, Pages:

31-34.

[13] Tensilica Inc., http://www.tensilica.com.

[14] Altera Corp., http://www.altera.com.

[15] Xilinx Inc., http://www.xilinx.com

[16] Gupta T.V.K., Sharma P., Balakrishnan M., Malik S.,

2000, “Processor evaluation in an embedded systems

design environment”, In Proc. VLSI Design 2000, pages

98-103, January 2000.

[17] Jain M.K., Balakrishnan M., and Kumar A., 2002, “An

Efficient Technique for Exploring Register File Size in

ASIP Design”, IEEE TCAD, Vol. 23, Issue 12,

December 2004. Pages: 1693-1699.

[18] Jain M.K., Balakrishnan M., and Kumar A., 2003,

“Exploring Storage Organization in ASIP Synthesis”, In

Digital System Design, 2003. Proceedings. Euromicro

Symposium, 1-6 Sept. 2003, pages: 120 – 127.

[19] Jain M.K., 2011, “A Multi Layer Technique for

Performance Estimation for ASIP Design Space

Exploration”, International Journal of Advanced

Research in Computer Science, IJARCS, Vol. 2, No. 4,

August 2011, Pages 648-653.

[20] Jain M.K., Balakrishnan M., and Kumar A., 2005,

“Integrated On-chip Storage Evaluation in ASIP

Synthesis”, Proceedings of the IEEE Eighteenth

International Conference on VLSI Design with Fourth

International Conference on Embedded System Design,

VLSI 2005, 3-7 January, 2005, pages: 274-279.

IJCATM : www.ijcaonline.org

