
International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 10, June 2014

27

Bit Parallel String Matching Algorithms: A Survey

Sumit Gupta
Dept. of Computer Science of Engineering

Maulana Azad National Institute of Technology,
Bhopal, India

Akhtar Rasool
Dept. of Computer Science of Engineering

Maulana Azad National Institute of Technology
Bhopal, India

ABSTRACT

The intrinsic parallelism in bit operations like AND/OR inside a

computer word is known as bit parallelism. Since 1992, this bit

parallelism is directly used in string matching for matching

efficiency improvement. Some of the popular bit parallel string

matching algorithms Shift OR, Shift OR with Q-Gram, BNDM,

TNDM, SBNDM, LBNDM, FBNDM, BNDMq, and Multiple

pattern BNDM. This paper discusses the working of various bit

parallel string matching algorithms with example. Here we

present how bit parallelism is useful for efficiency improvement

in various algorithms.

Keywords
String Matching, Bit Parallelism, Shift OR, BNDM, TNDM,

SBNDM, LBNDM, FBNDM, BNDMq, SBNDMq, WW

Algorithm.

1. INTRODUCTION
Bit parallelism [1] is an intrinsic property of computer in which

bit operations are performed parallely within the computer word

in the single clock. With the use of bit parallelism in String

Matching algorithm speed of matching is improved up to certain

level. String matching [2] algorithms are used in most of the real

world applications where pattern extraction is required like as

Intrusion Detection system [3][4], Plagiarism detection [5], Data

Mining [6] and Bioinformatics [7]. Bit parallel algorithms are

faster than the other benchmark character based algorithms like

as KMP [4][8], BM [9][10], BMH [11][12], BMHS[13],

BMHS2[14], BMI[15], Improved BMHS[16], Cmmentz

Walter[17][18], Wu Manber[19][20] and Aho-Corasick [21][22]

etc. Bit Parallel algorithms [23] are based on the non

deterministic automata but there is no such automata are present.

It is simply the efficient simulation of non deterministic

automata. Figure-1 shows how the bit parallel operations are

performed inside the computer word. Here computer word size

length is 8 bits or 1 byte.

Figure 1: Operation perform inside the computer

First bit parallel algorithm was introduced in 1992 by the Baeza–

Yates and Gonnet named as Shift OR algorithm [24]. It was an

approximate multiple pattern string matching algorithm. It was

faster than the previous algorithms but gives false matches.

After Shift OR in 1998 Navarro and Raffinot were introduced

new bit parallel algorithm named as BNDM (Backward Non

Deterministic Matching)[25]. This was an exact single pattern

string matching algorithm. In BNDM algorithm we use AND or

SHIFT operation which performed in parallel. BNDM is faster

than character based algorithms but here pattern size must be

smaller or equal than the computer word size.

BNDM set the benchmark in the string matching algorithm.

After BNDM in 2003 Peltola and Tarhio introduced improved

version of BNDM known as TNDM (Two way Non

Deterministic Matching)[26]. In TNDM scanning is much

similar to the BNDM except mismatch at last position instead of

shifting it scan forward.

In 2003 another algorithm was introduced Simplified BNDM

also known as SBNDM [26]. It was an improved version of

BNDM. Here, it is not required to find the longest prefix that's

why the average length of shift is reduced. Here, the inner most

loop becomes simpler.

In 2005 Longtao He, Binxing Fang and Jie Sui proposed a bit

parallel algorithm known as Wide Window Algorithm [27]. It

use the wide window of size one less than the two time the

pattern length to attempt m position in parallel. They combine

the bit parallel technique with new wide window concept. It is

exact single pattern matching algorithm which is faster in most

of the cases.

In 2006 an improved version of Shift OR was introduced by

Salmela, Tarhio and Kytojoki known as Shift OR with Q-Gram

[28]. Same as Shift OR it is an approximate multiple string

matching algorithm. It considers Q character at a time for

comparison by doing that the size of automata is reduced and

number of comparisons for finding pattern is reduced up to

certain level. This algorithm also reduces the false matches.

In 2009 Branislav Durian, Jan Holub, Hannu Peltola and Jorma

Tarhio introduced the concept of Q gram in BNDM algorithm

known as BNDMq [29]. It reads the q characters at each

alignment before testing the state variable. So most of the cases

the number of comparisons are less than in comparison to

BNDM required.

Similarly as BNDMq Branislav Durian, Jan Holub, Hannu

Peltola and Jorma Tarhio also introduced SBNDMq [29] in

2009. It is an exact single pattern string matching algorithm.

Similar approach of BNDMq was used in SBNDMq which gives

the better results in comparison to SBNDM.

In 2010 Changsheng Miao, Guiran Chang and Xingwei combine

the concept of Q gram with BNDM and implement exact

multiple string matching algorithm known as Filtering based

multiple string matching algorithm [30].

Figure 2 shows the evolution of bit parallel algorithm with their

description.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 10, June 2014

28

Figure 2: Evolution of Bit Parallel Algorithm

This paper gives the detailed description of above bit parallel

string matching algorithms. Paper starts from very first

algorithm based on bit parallelism up to latest one.

2. BIT PARALLEL ALGORITHM

2.1. Shift OR Algorithm
Shift OR [13] algorithm is an approximate multiple pattern

string matching algorithm which means it search number of

pattern at a time but there is a possibility of error. In Shift OR

algorithm order of searching is from left to right. It is design for

large pattern have equal length and equal or less than the word

size of a computer.

Most of the multiple pattern algorithms build a trie of the pattern

in pre-processing phase so as the pattern size increases size of

tree also increase which is not practical to maintain. Shift OR

algorithm is a simulation of nondeterministic automata where we

do not need to build any trie. They don’t need to buffer the

input. It is real time algorithm suitable to be implemented in

hardware.

Shift OR consist into two phase:

Pre-Processing Phase 2. Searching Phase

Pre-processing phase: In pre-processing phase we find out the

bit vector of the every character of alphabet. In this ‘ith’ bit is

zero if and only if character appears at position ‘i’ otherwise

place 1 and write it into reverse order.

Searching Phase: The automation has a transition from state ’i’

to ‘i+1’ on character c if and only if ‘ith’ bit in B[c] is 0. In state

vector D where ‘ith’ bit is 0 if and only if state ‘i’ in the

automation is active. If 0 is occurs at MSB means we find the

pattern at that position.

ALGORITHM Shift OR (text=t1…tn, patterns=p1,..,pk)[24]

1. Pre-processing

 [Text[i]] <- 1m, s= 1

 for j= 0…k do

 for i= 0… m-1 do

 B [p[j][i]] <- B[p[j][i] & ~ (s<<1)

 end for

 end for

2. Searching

 While pos < n do

 D = 1m

 D = D <<1| B [text [pos + j]]

 if D> 1m-1 do pos<- pos + 1

 else do

 count <- count +1

 Report occurrence at position pos<- pos-m+1

 D <- 1m

 pos<- pos +1

 end else

 end while.

Let’s take an example to understand Shift OR algorithm.

Suppose FAST, MACC and BATC be the patterns of length 4

and STRINGFASTMATCH be the text of length 15.

Bit Vector: B[F] = 1110, B[A] = 1101, B[S] = 1011, B[T] =

0011, B[M] = 1110, B[C] = 0011, B[B] = 1110 and for others

1111.

* Pattern are found at position 7 & 11

Figure 3: Various steps of Shift OR Algorithm

Figure 3 shows the various step involved in the shift OR

algorithm. Initially we set the value of D = 1111 (All one) and

update D when a character c is read from the text as follow D=

(D<<1) | B[c]. Whole searching is carry out from left to right

one by one if 0 is occurred at MSB it means pattern is found.

In Shift OR algorithm pre-processing and search are very simple

and only bitwise logical operations Shift and AND are used and

no Buffering is required. It is a real time algorithm. Time delay

to process one text character is bounded by a constant depend

only on pattern length. Here all pattern length must be equal.

2.2. BNDM Algorithm
BNDM stands for Backward Non Deterministic Matching [25].

It is exact single pattern string matching algorithm. In BNDM

order of searching is from right to left. It uses the concept of bit

parallelism from shift OR algorithm [24] and suffix automata

from BDM algorithm [25]. This algorithm is a bit parallel

simulation of BDM algorithm. BDM skips character using suffix

automata which is deterministic in pre processing. To construct

Deterministic automata is complex task. BNDM simulates the

non deterministic version using bit parallelism.

BNDM algorithm consist in two phase

 1. Pre-processing phase 2. Searching phase

Pre-processing: In pre-processing phase we find Bit Vector of

each Character of the Pattern calculated by putting 1 for

occurrence and 0 for non-occurrence and take bit vector D with

initial value with all one.

Searching Phase: In searching phase pattern is searched with the

help of two logical operator that are AND and SHIFT. Pattern is

searched when MSB of D is 1 and value of j is 0.

Algorithm BNDM (P=p1p2p3..pm,T= t1t2..tn)

 Preprocessing

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 10, June 2014

29

 For c ∈ Σ do B[c] ←0m

 For i∈ 1...m do B [pm-i+1] ← B [pm-i+1] | 0m-110i-1

 Searching

 Pos 0

 While (pos<=n-m) do

 Jm, lastm

 D=1m

 While d! = 0m do

 D D& B [Tpos+j]

 J j-1

 If D & 10m-1! = 0m then

 If j>0 then last  j

 Else report an occurrence at pos+1

 D D<<1

 End of While

 Pospos+last

 End of while

Let us understand the working of whole algorithm with the help

of an example. Let Text T = ‘STRINGFASTMATCH’ and

Pattern P= ‘FAST’

Bit Vector: B [F] =1000, B [A] =0100, B[S] =0010, B [T] =0001

and other are all zero.

Initially J=4, last=4, pos. = 0 and bit vector D =1111

Than we perform the BNDM algorithm. There various step are

shown in the Figure 4 with proper explanation.

Figure 4: Shows the various steps perform by BNDM

BNDM algorithm become very fast string matching algorithm

except very sort (0-6) or very long (90-150) pattern. It is faster

than the previous algorithm Shift OR, BDM and Occupies very

less space perform various operation in parallel. It is very

Simple and flexible algorithm. But we have all pattern assume to

less than or equal to the word size of computer.

2.3. TNDM Algorithm
TNDM stands for Two ways Non Deterministic Matching [26].

It is Exact Single pattern string matching algorithm. It is almost

same as the BNDM algorithm [25] there is slight changes in the

case of mismatch occur at first position instead of shifting

TNDM look forward to find suffix of reverse pattern. The

number of examined characters is less than BNDM therefore

matching is faster.

The simulation of TNDM Algorithm can be understood by the

help of the Figure 5 here mismatch is occurred at last so it scan

forward to find the maximum suffix of pattern after shifting to

maximum suffix the algorithm is run same as BNDM

algorithm[25].

Figure 5: Working explanation of TNDM algorithm

2.4. SBNDM Algorithm
SBNDM [26] stands for Simple Backward Non Deterministic

Matching. SBNDM is much similar to the BNDM [25]

algorithm there is a slight change in term of shifting. Due to this

it is quit faster than the BNDM algorithm. Here we do not

require finding the longest prefix. Let T is the text of length n

and P is the pattern of length m to be searched. At each

alignment window of P in T, Scan T from right to left until the

suffix of the window is not a factor of P or an occurrence of P is

found. Shifting of SBNDM is done according to these i.e. shift

window by m if no factor is found, shift by 1 if P found

otherwise next alignment is start at last factor. Figure 6 describes

the various steps of the SBNDM algorithm.

Figure 6: Example of SBNDM

By using the SBNDM concept the average length of shift is

reduced by doing so the innermost loop of algorithm become

simpler. It is faster than the BNDM algorithm.

2.5. Wide Window String Matching

Algorithm
Longtao He, Binxing Fang and Jie Sui proposed an algorithm

known as WW (wide window) Algorithm [27] in which text is

divided into n/m where n is the length of text and m is the length

of pattern. It opens a window with size 2m-1. in the window the

algorithm attempts m possible occurrence position in parallel. In

this window is dividing it into two parts. First one is denote as

A1 of size p-1 and second part as A2 of size p. With the help of

the Figure 7 we can understand how pattern is divided into

window.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 10, June 2014

30

Figure 7: Shows how Pattern is divided into Window

Now in this algorithm we have to find out the all prefixes of A2

which is also the suffixes of the pattern m and shift the window

directly if it fails. Let r denotes the length of longest prefix. Than

we find the suffix of A1 which is also prefix of pattern m equal

to the length of m-r if such cases are found means we got the

pattern otherwise not.

Figure 8: Demonstrate process of searching in WW

Algorithm

Figure 8 shows the process of WW algorithm here we have a

pattern ‘GFASTM’ of size 6 so window size is 2m-1 that is 11.

Now longest suffix of pattern in A2 is ‘ASTM’ from A1 we got

‘GF’ it means pattern is found. WW is efficient for searching

short pattern. It suits for off line pattern matching as well as high

speed online pattern matching.

2.6. Shift OR with Q-Gram
Shift OR with Q-gram [28] is an enhanced version of the Shift

OR algorithm. In Shift OR with Q-gram algorithm we take Q

character at a time for comparison by doing so the size of

automata is reduced and the number of comparison for finding

pattern is reduced up to certain level. The Q-gram can be of two

types Consecutive Q-gram or Overlapped Q-gram. In

Consecutive Q-gram we read pattern in a sequence of q

character at a time while in Overlapped Q-gram we take q

character from each character of the patterns. Here the pattern

length of each pattern must be same. Shift OR with Q-gram

carried out in three phases First phase: Initialization Phase where

initialization of the variable is carried out. Second phase: Pre-

processing phase where bit vector of the various q gram are

taking place. Third phase: Searching phase here searching of the

pattern in the text is carried out.

Let us take an example of Shift OR Consecutive 2-Gram where

Text is STRINGFASTMATCH and Patterns are ‘GFASTM’,

‘ABATCH’ and ‘TMACCT’ hence the consecutive 2-gram of

patterns are “GF”, “AS”, “TM”, “AC”, “CT”, “AB”, “AT” and

“CH” by doing so the number of bit in bit vector is reduced to

the half of the pattern length. Here 2-gram of the pattern is

treated as single character. The ith bit of the bit vector is set to

zero if there is an occurrence of 2-gram in the ith position of the

pattern otherwise set to one. So bit vector of our pattern is as

follow.

B [GF] = 110, B [AS] = 101, B [TM] = 010, B [AC] = 101, B

[CT] = 011, B[AB] = 110, B[AT] = 101 and B [CH] = 011.

Matching the text: STRINGFASTMATCH

Initialise D = 111 and Update D when a character c is read from

the text by D= (D<<1) | B[c].

Various steps involved are discussed in the Figure 9 here

patterns are searched similar to Shift OR by taking q character at

a time. Searching is start from left of the text taking ST first we

got all one means mismatch so shift the window and take the

next q gram TR and same process is repeated till the text end.

MSB 0 Means pattern found. Hence pattern found at 6 & 10

Figure 9: Shows the various steps of Shift OR with Q Gram

In the example two patterns is found at 6 & 10 but second one is

not in the patterns so it is a false match. By taking the q gram the

time efficiency of the algorithm is improved but other factor is

unchanged it is still not working for pattern lager than the word

size and unequal pattern length. Here the number of false

matches is reduced up to the certain level.

2.7. BNDM with Q-gram
BNDM with Q-gram [29] is an improved variation of the

BNDM algorithm which reads the q gram at each alignment

before testing the state variable. In this algorithm loop has been

made as sort as possible in order to quickly advance m-q+1

position. Here q can be varies according to our requirement. The

whole algorithm can be easily understood with the help of the

example given below.

Text T = ‘STRINGFASTMATCH’ and Pattern P= ‘FAST’

Assume we have 2-gram

Pre-processing: In pre-processing phase we find Bit Vector of

each Character of the Pattern calculated by putting 1 for

occurrence and 0 for non-occurrence.

B[F] =1000, B[A] =0100, B[S] =0010 and B[T] =0001

Searching Phase: Initially we take variable i and set to m-q+1

where m is pattern length

Than we perform the BNDMq algorithm whose various step are

described in the Figure 10 where we don’t enter the loop until

the q gram is matched.

Figure 10: Step by step Description of BNDMq algorithm

It is become very fast string matching algorithm in the case of no

match is found. In this case it does not enter the main loop and

directly shift the window. It occupies same space as take in

BNDM and word size limitation is still exists.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 10, June 2014

31

2.8. Multiple Pattern BNDM
BNDM algorithm is a single pattern string matching algorithm

which is very fast one because it uses the concept of bit

parallelism. Changsheng Miao, Guiran Chang and Xingwei

Wang convert the BNDM algorithm in multiple pattern BNDM

algorithms [30]. They develop Filtering Based Multiple String

Matching Algorithm by Combining q-Grams and BNDM.

Let’s understand the concept of algorithm by considering an

example Text: STRINGFASTMATCH, Text size: 15, Patterns:

FAST, MACC and BATC pattern length (m): 4

In preprocessing phase bit vector of the various character are

calculated which is shown in the Figure 11 which are calculated

in similar fashion as calculated in BNDM algorithm.

Figure 11: Shows calculation of bit vector

Initialize q = 2, i = m-q+1. The whole searching process is

described in the Figure 12 step by step.

Pattern found at Position 7

Figure 12: Shows the various steps perform by Multiple

BNDM

In multiple pattern BNDM string matching algorithm multiple

patterns can be searched which were not possible in BNDM

Algorithm. We need filtering after pattern match to find the

exact match which will take extra time to search.

3. CONCLUSION
Bit parallel string matching algorithms are the new series of

efficient algorithm. Each algorithm is efficient in compare to

standard character based algorithm. BNDM, TNDM, SBNDM,

WW, BNDMq are the bit parallel single pattern string matching

algorithm whereas Shift OR, Shift OR with Q-gram, multiple

pattern BNDM are used for multiple pattern matching. Multiple

pattern matching is difficult in compare to single pattern

matching for multiple matching no efficient exact string

matching is possible using bit parallelism. These algorithms

have some disadvantages. Major disadvantage is these algorithm

is working on patterns of length less than or equal to computer

word. These algorithms were working on the pattern of equal

length.

4. FUTURE WORK
Most of the bit parallel algorithm is single pattern string

matching algorithm so using this concept multiple patterns string

matching algorithm can be implemented. Word size limitation

present in the bit parallel algorithm can also be avoided.

5. REFERENCES
[1] Vidya Saikrishna, Akhtar Rasool and Nilay Khare, “Time

Efficient String Matching Solution for Single and Multiple

Pattern using Bit Parallelism”, In procd. Of International

Journal of Computer Applications (0975 – 8887) Volume

46– No.6, May 2012.

[2] Christian Charras and Thierry Lecroq,” Handbook of Exact

String_Matching Algorithms”, Published in King’s college

publication, Feb 2004.

[3] Ali Peiravi, “Application of string matching in Internet

Security and Reliability”, Marsland Press Journal of

American Science, 6(1), pp. 25-33, 2010.

[4] Pei-fei Wu and Hai-juanShen,”The Research and

Amelioration of Pattern-matching Algorithm in Intrusion

Detection System”, In the proc. of IEEE 14th International

Conference on High Performance Computing and

Communication & IEEE 9th International Conference on

Embedded Software and Systems (HPCC-ICESS), pp. 1712-

1715, 25-27 June 2012.

[5] Ramazan S. Aygün “structural-to-syntactic matching similar

documents”, Journal Knowledge and Information Systems,

ACM Digital Library, Volume 16 Issue 3, pages 303-329,

Aug 2008.

[6] Sanchez D., Martin-Bautista M.J., Blanco I. and Torre C.,”

Text Knowledge Mining: An Alternative to Text Data

Mining”, In the proc. of IEEE International Conference on

Data Mining Workshops, ICDMW '08, pp. 664-672, 15-

19Dec. 2008.

[7] Robert M. Horton,Ph.D. “Bioinformatics Algorithm

Demonstrations in Microsoft Excel”, California State

University, Sacramento, 2004.

[8] Knuth D E, Morris Jr J. H and Pratt V. R,” Fast pattern

matching in strings”, In the procd. Of SIAM J.Comput., Vol.

6, 1, pp. 323–350, 1977.

[9] Boyer R S and Moore J S,”A fast string searching

algorithm”, Communication of ACM 20, Vol. 10, pp. 762–

772, 1977.

[10] Zhengda Xiong,”A Composite Boyer-Moore Algorithm for

the String Matching Problem”, In the proc. of International

Conference on Parallel and Distributed Computing,

Applications and Technologies (PDCAT), pp. 492-496, 8-11

Dec 2010.

[11] Horspool R N,”Practical fast searching in strings”, In proc.

Of Software Practical Exp, Vol. 10, 6, pp. 501–506, 1980.

[12] Timo Raita,”Tuning the Boyer–Moore–Horspool String

Searching Algorithm”, In the proc. of Software Practice and

Experience, Vol. 22(10), pp. 879–884, Oct. 1992.

[13] JingboYuan, Jinsong Yang and Shunli Ding,” An Improved

Pattern Matching Algorithm Based on BMHS”, In the proc.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhengda%20Xiong.QT.&searchWithin=p_Author_Ids:37856456600&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5704274
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5704274
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5704274
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5704274

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 10, June 2014

32

Of 11th International Symposium on Distributed Computing

and Applications to Business, Engineering & Science, 2012.

[14] Yuting Han and Guoai Xu, “Improved Algorithm of Pattern

Matching based on BMHS”, In the proc. of IEEE

International Conference on Information Theory and

Information Security (ICITIS), pp. 238-241, 17-19 Dec

2010.

[15] Jingbo Yuan, Jisen Zheng and Shunli Ding, “An Improved

Pattern Matching Algorithm”, In the proc. of Third

International Symposium on Intelligent Information

Technology and Security Informatics (IITSI), pp. 599-603,

2-4 April 2010.

[16] Linquan Xie, Xiaoming Liu and Guangxue Yue, “Improved

Pattern Matching Algorithm of BMHS”, In the proc. of

International Symposium on Information Science and

Engineering (ISISE), pp. 616-619, 24-26 Dec 2010.

[17] Commentz-Walter, “A string matching algorithm fast on the

average,” In the Proc. of 6th International Colloquium on

Automata, Languages, and Programming, pp. 118–

132,1979.

[18] Kouzinopoulos, C.S. and Margaritis, K.G.,"A Performance

Evaluation of the Pre-processing Phase of Multiple Keyword

Matching Algorithms", In the proc. of 15th Panhellenic

Conference on Informatics (PCI), pp. 85-89, 30 Sept 2011- 2

Oct 2011.

[19] Yang Dong hong, XuKe and Cui Yong,”An improved Wu-

Manber multiple patterns matching algorithm”, In the proc.

Of 25th IEEE International Performance, Computing, and

Communications Conference, IPCCC, pp. 680, 10-12 April

2006.

[20] Baojun Zhang , XiaoPing Chen , Lingdi Ping , Wu, Zhaohui,

”Address Filtering Based Wu-Manber Multiple Patterns

Matching Algorithm”, In the proc. of 2009 Second

International Workshop on Computer Science and

Engineering[WCSE], Qingdao, Vol.1, pp. 408 – 412,28-30

Oct. 2009.

[21] Alfred v aho and Margaret j corasick,”efficient string

matching: an aid to bibliographic search” communication of

acm, vol. 18, June 1975.

[22] Tao Tao and Mukherjee A.,”Multiple-pattern matching in

LZW compressed files using Aho-Corasick algorithm”, In

the proc. of Data Compression Conference, 21-31 March

2005.

[23] Faro S. and Lecroq T,”The exact online string matching

problem: A review of the most recent results”, ACM

Comput. Survey, Article 13, 42 pages, February 2013.

[24] Ricardo A. Baeza-Yates and Gaston H. Gonnet,”A New

Approach to Text Searching”, In Communications of the

ACM, pp. 74-82, Oct 1992.

[25] G. Navarro and M. Raffinot, “Fast and flexible string

matching by combining bit-parallelism and suffix

automata”,ACM Journal. Experimental Algorithmics 1998.

[26] Hannu Peltola and Jorma Tarhio,” Alternative Algorithms

for Bit-Parallel String Matching”, String Processing and

Information Retrieval, Spire Springer, LNCS 2857, pp. 80-

93, 2003.

[27] Longtao Hea, Binxing Fangaand Jie Sui,” The wide window

string matching algorithm” In the procd. Of Theoretical

Computer Science of Elsevier, Vol. 332, pp. 391-404, 2005.

[28] L. Salmela, J. Tarhio, and J. Kytojoki, “Multi pattern string

matching with q-grams”, Journal of Experimental

Algorithms, Volume 11, pp. 1-19, 2006.

[29] Branislav Durian, Jan Holub, Hannu Peltola and Jarma

Tarhio,”Tuning BNDM with q-grams”, In the proc. Of

workshop on algorithm engineering and experiments, SIAM

USA, pp. 29-37, 2009.

[30] Changsheng Miao, Guiran Chang and Xingwei Wang,”

Filtering Based Multiple String Matching Algorithm

Combining q-Grams and BNDM”, In proc. Of Fourth

International Conference on Genetic and Evolutionary

Computing, 2010.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kouzinopoulos,%20C.S..QT.&searchWithin=p_Author_Ids:37697692800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Margaritis,%20K.G..QT.&searchWithin=p_Author_Ids:37595678500&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6063702
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6063702
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6063702
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Baojun%20Zhang.QT.&searchWithin=p_Author_Ids:37405133300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.XiaoPing%20Chen.QT.&searchWithin=p_Author_Ids:37403971000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lingdi%20Ping.QT.&searchWithin=p_Author_Ids:37279033500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wu,%20Zhaohui.QT.&searchWithin=p_Author_Ids:38183871600&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5402742
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5402742
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5402742
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1402239&queryText%3DAho-Corasick+Algorithm
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1402239&queryText%3DAho-Corasick+Algorithm
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9633

