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ABSTRACT 

Security is one of the most challenging aspects in internet and 

Multimedia applications. Encryption is a process which is 

used to secure data. The Encryption algorithms and suitable 

transforms play a crucial role to form efficient security 

systems. In this regard the original information in the existing 

security system based on the fractional Fourier transform 

(FRFT) is protected by only a certain order of FRFT. In this 

paper, we propose a novel method to encrypt an image by 

using multiple parameters discrete fractional Fourier 

transform (DFRFT) with random phase matrices. The 

multiple-parameter discrete fractional Fourier transform 

(MPDFRFT) possesses all the desired properties of discrete 

fractional Fourier transform. The MPDFRFT converts to the 

DFRFT when all of its order parameters are the same. We 

exploit the properties of multiple-parameter DFRFT and 

propose a novel encryption scheme using the double random 

phase in the MPDFRFT domain for encrypting digital data. 

The proposed encoding scheme with MPDFRFT significantly 

enhances the data security compared to DFRFT and FRFT 

and it shows consistent performance with different images. 

The scheme offers a high degree of resistance towards 

bruteforce attack.   

General Terms 

Image Processing, Security, Encryption, Decryption, 

Algorithm 

Keywords 

Discrete Fractional Fourier Transform (DFRFT), Decryption, 

Encryption, Fourier Transform (FT), Fractional Fourier 
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Fourier Transform (MPDFRFT). 

1. INTRODUCTION 
The continuous fractional Fourier transform (FRFT) is 

generalization of the continuous Fourier transform and has 

been applied in optics, quantum mechanics, and signal 

processing areas [1–3]. The fractional Fourier transform 

(FRFT) is more flexible than the conventional Fourier 

transform (FT) due to the extra parameter of the transform 

order. With the transform order gradually varying from 0 to 1 

the FRFT of a signal can develop from the original function to 

its FT [1-4]. Thus, it has shown its potential in the fields of 

the image processing and the optical encryption. Using the 

transform order to enlarge the key space, the systems based on 

the FRFT are of a higher security [5-15].  

To obtain the discrete version of the continuous FRFT, the 

discrete fractional Fourier transform (DFRFT) was defined by 

Pei and Ozaktas [16-17]. The discrete fractional Fourier 

transform (DFRFT) is generalization of the DFT with 

additional free parameters [16–18]. In [16], Pei and Yeh 

defined the DFRFT based on the eigen decomposition of the 

DFT matrix, a DFRFT with one fractional parameter was 

defined by taking fractional eigen value powers of an eigen 

decomposition of the DFT matrix. The DFT eigenvectors used 

in [16] are Hermite –Gaussian function type. These 

eigenvectors are computed from a DFT –commuting matrix 

proposed in [19] by Dickson and Steigletz. Pei et al. [16], first 

proposed the eigen decomposition- based definition of the 

DFRFT and then Candan et al. consolidated this definition 

[17]. Hanna et al. considered generation eigenvectors by the 

singular value decomposition method and direct batch 

evaluation [20-22]. 

Information security has been receiving enormous attention in 

recent years due to increasing privacy and authentic document 

prevention. In the past twenty years, a number of optical 

encryption methods have been proposed by the various 

researchers in [6-15] and [23-43]. Among them, the most 

widely used and highly successful optical encryption scheme 

is double random phase encoding proposed by Refregier and 

Javidi [23]. This method uses two random phase masks, one 

in the input plane and the other in the Fourier plane, to 

encrypt the primary image into stationary white noise. 

Unnikrishnan and Singh [6-7], [27] first proposed an optical 

encryption method using random phase encoding in the 

fractional Fourier domain and its optically-implemented 

approach. The remarkable feature of optical encryption based 

on the FRFT is the fractional order, which enlarges the key 

space and further enhances the security of encryption systems. 

The resulting keys for decryption are the fractional order 

parameters of the FRFT and the random phase codes used in 

the encryption process. Various optical encryption schemes 

based on the FRFT have been reported since 2009 [6-15, 23-

46]. 

To increase the security of data robust encryption schemes are 

required to protect the data from unauthorized user. This 

criterion may be fulfilled by using more robust transform and 

applying this transform in a model to achieve more 

unauthorized user protected scheme for encryption. In 

proposed scheme robust transform MPDFRFT by adding an 

additional feature in DFRFT, is used using double random 

phase matrix with eigen vector decomposition algorithm. The 

proposed scheme can also be apply with the two or more 

image encryptions. The proposed encryption scheme is 

realized by the fast Fourier transform (FFT)-based algorithm. 

Simulation results demonstrate that the image decryption is 

highly sensitive to the deviations in the security keys. 

The outline of this paper is as follows: In section. 2 the FRFT 

and DFRFT, MPDFRFT in briefly discussed with their 

mathematical definition. The algorithm used with DFRFT and 
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MPDFRFT elaborated in their sections respectively. In section 

3 the proposed encryption, decryption model based on 

multiple parameters discrete fractional Fourier transform 

(MPDFRFT) is described with its block diagram and 

mathematical formulation. In 4th segment of this paper the 

performance parameters and salient features of the proposed 

encryption scheme are briefly present. In section 5 the 

simulation results are shown with their explanation. While 

section 6 the paper concludes with numerical comparisons and 

future research directions.  

2. PRELIMINARIES 

The  -th order FRFT )( aa xf  of a function )(xf is defined 

as, 
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Here   and    represent the coordinate systems for the input 

or zeroth order domain and output  -th fractional domain. 

2.1 Discrete Fractional Fourier Transform  
The   th order     DFRFT is developed based on the 

eigen decomposition, and its transform kernel is given on the 

basis of [16-17], [44] is, 

                             
TVVDF  /2/2                      (3) 

Here        the DFRFT order of the parameter. 

Where   indicates the rotation angle of DFRFT. 

 1-N2-N10 vv........vv= V  for   is odd, 

 1-N2-N10 vv........vv= V for   is even, and    is the k-

th order DFT hermite eigen vector.       is a diagonal matrix 

with eigen values of DFRFT in the diagonal entries. The 

methods for finding the DFT Hermite eigenvectors    are 

presented in [16] and [44]. In Table 1, there exists a jump in 

the last eigen values for the two even-length cases. 

The     DFT matrix   is given by, 
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Therefore, there are some differences in computing the 

DFRFT kernels between even- and odd-length cases. 

 

Table 1. The Distinct Eigen Values  

No. 
N Eigen Values 

1. 4m                              

2. 4m+1                              

3. 4m+2                              

4. 4m+3                                 

 

For the odd- and even- length cases, (1) can be written as 
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                                                          (For the even values of N) 

The DFRFT output is computed as a, 
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                                                          (For the even values of N)       

2.2 MPDFRFT and its Properties 
The   th order DFRFT matrix is       given in eq. (3). The 

      degenerates to the DFT matrix   in eq. (3), when   . 

So the DFRFT is a generalization of the DFT. If we further 

generalize the DFRFT on the basis of taking different 

fractional power for the eigen values )2/exp( kjk   of 

the DFT matrix. Subsequently the   point     MPDFRFT 

matrix given as, 
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 The diagonal matrix is simplified as 
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The vector a is given in eq.(10) and 
 /2D is the   

   diagonal matrix of the DFT eigen values, 
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Then eq. (8) can be expressed in summarized form as, 
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TVVDF  /2/2                          (13) 

The MPDFRFT of aX of the 1N data vector x with the 

parameter vector a  can be given by,  

                              x/2 FX a                                   (14) 

The main features of the MPDFRFT are discussed as follows. 

1. If ),,.....,,( aaaa  the MPDFRFT is converted into 

DFRFT so DFRFT is the special condition of the 

MPDFRFT. 

2. The N point MPDFRFT can have up to N 

independent and possibly different order parameters, 

Where as DFRFT has only one order parameter. 

3. The computation complexity for the MPDFRFT is 

)( 2NO same as DFRFT. 

The MPDFRFT follows all the properties of DFRFT. We 

conclude that MPDFRFT possess all the properties of DFRFT 

as mentioned below. 

1. Unitarity: 

       T
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Where H denotes the conjugate or transposes operation. 

2. Identity Matrix: 

If )0,...,0,0(0 a  

                   IVVVVDF TT  0/2 
 

      reduces to an identity operator. 

3. Fourier Transform: If the parameter vector,               

                               )1,...,1,1(1 a    

                    FVDVVVDF TT  1/2 
              (16) 

Here F indicates the fourier transform.  

4. Index additivity: if 1a and 2a are the two parameters of 

the same size then the MPDFRFT can be given as, 
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6. Inverse Transform: The inverse transform of the 

MPDFRFT of parameter vector a can be given as,    
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Here
 /2F is periodic in ka with the period of 4 for all 

values of k . 

3. PROPOSED MODEL FOR IMAGE 

ENCRYPTION  
On the basis of double random phase fractional Fourier 

domain encoding introduced by Unnikrishnan and Singh [7], 

we propose the double random phase encoding in the 

MPDFRFT domain to encrypt an images. The proposed 

encryption and decryption models are shown in Figure. 1 and 

2 respectively. This encryption scheme significantly improves 

data security because the order parameters of the 2D-

MPDFRFT can be exploited as extra keys for decryption and 

keeps computational complexity same as in the DFRFT. 

For an image “L” of size        , the 2D-MPDFRFT of 

“L” with MPDFRFT parameters vectors ),( QP  is given by 

                                 
qp

qp FLFL ..),(                   (21) 

Where 
pF and

qF. are the 256 point MPDFRFT matrices 

respectively, p  and q are the parameter vectors of sizes 

2561 and 2561 matrices respectively. Here 
),( mnje 
 

and 
),( mnje 

indicate the two random matrices having order

256256 . here ),( mn and ),( mn  are having 

2561  n and 2561  m are uniformly distributed 

over the interval ]2,0[  . Here ),( mn and ),( mn  are 

randomly generated matrices so these matrices may or may 

not be same. Now to deduce the encrypted image “Y” we 

multiply element by element random matrices
),( mnje 
 with 

input image “L” then taking its 2D MPDFRFT by the vector 

parameters p  and q  then again performing element by 

element multiplication with random matrices 
),( mnje 

then 

finally taking 2D MPDFRFT by the vector parameters r and 

s  to generate an encrypted image “Y”.  

Mathematically it is given as, 

                    
][ ),( mnjeLY                                     (22)                               
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                                                                                             (25) 

To generate the original image or decrypted image at the 

receiver side we utilize the reversibility or inverse transform 

property of the MPDFRFT, mathematically we perform the 

operation for decrypted image, 

                        ),(..' mnjsr eFYFY             (26)
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(27) 
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Fig 1: Encryption Process using double random phase matrix with MPDFRFT 
 

 

 

 

 

 

 

 

 

Fig 2: Decryption Process using double random phase matrix with MPDFRFT 
 

The random phase matrices 
),( mnje 
 and 

),( mnje 
for 

encryptions and its conjugate 
),( mnje 

 and 
),( mnje 
 are 

used at the decryption side. Similarly for the encryption with 

MPDFRFT parameters vectors ),( qp and ),( sr are done 

while for the decryption MPDFRFT parameters vectors with

),( qp  and ),( sr  are used. The    represent 

decrypted image. 

4. PERFORMANCE ANALYSIS AND 

DISCUSSION 
1) Salient feature of proposed method 

In the proposed method, the original image is first multiplied 

by random matrices, then taking its 2D MPDFRFT, again 

multiplied by random matrices and taking its 2D MPDFRFT 

to enhance the robustness of the encryption. This idea may 

also be applied with the first interpolating the  images into 

subimages  then each subimage can be encrypted by the 

different order of  2D MPDFRFT and the encrypted image is 

obtained by summing the two-dimensional 2D IMPDFRFT of 

the interpolated subimages by using identities of multirate 

signal processing. Thus, the proposed method can also be 

applied to double or more image encryptions by regarding the 

original images as subimages, which is impossible for most of 

the traditional methods based on the FRFT. The methods 

based on the random phase coding in the FRFD can also 

realize the double image encryptions. A random discrete 

fractional Fourier transform (RDFRFT) kernel matrix with 

random DFT eigenvectors and eigen values may also apply 

for security enhance image encryption scheme by taking its 

magnitude and phase of its transform output are both random 

as applied by Pei [13] may also be replaced in this model 

using MPDFRFT based on random DFT eigen values and 

eigenvectors. 

 

2) Security 

In the image decryption, the 2D MPDFRFT and random 

matrices both are used as the secret keys. The original image 

is processed by different orders of MPDFRFT and random 

matrices, it is demonstrated in equation (22) (23) (24) and 

(25). Now the decryption of the image needs the multiple 

parameters due to the nonorthogonality among the kernel 

functions of different orders of MPDFRFT and the inverse of 

same random matrices generated at the encryption side. The 

proposed and the existing image encryption based on the 

FRFT, comparison finds that the proposed method is with a 

larger key space with different orders, i.e., a higher security. 

We can also combine the proposed algorithm with the other 

encryption methods to further enhance the security of the 

system. 

 

3) Complexity Analysis 

In proposed encryption scheme based on the 2D MPDFRFT, 

uses eigenvector decomposition-type algorithm. This type of 

the DFRFT lacks fast algorithms. The encryption and the 

decryption procedures are both realized by the matrix 

multiplications. For an image with a size of   , the 

computation complexity is same during the encryption and 

decryption process. Complexity of the proposed encryption 

scheme is less and equal than the existing methods specially 

DFRFT based encryption scheme. For the implementation by 

    times 2D MPDFRFT and 2D IMPDFRFT can be 

realized by using FFT and inverse FFT (IFFT). Then the 

complexity of the proposed encryption scheme is given by 

]8[log)2/( 2  ABABMN complex multiplication. 

The computation burden of the proposed encryption scheme 

shows a linear increase with the extension of the multiple 

parameters. 

The image decryption process is processed according to the 

eq.(27). The computation in decryption consist inversion of 

the matrices and multiplication with inverse of the 2D 

MPDFRFT. So the complexity remains same as in the 

encryption for decryption. 

 

4.) Speed  

A good image encryption algorithm should be fast and does 

encryption in smaller time period. The proposed model used 

less time. The time taken to simulate the model on Pentium 

core I-5 processor system on MATLAB R2011a platform 

takes 1.92sec to deliver a result. While same model for 

DFRFT instead of MPDFRFT uses 1.55sec. So complexity of 

MPDFRFT is higher than DFRFT but computation 

complexity remains same as DFRFT. 

 

5.) Bruteforce Attack 

Brute force attack is an attack that unauthorized person tests 

all possible keys to find the encryption key. When the key 

space is large enough, brute force attack will not be useful for 

an unauthorized person. The possible combination for an 

unauthorized user is N6×1016 for an image having N×N size 

so the possible combination to get correct image, an 

unauthorized person have to enter 1560576 entries. This much 

possible combination is only required to access one key only. 

2-D MPDFRFT  

With parameter 

    ),( qp  

 

2-D MPDFRFT  

With parameter 

    ),( sr  

 

Encrypted  

Image “Y” 

Original  

Image “L” 

                  

                    

2-D MPDFRFT  

With parameter 

    ),( qp   

 

2-D MPDFRFT  

With parameter 

    ),( sr   

 

Encrypted  

Image “Y” 
Decrypted 

Image “  ” 
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In this scheme possibly four key must be matched at a time to 

successfully decrypt image. This is not practically possible. 

5. SIMULATION RESULTS 
In this segment we show the performance of the proposed 

encryption technique. The performance is evaluated on the 

basis of the mean square error (MSE) between the original 

image and the decrypted image, 

Mean Square Error (MSE)  
2

1 1

),(ˆ),(
1

 


A

i

B

j

jiLjiL
AB

 

Where A  and B  indicated the size of the image while 

),( jiL and ),(ˆ jiL indicates the original and decrypted 

image of pixel ),( ji respectively. 

The grayscale input image of “Lena” with a size of 256 × 256, 

as shown in Fig. 3(a), is serving as the original image which is 

to be encrypted. Fig. 3(c) shows the encrypted  image “Y” 

using the double random phase encoding in the MPDFRFT 

domain, where the elements of the 1×256 encryption 

parameter vectors qp,  and sr ,  are independent and 

randomly chosen from the interval [0, 2]. if the correct 

parameter vectors for decryption is used decrypted output is 

generated as shown in Fig. 3(d), which is almost same as the 

original image. The quality measure between original and 

decrypted image is measure by mean square error. If the 

incorrect key or wrong parameter vector is utilized to decrypt 

the image is retrieved as shown in fig. 3(e). If the key and 

parameter vectors are marginally deviated from its original 

key the decryption is failed. The results shown in fig. 4 are 

shows the robustness and effectiveness of the system towards 

change in the input image. The system also provides almost 

same MSE as received in the case of Lena Image than 

photographer image. The fig. 5 shows the sensitivity of 

system in order with deviation in original key with respect to 

the normalized MSE and it shows that the system is sensitive 

by the deviation from -0.005 to + 0.005. The deviation is 

independent of the parameter and uniformly distributed over 

the interval. Fig. 5 also plots the normalized MSEs of the 

decrypted images for the double random phase encoding in 

the DFRFT domain, Experiment results show that the double 

random phase encoding in the MPDFRFT domain is much 

more sensitive to the decryption parameter error than that in 

the DFRFT domain.  

It concludes that a small deviation from its original secret key 

will result in the large errors between encrypted and decrypted 

image. The encrypted image can be perfectly decrypted if and 

only if the 2D MPDFRFT parameters are all perfectly 

matched. It should also be noted that if the size of the image 

increase the dealing with the sensitivity of the fractional 

orders increases considerably and the MSE of incorrectly 

decrypted images also increases considerably. 

     

Fig.3 (a) Original Image    (b) Image encrypted at 1st stage    

    
(c) Image Encrypted at 2nd stage     (d) Decrypted Image 

 
(e) Decrypted Lenna Image with incorrect parameter   

   
Fig.4 (a) Original Image     (b) Encrypted Image at 1st level 

  
(c) Image Encrypted at 2nd level  (d) Decrypted Image with   

                                                           correct key 

 
(e) Decrypted Cameraman Image with incorrect key 
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Fig 5: Normalized MSE by varying the original key in 

MPDFRFT and DFRFT domain. 

Table 2. Mean Square Error (MSE) for Lena and 

Cameraman Images 

     MSE 

 

Image    

Min. MSE Max. MSE 
Average 

MSE 

Leena 
6.8256×10-13 1.0275×10-12 8.5431×10-13 

Cameraman 
1.1816×10-13 1.6073×10-12 9.1226×10-13 

Table 3. Time for algorithm execution 

Image/Time 
Avg. time taken 

using MPDFRFT 

Avg. time taken 

using DFRFT 

Proposed with Lena 

Image 

1.92 Sec. 1.52 Sec. 

Proposed with 

Cameramen  Image 

1.9 Sec. 1.48 Sec. 

Pei and Hsue (2009) 

[13] 

3.3455 Sec. ---- 

Mohammad & 

Shahriar (2012) [45] 

2.8986 Sec. ----- 

 

6. CONCLUSION 
In this article, a new image encryption model is proposed on 

the basis of 2D-MPDFRFT with eigen decomposition based 

DFRFT by taking different fractional powers for different 

eigen values. The MPDFRFT is much more flexible than the 

DFRFT because it has multi order parameters. The proposed 

model utilizes the double random phase encoding in the 

MPDFRFT domain to encrypt digital images. This new 

encryption method significantly enhances data security, 

because the order parameters of the MPDFRFT can be 

exploited as extra keys for decryption comparative to DFRFT. 

The min MSE between the original and correctly decrypted 

image is 6.8256 × 10-13 and 1.1816 × 10-13 for Lena and 

cameraman images respectively. The computation complexity 

based on MPDFRFT remains same as of the DFRFT. The 

brutforce attack requires 1560576 min attempt to crack the 

original key. The time taken to execute an algorithm is 

reasonable than other algorithm executed by pei [13] and 

Shahriar [45]. 
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