
International Journal of Computer Applications (0975 – 8887)

Volume 94 – No.17, May 2014

27

ASIC Implementation of 32 and 64 bit Floating

Point ALU using Pipelining

Dave Omkar R.

Student
VIT University

Vellore, TamilNadu

Aarthy M.
Assistant Professor

VIT University
Vellore, TamilNadu

ABSTRACT

The 32-bit and 64-bit Floating point Arithmetic Logic Unit is

a main part in the design of computers. The Aim of this paper

is high performance through the pipelining concept compared

to non-pipelining. This ALU includes all the arithmetic and

logical operations. The Pipelined modules are independent of

each other. The novelty is to design pipelined modules like

left shift, right shift, increment, decrement and logical

modules. The Arithmetic pipelined modules are also

modified. These modules use single and double precision

IEEE 754 standard to carry out the required operation. All

modules in the ALU design are realized using Verilog HDL.

Test vectors are given to the inputs of the floating point ALU

to testify its functionality. The simulation is carried out with

ModelSim 6.5b simulator and RTL synthesis is done with

RTL Compiler tool in Cadence. Physical design of this

architecture is done with SoC Encounter cadence tool in

180nm technology.

General Terms

Algorithm, Floating point number.

Keywords

, ALU, ASIC, IEEE 754, LSB, MSB, Verilog HDL.

1. INTRODUCTION
Floating Point numbers are used when there is necessity

numbers to be very large or to be very small [1]. Floating

point representation has its advantages of its resolution and

accuracy compared to fixed point number representation.

Numbers in the floating point are represented in the form of

bit string. This bit string is combination of sign bit, mantissa

and exponent power. This representation is called IEEE 754

standard [2].The single precision of floating Point is shown in

Fig 1[2].

Sign Exponent Mantissa

1 bit 8 bit 23 bit

31 30 22

Fig 1: Basic IEEE 754 standard format for single precision

For double precision IEEE 754 standard, the difference in the

Fig 1 is Exponent is 11 bit wide and mantissa is 52 bit wide.

The format for the single precision is written below.

 (1)

Where 0<e<255 and .

For double precision, the difference is in the exponent. It is

1023 instead of 127 and the range of e is 0<e<2047.

ALU is a digital module that performs all the arithmetic and

logical operations. It is an important block in CPU.

Depending on the selection bits ALU executes the appropriate

operation and gives the result. Along with ALU output there

are also status bits which represent exception in the arithmetic

operations. They are result zero, overflow, and underflow,

divide by zero and normal operation. Pipelining is a special

technique to give the faster output and reduce the delay in the

design. It allows many operations to occur in parallel.

Pipelining reduces the critical path in the circuit hence

increases the speed.

Generally in Pipelining, each operation of the stage is

performed at each clock pulse and concurrently the output of

the previous stage is given to the next stage so there is no

waste of clock pulse in the pipelining [3].Implementing

pipelined architecture of floating point ALU gives faster

results. The proposed 32 and 64 bit proposed floating point

ALU carry out 16 different arithmetic and logical operations

with pipelining [4]. The modified addition, multiplication and

division algorithms of the floating point numbers are designed

using Verilog HDL. The proposed Left shift, Right shift,

Increment, Decrement and all logical modules are also

implemented for Single precision and double precision.

In Proposed Pipelined modules, there are maximum 6 stages

as shown in the Fig 2 .So, after 6 clock pulse, the first output

comes and at 7th clock pulse second output comes. It reduces

the number of clock pulses.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No.17, May 2014

28

Stage1 Stage2 Stage3 Stage4 Stage5 Stage6

Stage1 Stage2 Stage3 Stage4 Stage5

Stage1 Stage2 Stage3 Stage4

Stage1 Stage2 Stage3

Srage1 Stage2

Srage1

Stage6

Stage5

Stage4

Stage3

Stage2

Fig 2: Stages in Pipelining

2. BACKGROUND
The main target of the previous work was to implement 16 bit

floating point ALU using pipelined modules in VHDL[1].It

can be viewed in Fig 3. The sub-objectives were to design

pipelined addition and sub traction. The operations are limited

to only four arithmetic operations like addition, subtraction,

multiplication and division [4].

The addition, subtraction, multiplication and division were

done by using arithmetic operator. The previous work has

been done for 16 and 32 bit floating point ALU [4]. The

maximum number of stages up to pipelining was up to 4.

DEMUX

DEMUX

DEMUX

16 bit

ADD

SUB

DIV

MUL

MUX

MUX

16 bit

a

b

CLK

16 bit

STATUS

STATUS OUT

 OUT

Fig 3: Top level view of the ALU design

3. DESIGN AND METHODOLOGY
The new architecture of 32 bit and 64 bit floating point ALU

with pipelined modules has been implemented which contains

all the arithmetic as well as logical operations These modules

have 4 or more than 4 pipelined stages.

3.1 Modified Top Level architecture of 32-

bit ALU
As shown in Fig 4, the modified top level architecture of 32-

bit floating point ALU consists of 3 levels. In, first level there

are 3 demultiplexers .first demultiplexer is for selecting the

first operand and second demultiplexer is for selecting the

second operand and last demultiplexer is to select the clock. In

second level, there are 16 blocks consists of all the arithmetic

and logical operations depending on the selection bits as

shown in the TABLE 1. These blocks have two outputs ALU

out and status. Third level consists of 2 multiplexer .First
multiplexer is used to select the ALU operation and second

multiplexer is used to select status bits. These status bits are

shown in TABLE 2.

1:16

Demux

1:16

Demux

1:16

Demux

Addition

Subtraction

Multiplication

Division

Reciprocal

NOT

NAND

AND

OR

Right

Shift

Incre

ment

Decre

ment

32 bit

32 bit

Operand a

Operand b

Clock

2:1

MUX

2:1

MUX

2:1

MUX

16:1

Mux

16:1

Mux

Selection

bits[4:0]
{

ALU

Out

Status

s

s

s

s

s

2:1

MUX

NOR

Left

Shift

2:1

MUX

XNOR

XOR

Fig 4: Modified top level view of 32 bit Floating Point

ALU

 Table 1. Selection of ALU operation

No. Selection bits[3:0] ALU Operation

1 0000 Addition

2 0001 Subtraction

3 0010 Multiplication

4 0011 Division

5 0100 Reciprocal

6 0101 Left Shift

7 0110 Right Shift

8 0111 Increment

9 1000 Decrement

10 1001 AND

11 1010 OR

12 1011 NAND

13 1100 NOR

14 1101 XOR

15 1110 XNOR

16 1111 NOT

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No.17, May 2014

29

Table 2. Status bits and status

No.
 Status bits[2:0] Status

1 000 Result zero

2 001 Overflow

3 010 Underflow

4 011 Normal Operation

5 100 Divide by Zero

3.2 Modified Top level architecture of 64-

bit ALU
The difference between 32 and 64 bit floating point ALU is in

giving the size of the operands. For 64 bit floating point ALU,

the operands A and B are 64 bits wide, because This ALU

uses double precision IEEE 754 standard format. So, the top

view of 64 bit floating point is constructed as in the Fig 4. But

the inputs and output is 64 bit instead of 32 bit.

3.3 Modified 32-bit and 64-bit Pipelined

floating point Addition/Subtraction module
The algorithm and architecture for the 32 and 64 bit pipelined

floating point addition/subtraction has been designed.

3.3.1 Modified Addition/Subtraction Algorithm
Start

Take two floating point

numbers in IEEE 754

standard

Separate mantissa, exponent

and sign bits and add the

implied bit in the mantissa

Compare

exponents
If e1>e2

If e2>e1

If e1=e2

Take the difference of

exponents and left shift

the smaller mantissa by

the difference

Don’ t take difference

and shift the exponent

,just pass the value of

exponent and mantissa

Take the difference of

exponents and left shift

the smaller mantissa by

the difference

Depending upon the above

conditions take one mantissa,

exponent and sign bit

Is sign bit is 1?

XOR the Sign bits

 of mantissas

Subtract

the

mantissas

Is the MSB of

the result

 mantissa 1?

Left shift mantissa until

MSB

 becomes 1 and

decrement the exponent

by 1

Compute the final mantissa & drop

implied bit, then combine resultant

mantissa ,exponent and sign bit to

form the IEEE 754 format

Terminate

Normalization is

not needed

Add the

mantissasYes No

Yes No

Fig 5: Flowchart for modified addition/subtraction

algorithm

For 64 bit add/sub, The procedure is same but the mantissa

and exponent bits are 52 bits and 11 bits wide. For 32 and 64

bit subtraction, the change is in the operation of the mantissa

i.e. addition becomes subtraction and vice versa.

3.3.2 Modified Pipelined Addition/Subtraction

architecture
For this addition/subtraction algorithm, new 32 bit pipelined

addition/subtraction module has been implemented. D-FF is

used for the pipelining. It is shown in Fig 6.

Operand a

Operand b

32 bit

32 bit

Clock

s1

s2

e1

m1

e2

m2

Unpack

module

out[31:0]

status[2:0]

Comparator

and

Barrel

shifter

e3

e4

Add/sub

module

sc1

sc2

e5

mc1

mc2

sr

enNormalize

module

sr2

ec

mc

st

Packer
Exception

Checker mf

sr1

D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

s1d

s2d

e1d

e2d

m1d

m2d

sc1d

sc1d

e3d

e4d

mc1d

mc2d

D-

FF

D-

FF

D-

FF

srd

e5d

mfd

D-

FF

D-

FF

D-

FF

mn

sr1d

ed

mnd

D-

FF

D-

FF

D-

FF

D-

FF

sr2d

ecd

mcd

std

Fig 6: 32- bit pipelined add/sub architecture

The working of the above architecture is explained below.

3.3.2.1 Unpack module
This module will separate mantissa, exponent and sign bit

from floating point numbers. It will also add the implied bit to

the mantissa.

3.3.2.2 Comparator and Barrel Shifter
This module will compare the exponents of the operands and

shift the smaller exponent by the difference of their

exponents.

3.3.2.3 Add/sub module
This module will add or subtract depending upon their signs.

This sign is determined by doing XOR of the two sign bits of

the operands. Here 24x24 Ripple carry adder for single

precision and 53x53 Ripple carry adder are used for addition

because of its simplicity. For sub traction, the Ripple borrow

sub tractor is used .It uses full sub tractor instead of full adder.

3.3.2.4 Normalize module
In this module, the normalizing of the final result is carried

out. If MSB of the addition result is 0, the mantissa is left

shifted until the MSB becomes 1 and Exponent should be

decremented.

3.3.2.5 Exception Checker
In this module, exceptions are checked like overflow,

underflow, result zero and normal operation after checking

mantissa and exponent. If exponent is 255 then “overflow”

exception will be raised. If exponent is 1, then “underflow”

exception will be raised. If both operands are zero, “Result

zero” exception will be raised. Otherwise “Normal Operation”

will be raised.

3.3.2.6 Packer
Packer module will combine the resultant sign bit, exponent

and mantissa. It will drop the implied bit from the resultant

mantissa.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No.17, May 2014

30

The modified 64-bit pipelined floating point add/sub module

is implemented by changing the mantissa and exponent bits in

the operands.

3.4 Modified 32-bit and 64-bit Pipelined

floating point Multiplication module
The algorithm and architecture for the 32 and 64 bit pipelined

floating point multiplication has been implemented.

3.4.1 Modified Multiplication Algorithm
It is shown in Fig 7.

Start

Take two floating point

numbers in IEEE 754

standard

Separate mantissa, exponent

and sign bits and add the

implied bit in the mantissa

Multiply Mantissas of

two operands

Calculate the sign

of the result by

XOR operation

Add the exponents

and subtract the

bias

Is the MSB of

 the result

 mantissa 1?

Left shift mantissa until

MSB becomes 1 and

decrement the exponent

by 1

Compute the final mantissa &drop

implied bit,then combine resultant

mantissa ,exponent and sign bit to

form the IEEE 754 format

Terminate

Yes No
Normalization is

not needed

Check the exception

and raise the status

bits

Fig 7: Flowchart for modified multiplication algorithm

For 64 bit multiplication, the procedure is same but the

mantissa and exponent bits are 52 bits and 11 bits wide

instead of 23 bit in mantissa and 8 bit in exponent in 32 bit

multiplication.

3.4.2 Modified Pipelined Multiplication

architecture

Mantissa

Multiplier

module

Exponent adder

with bias

subtraction

Operand a

Operand b

32 bit

32 bit

Clock

s1

s2

e1

m1

e2

m2

Unpack

module

out[31:0]

status[2:0]

sc e5

m3

sr

Normalize

module

se

ec

mc

st

Packer
Exception

Checker

mf
D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

s1d

s2d

e1d

e2d

m1d

m2d

D-

FF

D-

FF

D-

FF

sn

en

mn

snd

ed

mnd

D-

FF

D-

FF

D-

FF

D-

FF

sed

ecd

mcd

std

Sign Calculation

module

e3

D-

FF

D-

FF

D-

FF

scd

e3d

m3d

Fig 8: 32-bit pipelined multiplication architecture

The working of the Fig. 8 is explained below.

3.4.2.1 Sign Calculation module
This module calculates the output sign of the resultant

mantissa by doing the XOR operation of the two sign bits of

the operands .If the resultant sign is 0 ,then the result is

positive and vice versa.

3.4.2.2 Exception adder with bias subtraction
It computes the result exponent by adding the exponents of

two operands with bias subtraction of (01111111) b

3.4.2.3 Mantissa Multiplier module
This module will calculate the multiplication of the two

mantissas. Here the multiplication should be done for 24x24

in single precision and 53x53 in double precision .But to

reduce the area 12x12 multiplication has been done in the

implementation of mantissa multiplier module .For the

multiplication carry save multiplier has been used because of

its less use number of half adder and full adder.

The 64 bit pipelined floating point multiplication module is

implemented by changing the mantissa and exponent bits in

the operands.

3.5 Modified 32-bit and 64-bit Pipelined

floating point Division module

3.5.1 Modified Division Algorithm
It is shown in Fig 9.

Start

Take two floating point

numbers in IEEE 754

standard

Separate mantissa, exponent

and sign bits and add the

implied bit to the mantissa

Calculate the sign

of the result by

XOR operation

Subtract the

exponents and add

the bias

Is the MSB of

 the result

 mantissa 1?

Left shift mantissa

until MSB becomes 1

and decrement the

exponent by 1

Compute the final mantissa & drop

implied bit ,then combine resultant

mantissa ,exponent and sign bit to

form the IEEE 754 format

Terminate

Yes No
Normalization

is not needed

Check the exception

and raise the status

bits

Compare

mantissaIf m1<m2 If m1>m2

Right shift m1 by 1

and decrement

exponent by 1

Make first mantissa 2n

bits by padding 0s to

LSB

No shift is

needed

Divide m1 by m2 and

compute the result

mantissa

 Fig 9: Flowchart for modified division algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No.17, May 2014

31

3.5.2 Modified Pipelined Division architecture

Divider

module

Exponent

subtractor

Operand a

Operand b

32 bit

32 bit

Clock

s1

s2

e1

m1

e2

m2

Unpack

module

out[31:0]

status[2:0]

sc e5

m3

sr

Normalize

module

se

ec

mc

st

Packer
Exception

Checker

mfD-

FF

D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

s1d

s2d

e1d

e2d

m1d

m2d

D-

FF

D-

FF

D-

FF

sn

en

mn

snd

ed

mnd

D-

FF

D-

FF

D-

FF

D-

FF

sed

ecd

mcd

std

Sign Calculation

module

e3

D-

FF

D-

FF

D-

FF

scd

e3d

m5d

Division

Aligner

e4

m4

flag

m5

D-

FF

fg

e

fgd D-

FF

fn
fnd

Fig 10: 32 bit pipelined division architecture

The working of the Fig.10 is explained below.

3.5.2.1 Divide Aligner
This module will align the mantissa to get the desired result.

As mentioned in the division algorithm, if first mantissa is

greater than second mantissa, Division Aligner will shift the

first mantissa by 1 and decrement the exponent by 1.It also

indicates the division flag for the exception like divide by

zero, result zero and normal operation.

3.5.2.2 Divide Module
This module will divide the mantissa by the restoring method.

It is explained below.

-First shift left the dividend by 1.

-Subtract the divisor. If the carry is 1 do not restore. If carry

is 0 i.e. answer is negative then restore by adding back to the

divisor.

-Place the carry as the LSB of the intermediate answer.

-Do this procedure up to n –iterations, where n is number of

bits in the divisor. Here n is 24 bits for single precision and 53

bit for double precision.

3.5.2.3 Exponent Sub tractor
It subtracts the exponents of two operands and adds the bias

of 127 in single precision and 1023 in double precision.

3.6 The Proposed 32 and 64-bitFloating

Point Reciprocal Architecture
For the reciprocal architecture, the algorithm is same as

division algorithm. The only difference is that the first

mantissa is always 1.The architecture for Reciprocal

architecture is shown in Fig 11.

Divider

module

Exponent

subtractor

Operand a

Operand b

Clock

s1

e1

m1

Unpack

module

out[31:0]

status[2:0]

sc e5

m3

sr

Normalize

module

se

ec

mc

st

Packer
Exception

Checker

mfD-

FF

D-

FF

D-

FF

s1d

e1d

m1d

D-

FF

D-

FF

D-

FF

sn

en

mn

snd

ed

mnd

D-

FF

D-

FF

D-

FF

D-

FF

sed

ecd

mcd

std

Sign Passer

e3

D-

FF

D-

FF

D-

FF

scd

e3d

m5d

Recipro

-cal

Aligner

e4

m4

flag

m5

D-

FF

fg

e

fgd D-

FF

fn
fnd

2:1

MUX

32 bit

32 bit

D-

FF

Selection

bit

o od

Fig 11: 32- bit proposed pipelined Reciprocal architecture

3.6.1 2:1 Multiplexer
This multiplexer will select one operand out of two operands

which is to be reciprocal.

3.6.2 Sign passer
This module just passes the sign of the operand to the next

module.

3.6.3 Reciprocal Aligner
It will align the mantissa of the operand. In detail, it compares

the mantissa of 1 to the mantissa of the given operand and

aligns that mantissa according to the division algorithm which

is given in the Section 3.3.2.

3.6.4 Exponent Sub tractor
It subtracts the exponent of the operand with the exponent of

1 and adds the bias of 127 in single precision and 1023 in

double precision.

3.6.5 Divide Module
Divider module will divide the mantissa of 1 to the mantissa

of the operand. These mantissas are taken from the previous

module Reciprocal aligner which aligns the mantissa

according to the conditions mentioned in the division

algorithm.

3.7 The Proposed 32 and 64-bitFloating

Point Left shift and Right Shift architecture

2:1

MUX

Operand a

Operand b

32 bit

32 bit

D-

FF

Selection

bit

o od Unpack

module

s1

e1

m1

D-

FF

D-

FF

D-

FF

s1d

e1d

m1d

Left

Shifter

sl

el

ml

Exception

Checker

D-

FF

D-

FF

D-

FF

sld

eld

mld

Packer

D-

FF

D-

FF

D-

FF

sc

ec

mc

sc

Clock

out[31:0]

status[2:0]

ecd

mcd

Fig 12: 32-bit proposed pipelined Left Shift architecture

As Shown in Fig 12, the unpack module, Exception checker

and Packer module are same as described in the section 3.3.2.

The new block is left shifter. It is explained below.

3.7.1 Left Shifter
This module will shift the mantissa part of the floating point

i.e. the exponent will be incremented by 1.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No.17, May 2014

32

2:1

MUX

Operand a

Operand b

32 bit

32 bit

D-

FF

Selection

bit

o od Unpack

module

s1

e1

m1

D-

FF

D-

FF

D-

FF

s1d

e1d

m1d

Compara

tor and

shifter

sc

ec

mc

Exception

Checker

D-

FF

D-

FF

D-

FF

sid

eid

mid

Packer

D-

FF

D-

FF

D-

FF

se

e

me

Clock

Mantissa

Incrementor

by 1

scd

ecd

mcd

D-

FF

D-

FF

D-

FF

Normalize

module

si

ei

mi

sid

D-

FF

D-

FF

D-

FF

out[31:0]

status[2:0]

sn

en

mn

snd

edn

mnd

sed

ed

med

Fig 13: 32- bit proposed pipelined Increment architecture

For Right shift architecture, the difference is in the Right

shifter instead of Left shifter in the Fig. 12.In Right shifter,

the exponent will be decremented by 1 to get the operand

right shifted.

3.8 The Proposed 32 and 64-bitFloating

Point Increment and Decrement

architecture
The working of Fig.13 is explained below.

3.8.1 Comparator and shifter

This module will compare the exponent of the operand to the

011111111 in single precision and 01111111111 in double

precision, because to increment the number by 1, add the

mantissa to 1. So, the single precision IEEE 754 standard

format of 1 is 3F800000 and double precision is

3FF0000000000000.Comparator will compare this exponent

and shifter will shift the mantissa of 1 by the difference of the

exponent of the operand and exponent of 1.

3.8.2 Mantissa Increment by 1
This module will add or subtract the mantissa with the

mantissa of 1 depending upon the sign of the first operand.

For Decrement architecture, the difference is in the Mantissa

decrement by 1 instead of Mantissa increment by 1 in the Fig

13.Decrement architecture, the mantissa will be subtracted

with 1 instead of addition.

3.9 The proposed 32-bit and 64-bit

Pipelined Logical modules

Operand a

Operand b

32 bit

32 bit

Clock

s1

s2

e1

m1

e2

m2

Unpack

module

out[31:0]

status[2:0]

Comparator

and

Barrel

shifter

e3

e4

AND

Gate

sc1

sc2

e5

mc1

mc2

sr

enNormalize

module

sr2

ec

mc

st

Packer
Exception

Checker mf

sr1

D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

D-

FF

s1d

s2d

e1d

e2d

m1d

m2d

sc1d

sc1d

e3d

e4d

mc1d

mc2d

D-

FF

D-

FF

D-

FF

srd

e5d

mfd

D-

FF

D-

FF

D-

FF

mn

sr1d

ed

mnd

D-

FF

D-

FF

D-

FF

D-

FF

sr2d

ecd

mcd

std

Exponent

Passer

XOR

Gate

 Fig 14: 32-bit proposed pipelined Logical AND

module

3.9.1 Comparator and shifter
The resultant sign is calculated by the XOR operation of the

sign bits of the two operands.

3.9.2 Exponent Passer
This passer will pass the value of the output exponent to the

next module

3.9.3 AND Gate
This gate is used to perform the Logical AND operation of the

mantissas of two operands.

The Logical modules like OR, NOR, NOT, XOR & XNOR

are implemented by changing the gate in the Fig 14 instead of

AND gate. The new 64 bit pipelined floating point Logical

modules for the above operations are implemented by

changing the operand bit size 64 instead of 32bit.

4. RESULTS AND DISCUSSION
The Simulations has been done in ModelSim 6.5 by giving the

different test vectors to the 32 and 64 bit Floating point ALU

with pipelined modules. The Simulation results are shown by

merging the two operations of the ALU. The Synthesis results

in 180 nm of both ALU are shown in the TABLE 3.

For 32-bit and 64-bit operations of ALU, the inputs and

outputs are in the form of IEEE 754 standard. For example,

the addition & subtraction are performed as under.

Operand 1= (21.43) d = (41ab70a4) h= (40356e147ae147ae) h.
Operand 2 = (7.23) d = (40e75c29) h= (401ceb851eb851ec) h.

Output = (28.67) d= (41E55C29) h= (403cae147ae147ae) h.
For Subtraction,

Operand 1= (15.25) d = (41740000) h= (402e800000000000) h.
Operand 2 = (-5.5) d = (c0b00000) h= (C016000000000000) h.
Output = (20.75) d= (41a60000) h= (4034c00000000000) h.

4.1 Simulation Results for 32-bit and 64-bit

Floating Point ALU

Fig 15: output of 32-bit Floating Point Addition and

Subtraction

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No.17, May 2014

33

Fig 16: output of 32-bit Floating Point Multiplication and division

Fig 17: output of 32-bit Floating Point Reciprocal

Fig 18: output of 64-bit Floating Point Addition and Subtraction

Fig 19: output of 64-bit Floating Point Multiplication and Division

Fig 20: output of 64-bit Floating Point Reciprocal

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No.17, May 2014

34

4.2 Synthesis results

4.2.1 Report summary of area, power and delay

Table 3 Parameters for 32 bit Floating Point ALU with

and without Pipelining

Table 4 Parameters for 64 bit Floating Point ALU with

and without Pipelining

From the Table 3 and Table 4, it can be summarized that the

delay is less for 32 and 64 bit Floating Point ALU with

Pipelining compared to without pipelining. The frequencies of

Operation of 32-bit Floating Point ALU and 64-bit Floating

Point ALU with Pipelining are 1.122GHz and 0.9823GHz

respectively.

4.2.2 RTL Schematic

Fig. 21: RTL Schematic of 32-bit Floating Point ALU with

Pipelining

Fig. 22: RTL Schematic of 64-bit Floating Point ALU with

Pipelining

4.3 Backend Results

Fig 23: Chip Layout of 32-bit floating point ALU with

pipelining

Fig 24: Chip Layout of 64-bit floating point ALU with

pipelining

 Parameters 32-bit Floating

point ALU with

Pipelining

 32-bit Floating

point ALU

without Pipelining

 Cells 41092 37621

 Cell

Area(mm2)
 0.936860 0.820796

 Power(nW) 213482898.96 15799143.81

Worst path

delay (ns)

 0.891 16.231

 Parameters 64-bit Floating

point ALU with

Pipelining

 64-bit Floating

point ALU

without Pipelining

 Cells 136564 103096

 Cell

Area(mm2)
 3.1175726 2.763565

 Power(nW) 971665797.7 773982042.61

Worst path

delay (ns)

 1.018 34.323

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No.17, May 2014

35

5. ACKNOWLEDGEMENTS
It is pleasure to thank MR. JAYKRISHANAN P .Asst.

professor from the department of SENSE (School of

Electronics engineering), VIT University for helping in the

project work. His guidance, encouragement and suggestions

are helpful from the starting to the end of this project.

6. CONCLUSION AND FUTURE WORK
In this paper, The 32-bit and 64- bit floating point ALU using

Pipelining are implemented successfully and the comparison

of 32 and 64 bit floating point ALU using pipelining has done

with 32 and 64 bit floating point ALU without using

pipelining with respect to area, power and delay. The

simulation with different test vectors is done in Modelsim

6.5b. The Rounding logic for the floating point numbers after

doing the required arithmetic and logical operations can be

implemented for 32 and 64 bit floating point ALU. The Power

got after the synthesizing can be lowered by different low

power techniques. For the complete analysis of the ASIC

design, one can do the post-layout simulation (Formal

verification) that was left in this paper.

7. REFERENCES
[1] Rajit Ram Singh, Asish Tiwari, Vinay Kumar Singh,

Geetam S Tomar,” VHDL environment for floating

point Arithmetic Logic Unit -ALU design and

simulation”, 2011 International Conference on

Communication Systems and Network Technologies.

[2] Kai Hwang Book,“Advanced Computer Architecture”.

[3] ANSI WEE STD 754-1985, “IEEE Standard for Binary

Floating-Point Arithmetic”, IEEE, New York, 1985.

[4] Mamu Bin Ibne Reaz, MEEE, Md. Shabiul Islam,

MEEE, Mohd. S. Sulaiman, MEEE,” Pipeline Floating

Point ALU Design using VHDL” ICSE2002 Proc.

2002 , Penang, Malaysia.

[5] Shao Jie, Ye Ning, Zhang Xiao-Yan,” An IEEE

compliant Floating-point Adder with the Deeply

Pipelining paradigm on FPGAs”, 2008 International

Conference on Computer Science and Software

Engineering.

[6] Prashant Gurjar, Rashmi Sola Pooja Kansliwal,

Mahendra Vucha, “VLSI Implementation of Adders for

High Speed ALU.

[7] A. Anand Kumar Book,” Fundamentals of Digital

Circuits”.

[8] V.Narasimha rao, V.Swathi,” Normalization on floating

point multiplication using Verilog HDL”, International

Journal of VLSI and Embedded Systems-IJVES,

ISSN: 2249 – 6556.

[9] Poornima M, Shivaraj Kumar Patil, Shivukumar ,

Shridhar K P , Sanjay H,” “Implementation of Multiplier

using Vedic Algorithm” International Journal of

Innovative Technology and Exploring Engineering

(IJITEE), ISSN: 2278-3075, Volume-2, Issue-6, May

2013.

[10] Itagi Mahi P. and S. S. Kerur “ Design and Simulation of

Floating Point Pipelined ALU Using HDL and IP Core

Generator” ISSN 2277– 4106©2013 INPRESSCO.

[11] Sukhmeet Kaur, Suman, Manpreet Singh Manna, Rajeev

Agarwal,” VHDL Implementation of Non Restoring

Division Algorithm Using High Speed

Adder/Subtractor” International Journal of Advanced

Research in Electrical, Electronics and Instrumentation

Engineering Vol. 2, Issue 7, July 2013.

[12] Shuchita Pare, Dr. Rita Jain,”32 Bit Floating Point

Arithmetic Logic Unit A LU Design and

Simulation,”IJETECS, Vol-1, Issue 8, December 2012.

[13] Deepti Shrivastava,Rajesh Nema,” Double Precision

floating point ALU Implementation using VHDL”

,International Journal of Advanced Electronics

&communication systems Approved by CSIR-NISCAIR

ISSN NO:2277-7318.

[14] V.Vinay Chamkur, Chetana. R,” Design and

Implementation of IEEE-754 Addition and Subtraction

for Floating Point Arithmetic Logic Unit “, in

Proceedings of International Conference on Computer

Science, Information and Technology, Pune, ISBN-978-

93-81693-83-4, 23rd June, 2012.

[15] Surendra Singh Rajpoot, Nidhi Maheshwari, D.S. Yadav,

”Design and Implementation of efficient 32-bit floating

Point multiplier using verilog”, International Journal of

Engineering and Computer Science,Vol-2 ,Issue 6,June

2013,Page no.2098-2101.

[16] A book on “Verilog HDL: A Guide to Digital Design and

Synthesis” by. Samir Palnitkar , second edition.

[17] A User Manual on “GUI Guide for Encounter® RTL

Compiler” by cadence®, Product Version 6.1, June,

2006.

[18] A User Manual on “Using Encounter® RTL Compiler”

by cadence®, Product Version 9.1, September 14, 2009.

[19] Website:http://babbage.cs.qc.cuny.edu/IEEE-

754.old/32bit.html.

[20] Website:http://www.academic.marist.edu/~jzbv/architect

ure/MultiplicationDivisionFP.htm.

IJCATM : www.ijcaonline.org

