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ABSTRACT 
The key motivation for the study of virtual screening is to 

reduce the time and cost requirement of the drug discovery 

process.   Virtual screening is a computational method for 

finding an efficient drug molecule from pool of potential 

candidates. There are two different methods for virtual 

screening 1) structure based 2) ligand based. In the structure 

based method, 2D or 3D structure of a target molecule is used 

to screen the ligands which do not bind to the target molecule. 

Ligand based virtual screening is based on the fact that 

ligands similar to an active drug molecule might be active. 

The amount of information required is different in both the 

case. Structure based virtual screening is computationally 

intensive and complex while a few active ligand information 

is enough to start ligand based virtual screening. Based on the 

type of information, ligand based virtual screening can be 

performed in different ways.  The machine learning approach 

using molecular graphs has been found to be very effective. 

Graph kernel is the similarity measure used to screen 

molecular graphs based on the structure. It is based on the fact 

that structurally similar molecules will have same property. In 

this review we have summarized the recent development in 

graph kernel for chemical molecule and elaborated upon the 

need of more accurate and efficient graph kernel with less 

computational complexity. The accuracy of different methods 

have been compared using standard dataset. The review 

shows the current state of art in the ongoing research in the 

design of efficient walk kernels. 
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1. INTRODUCTION 
Increased amount of structured and semi-structured data in 

various fields entail for efficient data mining techniques. In 

pharmaceutical sector, huge amount of chemical information 

present in the databases pose new challenges for machine 

learning applications in computational drug discovery. One of 

the sources of active drug is natural extracts. Combinatorial 

chemistry can produce millions of compounds by changing 

the constituents of a compound. Combinatorial chemistry is a 

useful tool for making more effective drugs from the already 

existing ones.  Computational techniques help to analyse the 

property of a drug even before it is synthesized. In this way, 

computational techniques can reduce the time and cost 

requirements of drug discovery process. Machine learning 

technique requires efficient data handling. Chemical databases 

contain nearly 1060 molecules from which effective drug 

molecule can be pin pointed using efficient virtual screening. 

Virtual screening is an in-silico process of picking up 

effective drug from a pool of chemical compounds (virtual 

chemical library). The long list of compounds for the in-vivo 

and in-vitro analysis can be narrowed down by efficient 

virtual screening. Information about either the target molecule 

or the ligand or both is required for virtual screening. Based 

on the available information virtual screening can be 

accomplished in two ways –ligand based and structure based 

virtual screening. Ligand based virtual screening utilizes 

topological, structural or pharmacophore information. It is 

used when no information about the target is available. 

Structure based virtual screening is based on the interaction 

between target and ligand, wherein the structure of the target 

molecule is already known. Docking is the methodology used 

for the structure based virtual screening in which the ligand 

molecule binds a appropriately with the target. The drug like 

property of ligand is based on its ADMET (adsorption, 

distribution, metabolism, excretion and toxicity) properties 

[1]. In ligand based virtual screening ADMET property, 

lipophilicity and molecular weights are the commonly used 

filters [2]. Efficient storage and recovery of chemical 

information is required for combinatorial chemistry and 

virtual screening. Computational techniques like 

combinatorial chemistry and virtual screening reduces the 

time and cost of drug discovery. Ligand based screening can 

be performed in different ways but machine learning method 

is the preferred and popular choice.  Decades of research in 

machine learning has provided a wide variety of methods like 

supervised learning, reinforcement learning, transduction etc. 

Recent research works show that Support Vector Machine 

(SVM) can be used as an efficient tool for virtual screening in 

drug discovery. It can be applied to high dimensional space 

with less computational complexity. Some authors have 

introduced SVM-based methods for the prediction of ADMET 

properties of chemical and biological molecules [3]-[5]. 

Successful results have been obtained using one dimensional 

representation of the molecules like fingerprint and other 

types of descriptors. Recent works [6]-[24] show that higher 

dimensional representation can give more accurate prediction. 

In recent years, various approaches have been proposed for 

classification of chemical drugs [6]-[12]. These approaches 

are generally grouped into three major categories based on the 

dimensionality used for the representation of molecules  

i) One-dimensional (1-D) representations: 1D 

representations give information about the constituents of the 

molecule [6]-[9] 

ii) Two-dimensional (2-D) graph gives topological 

information of the molecule [6]-[31];  
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iii) Three-dimensional (3-D) and other higher dimensional 

graphs include the surface information, pharmacophore and 

different configurations of molecules like conformers and 

isomers of molecules [7]-[9].  

Figure 1.shows different representations of arsenic acid. 

Recent research works indicate that 3-D structure based 

classification is used for more accurate result, although 2-D 

structure based classification is widely used due to its lesser 

computational complexity. 

 
 

Figure1: Different structures of arsenic acid 

2. SUPPORT VECTOR MACHINE  
SVM is a widely used machine learning method for Virtual 

screening. SVM is a supervised learning method used for 

classification and regression. In support vector 

classification,  is the input data space and   is the output 

space. 

Support vector classification has two phases,   training phase 

and testing phase.  In training phase            
is the 

training data and           are the corresponding class 

labels (target values).    is the feature vector (attributes), 

dimension of feature vector depends upon the number of 

features used for the classification.  In the training phase input 

data and the corresponding class labels are used to find 

classifier. Testing phase is to find the accuracy of the 

classifier. 

In binary classification,           finding the parameters 

of classifiers is a convex optimization problem. Objective of 

Soft margin SVM is to find classifier with maximum margin 

and minimum number of misclassification. Number of 

misclassification can be reduced by including error term into 

the objective function.    
measures the degree of 

misclassification of ix . Figure 2 represents the classifier and 

the bounding planes. 
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Solution of the above convex optimization gives the values of 

      . The decision function is  

                                                (3) 

 where    is the Lagrangian multiplier and         

is the linear kernel function or similarity between         . 
Non-linearly separable data kernel function is            
and      . 

In equation (3)   
   is known as linear kernel and is useful for 

the classification of linearly separable data. Most of the real 

world datasets are not linearly separable. Nonlinear data in the 

input space can be classified by using linear classifier in the 

high dimensional space.    is the transformation from input 

space  to feature space,      , both these spaces are 

equipped with dot product. Figure 3 explains the feature 

mapping process. 

 

Figure 2: Illustration of classifier finding process 

Kernel method is a set of algorithms in which inner product is 

replaced by a kernel function; kernel function is the measure 

of similarity between data points. Kernel method will reduce 

the computational complexity for the classification of non-

linear data. Kernel matrix should be positive definite and the 

kernel should satisfy Mercer's property. In kernel matrix each 

element is an inner product between data points in the finite 

sample set  ,        
   . Kernel matrix is symmetric 

because                        . Mercer's theorem 

states that the symmetric function     is a kernel function for 

any finite sample space   if the kernel matrix for   is positive 

semi-definite. Gaussian kernel and Dirac kernel are the two 

famous Mercer's kernels. 

Example of Mercer's kernel on structured data include walk 

kernel for undirected graphs, subtree kernel, shortest path 

kernel etc. 

Kernel matrix for finite set   with   data points  
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Figure 3: Illustration of transformation of data from input 

space to feature space. 

3. GRAPHICAL REPRESENTATION OF 

CHEMICAL COMPOUNDS 
Most of the real world problems can be modeled using graphs. 

Graphs can include topological information because of which 

chemical compounds are often represented as graphs. 

Graphical representation is very effective for the efficient 

storage, retrieval and reuse of the information. Graphical 

representation of data helps to classify the drug molecules 

based on ADMET properties. Chemical compounds can be 

represented as direct labeled, direct unlabelled, undirected 

labeled or undirected labeled graphs. Labeled undirected 

graphs are most commonly used in chemoinformatics. Graph 

  is defined by a finite set of vertexes              and a 

finite set of edges             . Label of nodes 

corresponds to the label of atoms and edge label corresponds 

to the bond between atoms. Apart from this many different 

types of labeling can be used to include further information. 

4. GRAPH KERNEL 
Structural data can be represented as a feature vector with 

numerical entries or with local structures.  Data like gene 

sequences, small molecules, interaction networks and 

phylogenetic trees require pre-processing. Representation of 

structured data using numerical values require huge amount of 

pre-processing. Pre-processing is required to find the 

corresponding properties of each molecule from the structure 

analysis.  In graph kernels, the feature vector of graph contain 

substructures (local structures) of graph like walk, subtrees, 

subgraph etc. 

Two graphs    and    are same if all the local structures of 

both these graphs are identical. Graph Kernel is based on this 

type of comparative principle. Different types of graph 

kernels exist based on the types of features used for 

comparison. Walk kernels, tree kernels, diffusion kernels, 

wavelet alignment kernels, shortest path kernel and 

pharmacophore kernel are unremarkably used. The kernel 

function will return the similarity between substructures of 

two graphs. Recent research in kernel methods allows the 

learning in an infinitesimal dimensional space. 

Graph kernel between two graphs    and     
 
is defined as  

                                                     (4) 

                

where                        are the set of substructures of 

graph          .  

5. WALK KERNEL 
Walk is a non-empty sequence of nodes             in 

graph   such that the adjacent nodes are connected by an 

edge. Figure 4 shows all the possible walks in the chemical 

graph of        starting from the first vertex .Walk with no 

repeated nodes is known as path. Cycle is also a path with  

     and     . Length of walk is equal to the number of 

edges in the walk or              . Random walk in a 

graph from particular vertex is walk, where the selection of 

adjacent vertices is a random process. 

Figure 4: illustration of all possible Walks from first 

vertex     in Graph   

Walk kernel was first proposed by Kashima and Inokuchi in 

2002 [12].  Different authors have proposed walk kernels with 

different modifications [11–22]. 

Walk kernel between          is defined as 

                                             (5) 

where          are the set of possible walks on 

graphs         . 

Most of the walk kernels are based on product graphs. There 

are four types of product graphs wherein direct product graph 

is used for walk kernel computation. In product graph kernel 

between Graphs         is based on the number of common 

walks present in both graphs. Number of common walks is 

equal to the number walks in the product graph and it can be 

found out using adjacency matrix of product graph.  Number 

of   length walk between                    is the      

element in the     power of adjacency matrix of the product 

graph. 

Vertex set and Edge set of Direct Product graph    of Graph 

        are defined respectively 
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 Marginalized Walk Kernel 

Kashima and Inokuchi in 2002 [12] proposed random walk 

kernel based vertex product graph with halting probability . 

The value of     depends on the application and its value 

varies from       . In the first part, authors have proposed 

similarity by comparing the vertex labels of walks in both 

graphs and in the second part local information are also 

included by comparing the labels of vertices and labels of its 

adjacent edges and vertices. The kernel function         
between Graphs          is defined as 

        
 

       
         

  

  
         

 

         (8) 

Where         
   is defined as a delta function 

        
    

                        
  

    
                                     

  

                       (9) 

Local information is added to the vertex labels for improving 

the expressiveness. The computational complexity is also high 

for this modified kernel between vertices in graphs         . 

  Modified kernel function         
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Where        returns the neighbour of vertex   connected 

through edge   and     is the set of edges adjacent to  . 

Kernel function defined by Kashima and Inokuchi [12] have a 

lot of similarity with diffusion kernel described by Lafferty 

and Lebanon in 2002 [11]. Diffusion kernel [11] is symmetric 

kernel and is for undirected graphs, while kernel [12] is 

asymmetric and is applicable for directed graphs. Kernel 

proposed Kashima and Inokuchi [12] is symmetric for 

undirected graphs and is useful for structures and semi-

structured data. The accuracy of this kernel is appreciable 

compared to other existing kernels, but the computational 

complexity is very high for this type of kernels. 

Kashima et al., 2003 [15] proposed marginalized kernel for 

labelled graphs. In Marginalized kernel the kernel 

computation is based on the latent variable, latent variables 

are those variables which cannot be measured directly but can 

be deducing from the observed variables. Tsuda et al., [13] 

introduced marginalized kernel for biological sequence in 

2002. Kernel used by Kashima et al., [15] is the special case 

of this kernel. Kernel proposed by Tsuda et al., [13] is based 

on the method used by Jaakkola and Haussler in 1998 [14]. 

Tsuda et al., [13] proposed two types of marginalized kernels, 

Marginalized count kernel and Second order marginalized 

count kernel, and it's depends on both hidden variables and 

visible variables. The joint kernel will return the similarity 

between sequence of vertex and edge labels traversed by 

random walk. In Marginalized kernel [15] the random walk 

depends on the starting probability, transition probability and 

stopping probability. Instead of finding all feature vectors 

explicitly, all possible random walks are comparing.  In the 

absence of prior knowledge the initial probability and 

transition probability will follow uniform distribution and 

stopping probability is equal to constant. Kashima et al., [15] 

defined marginalized kernel between labelled graphs Graph 

        as 
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where       is the initial probability distribution and 

             is the transition probability. 

Kashima et al., in 2004 [17] proposed random walk kernels 

for different types of directed graphs. Authors used random 

walks as features and it is represented as a sequence of vertex 

labels and edges labels alternatively. The label sequence 

kernel       
   for a sequence          is defined as a 

product of all label kernels in those sequences. Label kernels 

are used to compare the labels. Two types of label kernels are 

used for comparing walks edge label kernel    and   vertex 

label kernel. The label kernel for non-numerical data is 

calculated using delta function and gaussian kernel for 

numerical data. 

Label sequence kernel [17] is defined as 

      
         

                 
  

 

   

              
   

       (12) 

Label sequence kernel is equal to zero if the length of walks 

are different. 

The label sequence kernel between graphs         is 

calculated as the expectation of          of all possible walks 

in both the graphs. 

             

   

                       

      

     (13) 

where          is the probability of getting path   in graph  . 
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Kashima et al., [17] proposed label sequence kernel for 

acyclic graphs, general directed graphs and for graph with 

multiple edges between vertices. 

Mahe et al., in 2005[18] proposed new kernel for molecules 

with label enrichment using Morgan index where tottering is 

avoided using second order Markov random walk. Label 

enrichment techniques increase the specificity of labels; more 

specific labelling reduces the number of common walks 

between graphs. Reduction of common walks further reduces 

the time requirement for the kernel computation. In Morgan 

indexing local environment information is used for atom 

labelling instead of atom symbol. In case of molecules, it is 

essential to distinguish atoms with same label belonging to 

different functional group. Authors modified Marginalized 

kernel [15] using second order Markov random walk and label 

enrichment using Morgan Indices. Second order Markov 

random walk reduces the number of random walks by 

avoiding tottering walks. 

 Random Walk Kernel 

Gartner et al., in 2003 [16] proposed kernels for contiguous 

label sequence and non-contiguous label sequences. Both 

these kernel computations are based on the direct product 

graph. In case of contiguous label sequence direct product 

kernel and for non-contiguous label sequence product graph 

with gap penalty is proposed [16]. 

Direct product kernel for contiguous label sequence in graph 

        as 

             
 
   

    
       

         (14) 

and for non-contiguous label sequence in graph          as 

             
 
   

    
                   

       

                                                                  (15) 

Where   is the weight given for each sequence   
                                  is for penalizing 

the gap and its value varies from     . 

 Fast Computing Random Walk Kernel 

Vishwanathan et al., [22] calculated similarity between graphs 

using direct product kernel in 2006. The adjacency matrix 

   of the direct product graph    between graphs          is 

defined as the Kronecker product between adjacency matrixes 

of graph         .   

                                                         (16) 

Where         are the adjacency matrices of graph          

Authors defined random walk kernel between unlabelled 

graphs            as. 

                 
    

  
                        (17) 

 

where          are the starting and stopping probability 

distributions.   is the weight given for different length walks. 

In case of edge labelled graph          random walk kernel 

is defined using edge weighted adjacency matrix    of the 

product graph    

                         
     

   
             (18) 

Vishwanathan et al., [22] have proposed three efficient ways 

of computation of the above equation. They used conjugate 

gradient and fixed point iteration for utilizing sparsity in 

reducing the computational complexity from       to sub-

cubic complexity and Sylvester equation for reducing the 

complexity from       to      . 

6. RESULT AND DISCUSSION  
We compared the accuracy of each method using PTC 

(Predictive Toxicology for Cancer) dataset. All the codes 

were written in JAVA and the experiments were run on Intel 

Pentium 4 PC with 4GB main memory. The prediction 

accuracy was calculated for different methods and is specified 

in Table1. 

7. CONCLUSION 
Molecular graphs are very difficult to represent as vector with 

numerical entries. Graph kernel tackles this problem by using 

substructures as features for the representation of graphs. 

These features are used to find the structural similarity 

between graphs. In this paper, we have discussed different 

types of walk kernels and the methodology used to get more 

accurate results. Different types of walks are used for feature 

extraction. The aim of this paper is to provide a 

comprehensive approach to discuss about different types of 

walk kernels for chemical graphs. 
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Table 1.Accuracies of different types of walk kernel 

  

Methods Type of graph Features Methodology   Accuracy 

 

Kashima et.al 

(2002) 

Both edge and vertex 

labeled graph 

Random walk Vertex product graph 0.0011 59.6 

Kashima et.al 

(2003) [16] 

Labeled graphs First order markov 

random walk 

Marginalized Kernel 0.01 60 
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Kashima et 

al.(2004)[18] 

Directed acyclic 

labeled graph 

 

 

 

First order markov 

random walk 

 

 

 

Marginalized Kernel  

0.005 61(Avg) 

General directed 

labeled  graph 

Labeled graphs with 

multiple edges 

between vertices 

Gartner et 

al.(2003)[17] 

Labeled graphs Labels of first and last 

vertex of a walk 

Marginalized Kernel 0.01 62.08 

Labeled graphs Contiguous label 

sequence of a walk 

Labeled graphs Noncontiguous label 

sequence of a walk 

Mahe et 

al.(2005)[19] 

Labeled graphs 

 

Second order markov 

random walk 

Marginalize

d Kernel 

Removal of 

tottering 

Walks 

0.1 

MI=5 

64.02 

Labeled graph 

(Label enrichment 

using MI) 

Second order markov 

random walk 

 

Vishwanathan et 

al.(2006)[23] 

Unlabeled graph Random walk Kernel Conjugate 

gradient  

Efficient 

kernel 

computation 

0.001 

MI=5 

61.8 

Edge weighted graphs Sylvester 

Equation 

Fixed point 
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