
International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 15, May 2014

25

Enhancing the Performance of GPU for Face Detection

Hossam M. Faheem, Ph.D
Head of Computer Systems

Department, Faculty of Computer
and Information Sciences,

Ain Shams University, Cairo, Egypt

Assoc. Prof. S. Ghoniemy
Computer Systems Department,

Faculty of Computer and
Information Sciences,

Ain Shams University, Cairo, Egypt

T. A. Yara M. Abdelaal
Computer Systems Department

Faculty of Computer and
Information Sciences,

Ain Shams University, Cairo, Egypt

ABSTRACT
Computer Vision algorithms are considered computationally

intensive problems. Face detection is one of the most complex

objects to detect due to its variations. The objective is to

enhance the face detection time (compared with other

approaches) to reach a real-time application that will be later

on used in augmented reality applications such as

telepresence. The experiments with NVIDIA GTX 560 show

that detecting the faces in an image of size [640x480] can

process up to 33 frames per second, also this paper shows how

the researcher’s approach can be generalized to support larger

image sizes. This in turn reflects back the achieved speed that

exceeds FPGA.

Keywords

GPU computing, Viola-Jones face detection

1. INTRODUCTION
Face detection and tracking is one of the fast-growing subjects

in computer vision world, and one of the most processing

intensive algorithms due to the variations in the face features.

The human face is more complex than any other object since

the human face varies in forms and expressions [1].

Many different algorithms exist to perform face detection,

each having its own pros and cons. Most of these algorithms

are computationally expensive [2].

HAAR like features are image features used for object

detection and recognition. It is one of the fastest and most

accurate object detection algorithms. The term “HAAR-like

features” origins from the calculation of Viola and Jones [3]

which works with HAAR wavelet transform method, a

window of the target size is moved over the input image, and

for each subsection of the image the HAAR-like feature is

calculated. This difference is then compared to a learned

threshold that separates non-objects from objects. The

discrimination between objects and non-objects is achieved by

the learning phase. A set of both positive and negative images

is fed to the HAAR trainer, from which the classifier is

extracted. After the training phase, the classifier could be

applied to a region of interest on the captured frame from the

video. The classifier outputs "1" if the region contains a face

(i.e. object) and "0" otherwise. To search for faces in the

whole frame, sliding window technique is applied, whereas a

window (of fixed size as that used during training) is moved

across the image [4].

Regions in a rectangular form are considered at a specific

window location, HAAR like features sums up the intensities

of these pixels in each region and calculates the difference

between these sums. This difference is then used to categorize

subsections of an image. There are several types of features; a

two-rectangle feature, which is the difference between the

sum of pixels within two rectangular regions, a three-

rectangle feature computes the sum within two outside

rectangles subtracted from the sum in a center rectangle.

Finally a four-rectangle feature computes the difference

between diagonal pairs of rectangles Figure 1.

Figure 1: The sum of pixels in the white is subtracted from

those in the grey area. Two-rectangle features is

represented in (A) and (B), three-rectangle is represented

in (C), and four-rectangle is represented in (D)

Viola and Jones constructed a cascade of classifiers that

achieves increased detection performance while radically

reducing computation time. This is achieved by boosted

classifiers which rejects negative windows in early stages,

which results in reduction of computation.[3]. Figure 2

represents the cascaded feature structure.

Figure 2: The Cascaded Features

2. PREVIOUS WORK
Previous studies were directed to optimizing the integral

image calculation on the General Purpose Graphics

Processing Unit (GPU) by dividing the integral image into

sub-regions and a local Integral Image is calculated (LII), the

Global Integral Image (GII) is calculated by merging the LIIs.

The input image is divided into sub-regions such that the data

dependency is limited [5].

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 15, May 2014

26

Endang Setyati proposed improving face detection; the main

interest was not to detect human-alike faces but to detect

human faces. They did so by processing a two dimensional

(2D) face data into a three dimensional (3D) space aiming to

improve the weakness of 2D detection. 3D face detection was

able to improve the benefits of face detection by increasing

the precision and accuracy of the process. The researcher used

Active Shape Model algorithm due to its low error rate but

this was at the cost of the performance and processing power

consumption, along with a limitation of the image

environment as it has significant impact on the output [6].

Agrawal proposed a design, which will have a great impact on

video surveillance systems, whereas a segmentation is used

after background subtraction and background estimation, this

was used to reduce noise and locate a moving target in a

frame. For multiple moving objects detection in poor lighting

conditions, wavelet-based contrast change detector was

integrated with locally adaptive thresholding scheme for

initial frames. For later frames latest Change detector

mechanism was used. This has significant results for

surveillance systems, where the camera is mounted in a stable

location, but for handheld devices this will not be accurate for

our study [7].

Daniel Hefenbrock and Jason Oberg proposed a design by

executing a sequence of kernels, functions that run under

Single Instruction, Multiple Threads (SIMT) model. They

reached a performance of 3.8fps on a single GPU but on the

cost of GPU utilization [8].

Bilgic proposed using Histograms of Oriented Gradients

(HoG) features on a GPU, by using Cascade-of-rejectors

algorithm to make fast rejections for blocks that do not

contain a person in early stages. Viola & Jones using HAAR-

like features first introduced this, although it has higher error

rate, but it has better performance for a real-time application

such as Augmented Reality [9].

Edmund Weng lately proposed an improved version of the

SURF algorithm, which was used for features extraction from

live mobile camera image and recognition of real world

objects. Homography techniques were used to determine the

pose matrix from extracted features. Different characteristics

of virtual objects such as rotation, scaling and translation were

controlled by calculated pose matrix [10].

3. PROPOSED IMPLEMENTATION

FOR GPU UTILIZATION
The proposed implementation uses a 2D grid although it is

based on a 1D grid. The conversion is carried out by each

kernel. The kernel’s job is to scan for face features on a single

window, keeping in mind that the algorithm yields different

window sizes (i.e. scales) which requires pre-scaled features

and window information such as the x and y position of the

window and the window size. The features set consists of

different stages cascaded together. Each window will pass

through the stages till it passes through the last one. This set

of features is done sequentially, meaning that each kernel will

not need to scale the features nor scale the image itself, in

other words the kernel’s job is to evaluate features and stages

for its specific window. To avoid memory latency and

maximum memory bandwidth, the data is sorted according to

the scale following by the x and y position of each window

[11].

The number of kernels is equal to the number of search

windows which varies according to the image size used. Table

1 shows the number of search windows versus image size in

pixels.

Table 1: Image Size (pixels) Number of Search Windows

Size in Pixels Number of Windows

640*480 177527

900*450 240678

1024*768 487952

Figure 3 shows a graph representing the data presented in

Table 1, it is noted that the number of search windows

increases in a cubic manner. Which helps in evaluating the

proposed design.

Figure 3: Number of Search Windows VS Image Size

(pixels)

Since GPUs are based on PCI Express (PCIe), additional

overhead costs are resulted from host-to-GPU data transfers

and vice versa, which may cause application bottleneck at

data transfer [12]. The researchers believed that this process

consumes time and processing power, which derived them to

a new approach whereas to minimize the size of data allocated

and shared from the host to each working item.

For proper memory utilization and decreasing non-necessary

data allocation, all criteria and data passed needs to be studied

to determine the dependency and data size, below is a list of

all passed data needed for each working item to evaluate the

features and stages (on its specific window):

1. Start X position of the window

2. Start Y position of the window

3. Window Step

4. Original Image

5. Integral Image

6. Feature Set (Scaled feature)

7. End X Position

8. End Y Position

Some of the above parameters are indispensable such as the

original image, the integral image, and the scaled feature. The

rest of the parameters could be substituted by equations. The

approach was to find an equation that best fits the data of the

below mentioned parameters with respect to window ID (i.e.

the Kernel ID which is incremental since we use 1D grid).

These parameters are:

1. Scale

2. Step

3. Start X Position

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 15, May 2014

27

4. Start Y Position

5. End X Position

6. End Y Position

7. Modified Window ID

8. Number of windows per Row

9. Number of Rows

10. Total Number of Windows.

3.1 Scale Estimated Model
The number of windows vary according to the scale value. In

order to find an equation that satisfies the Scale values, scatter

plot must be applied first, that helps to identify the model or

set of models that would provide the least error (highest R

Squared value), Figure 4 represents a scatter plot for the scale

against the window identifier; which is a sequence of numbers

starting from 0 up to 177528 (i.e. the number of all possible

windows for all scales).

Figure 4: Scatter Plot for the relation between Scale and

Window ID

It was found that Polyratio (3, 3) model yields least error

values and highest R square of 0.996 equation 1 represents the

model produced and Figure 5 represents the model curve fit.

)1(
ID*)11E7429.2(ID*)05E05.1(1

ID*)11E79.1(ID*)06E24.9(080989.1
Scale

2

2




















-5.0

0.0

5.0

10.0

15.0

0.0 50000.0 100000.0 150000.0 200000.0

Y = PolyRatio(3,3)

ID

Sc
al

e

Figure 5: Scale value estimation using PolyRatio (3, 3)

Model

Table 2 represents the Scale original values against the ones

calculated using the model presented in Equation (1)

Table 2: Sale calculated values using Ratio Polynomials Fit

Row Scale Calculated Value

1 1.08176 1.080989

2 1.29811 1.310705

3 1.55773 1.515147

4 1.86928 1.894945

5 2.24313 2.301888

6 2.69176 2.740600

7 3.23011 3.242605

8 3.87613 3.697320

9 4.65136 4.303873

10 5.58163 5.078635

11 6.69796 6.221029

12 8.03755 7.808249

13 9.64506 9.686261

14 11.57410 11.81005

15 13.88890 13.92330

3.2 Step Value Estimated Model
The first step is to scatter plot the step values, the researchers

found that it is best to relate the Step value to the Scale, since

the step of the window is merely based upon the size of the

window. Figure 6 represents the scatter plot of Step against

Scale.

Figure 6: Scatter Plot for the relation between Step and

Scale

From the Scatter Plot presented above, it is noted that the

relation is a simple linear one. Hence Linear Model was tested

and yielded a rather high R2 value of 0.999562. Figure 7

represents the estimated model graph, while Equation (2)

represents the model equation.

 )2(Scale*47558.266059.0Step 

0.0

8.8

17.5

26.3

35.0

0.0 3.5 7.0 10.5 14.0

Y = Simple Linear

Scale

C
al

cS
te

p

Figure 7: Step Value estimation using Simple Linear

Model

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 15, May 2014

28

3.3 Modified Window ID
This variable was introduced to be able to evaluate both the X

Start position and Y Start position of the window in the

original image. After trying all 39 models the researchers

found that no model will satisfy the whole data set, so the data

set was divided into smaller data sets according to the scale,

meaning that each scale represents a sub data set. By referring

to Figure 5, it is noted that the scale remains constant for a

period of time, which represents the number of windows for

this scale. Number of windows per scale is calculated by

equation (3)

)3(NumOfRows*WPRWPS

Where WPR represents the number of windows per each row

represented in equation (4)

)4(
Step

)Scale*hwindowWidt(ageWidthIm
WPR 







 


And NumOfRows represents the number of rows represented

in equation (5)

)5(
Step

)Scale*htwindowHeig(ageHeightIm
NumOfRows 







 


Where Image Width represents the sample image width (i.e.

640 pixels),

windowWidth represents the size of the window that the

feature file was based on (i.e. 20),

Image Height represents the sample image height (i.e. 480

pixels).

The modified window id would be incremental for every sub-

data set.

The proposed design is presented by calculating parameter y

which indicates whether the current kernel is within the Data

Set range or not, y is represented in equation (6)

)6(
)RangeStartWindowID(Abs

RangeStartWindowID
y 














Where RangeStart values represents the data set window ID

range, these ranges are represented in Table 3

Table 3: Data Set Range Values

Data Set Num. Range Value

1 0

2 70761

3 132371

4 149132

5 159485

6 166443

7 170187

8 173022

9 174822

10 1746011

11 176715

12 177099

Data Set Num. Range Value

13 177327

14 177462

By applying equation (6) using the values represented in

Table 3 the possible values for y are represented in (7):

)7(

1

0

1

y










Y is equal to -1 in case the window ID is smaller than the

range;

Y is equal to 0 in case the window ID is exactly equal to the

range value;

Finally Y is equal to 1 in case the window ID is larger than

the range (out of range).

The Y calculated in equation (6) is used to calculate z value

which is represented in equation (8)

By applying the values calculated from y to z, the possible

values for z is as represented in (9)

 )9(
0y1

0y0
yfz










By using the data calculated from (9) the range is easily

identified whether it matches or not, the modified window ID

could be accumulated as in equation (10)

 )10(z*rangewindowIDndowIDModifiedWi 

3.4 X and Y Positions Model
The X and Y positions represents the position of the window.

When the data is studied in a sequential manner, it is noted

that each window is separated from the previous one by the

step size, for example if for step size 2, the first window

position will be (0,0) the following one will be (2,0) (i.e.

sliding window technique with the step size). Once the X

reaches the end of the image (according to the number of

windows per row which ensures that the window lies within

the image boundaries), the X starts from 0 once more but with

an increment of the Y position equal to the step size i.e. (0,2).

To calculate both X and Y positions the researchers found it

necessary to use the modified window ID, hence the X and Y

positions will also be in a sub-data sets manner, but in a single

equation form represented in equation (11):

  )11(iWidth,Step*WPR,DModWindowIMODMODX 

Where iWidth is represented below:

 )12(Scale*hWindowWidt- WidthImage=iWidth

The equation for Y position calculations is also presented in a

single formula represented in equation (13):

(13)
Step*WPR

DModWindowI
Floor=Y 









International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 15, May 2014

29

4. EXPERIMENTAL RESULTS
Constructing a fair comparison required a set of parameters

that needed to be defined beforehand, to ensure the level of

accuracy of the simulation process. Since the objective of the

simulation was comparison, the focus was on the congruency

of the simulation parameters and the environment. The

parameters to ensure a fair comparison are as follows:

1. Simulation parameters, including image resolution,

hardware configuration have to be equal.

2. Image Data Set used must be identical, to stabilize

amount of noise and lighting conditions that may affect

the detection.

3. Feature file used to detect a face must be identical.

By running the previously described approach a Dell Latitude

E5530 with a 2.5 GHz i5 processor, 8 GB RAM, and an Intel

HD Graphics 4000. Windows 7 64-bit a rate of 9.71 FPS was

reached, these results are for a [640*480] Image size.

Comparison to other implementations is not straightforward.

Some papers use rather large step size which will dramatically

have an effect on both the accuracy and the amount of

computation since the number of windows to be searched will

increase accordingly. On an additional note, the GPU card

used to test the implementation on affects greatly the end

results of the processing time, the more a GPU is utilized, the

less processing time is achieved on larger and more powerful

GPUs.

The experiments were conducted on different GPUs with the

same image set. Each GPU specifications are listed in Table 4.

Table 4: Different GPUs Used Specifications

GPU

Model

Number

of SM

Processor

Clock

(MHz)

Memory

Bus

Memory

Clock

(MHz)

GeForce

310M

(PC1)

16 1530 64-bit 800

GeForce

GT 610

(PC2)

48 1620 64-bit 1000

GeForce

GT 240

(PC3)

96 1340 128-bit 1000

GeForce

GTX 560

(PC4)

336 1620 256-bit 2000

As for GPU the proposed design enhances both memory

allocation and time to process a frame reaching real time

performance. The figure below represents performance

change on the different machines used from Table 4 in

addition to a Dell Latitude E5530 with a 2.5 GHz i5

processor, 8 GB RAM, and an Intel HD Graphics 4000,

Windows 7 64-bit for CPU results in terms of frames

processed per second. It is noted that when the GPU

computing power and specifications increases the

performance is enhanced along. Figure 8 shows the results of

testing the implementation on the same image containing 5

faces. As the number of faces increases the processing time

increases accordingly, this is because for each search window,

in case a face is found the window processes more

information by processing all 22 stages for face detection

which accordingly increases the processing time. The results

below are calculated by negating the kernel compilation time

which only runs once on application startup.

Figure 8: Performance Difference by running proposed

implementation on different hardware

Figure 9 represents performance change on the same GPU

(PC2) for different images, each varying in the number of

faces, starting from an image containing a single face up to 5

faces on GPU GeForce GT 610 (PC2).

Figure 9: Number of faces per frame against the frame

rate required to process each frame.

5. CONCLUSION
The proposed implementation shows that FPGA can be

achieved with GPU solutions. The paper has discussed the

parallel parts in Viola-Jones face detection algorithm and how

to utilize the GPU efficiently. The paper has proposed a new

implementation that removes all duplicated effort in scaling

the features to the target window size and removes as much

parameters passed to the kernel as possible by replacing them

with mathematical equations that describes the data required.

This minimizes host-to-GPU data transfers and at the same

time it provides exact results match. This approach achieves a

great performance enhancement compared to other GPU and

FPGA implementations.

6. REFERENCES
[1] N. Muller, L. Magaia, and B. M. Herbst, “Singular Value

Decomposition, Eigenfaces, and 3D Reconstructions,”

SIAM Review, vol. 46, no. 3. pp. 518–545, 2004.

[2] P. I. Wilson and J. Fernandez, “Facial feature detection

using Haar classifiers,” J. Comput. Sci. Coll., vol. 21, pp.

127–133, 2006.

[3] P. Viola and M. Jones, “Rapid object detection using a

boosted cascade of simple features,” Proc. 2001 IEEE

Comput. Soc. Conf. Comput. Vis. Pattern Recognition.

CVPR 2001, vol. 1, 2001.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 15, May 2014

30

[4] O. Community, “OpenCV Reference Manual,” October,

pp. 1–1104, 2010.

[5] Y.-T. Wu, Y.-T. Wu, C.-Y. Cho, S.-Y. Tseng, C.-N. Liu,

and C.-T. King, “Parallel Integral Image Generation

Algorithm on Multi-core System,” 2011 IEEE Ninth Int.

Symp. Parallel Distrib. Process. With Appl., pp. 31–35,

2011.

[6] E. Setyati, D. Alexandre, and D. Widjaja, “Face Tracking

Implementation with Pose Estimation Algorithm in

Augmented Reality Technology,” Procedia - Soc. Behav.

Sci., vol. 57, pp. 215–222, Oct. 2012.

[7] D. Agrawal and N. Meena, “Performance Comparison of

Moving Object Detection Techniques in Video

Surveillance System,” Int. J. Eng. …, pp. 240–242, 2013.

[8] D. Hefenbrock, J. Oberg, N. Thanh, R. Kastner, and S.

Baden, “Accelerating Viola-Jones Face Detection to

FPGA-Level Using GPUs.,” FCCM, pp. 11–18, 2010.

[9] B. Bilgic, B. K. P. Horn, and I. Masaki, “Fast human

detection with cascaded ensembles on the GPU,” Intell.

Veh. Symp. (IV), 2010 IEEE, 2010.

[10] E. Weng, R. Khan, S. Adruce, and O. Bee, “Objects

Tracking from Natural Features in Mobile Augmented

Reality,” Procedia-Social …, vol. 97, pp. 753–760, Nov.

2013.

[11] M. Fayez, “G PU -A CCELERATED F ACE D

ETECTION A LGORITHM,” vol. 4, no. 2, pp. 47–55,

2014.

[12] M. Daga, A. M. Aji, and W. Feng, “On the Efficacy of a

Fused CPU+GPU Processor (or APU) for Parallel

Computing,” 2011 Symp. Appl. Accel. High-

Performance Compute. pp. 141–149, 2011.

IJCATM : www.ijcaonline.org

