
International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 1, May 2014

35

Technique to Remove Indistinguishable State with

Unreachable State and Dead State from Deterministic

Finite Automata

Dipanshu Rastogi
Gov. Engineering College of Ajmer,

Rajasthan, India

 Ravinder Singh

Department of Computer Science
Engineering and Information Technology

Gov. Engineering College of Ajmer,
Rajasthan, India

ABSTRACT
This paper presents a new technique for efficiently

calculating and remove indistinguishable states in finite-

state automata. A central problem in automata theory is

to minimize a given Deterministic Finite Automaton

(DFA). DFA minimization is an important topic because

it can be applied both theoretically and practically, in

for instance compilers. Minimizing a DFA increases its

efficiency by reducing its amount of states and it also

enables us to determine if two DFAs are equivalent. A

DFA(deterministic finite automata) have some

redundant state that means this type of state doesn‟t

participant for generating useful strings. And these types

of state are called dead state, unreachable state or

indistinguishable state. In deterministic finite automata,

it is not easy to determine dead state, unreachable state

or inaccessible state and it is necessary for removing

unreachable state and dead state from

DFA(deterministic finite automata).And removing

unreachable state and dead state from deterministic

finite automata is very necessary to generating useful

string. We can generate minimize deterministic finite

automata after removing unreachable state, dead state

and indistinguishable state. But it is very difficult to

removing these type of state from DFA. Then first we

will choose useful state. This paper also explaining

about how useful automata package simulator and java

formal languages for new technique.

Keywords
Automata, Deterministic finite automata, Unreachable

State, Dead State.

1. INTRODUCTION
Automata: It is define as a system where some

information, material or energy is transmitted,

transformed or used to perform actions without the

actual participation of man. And in other words we can

describe as a machine for generating regular expression,

context free grammar, context sensitive grammar and

recursive endurable language. In computer science,

automaton means „discrete automaton‟ [1, 2].

A finite automaton can be represented by a 5-tuple (Q,

Σ, δ, qo, F), where [3, 4, 5]

1. Q is a finite nonempty set of states.

2. Σ is a finite nonempty set of input called the

input alphabet.

3. δ is the next state function, δ : D → 2Q where

D is a finite subset of Q × Σ*

4. qo : initial state ; qo⊆Q

5. F :set of final states ; F⊆Q

Note that, above definition is valid for both DFAs

(deterministic finite automata), and NFAs

(nondeterministic finite automata)[6,7].

We will discussing shortly about deterministic finite

automata (DFAs), and we will discuss on later about

nondeterministic finite automata.

Deterministic Finite Automata: DFA‟s are called

deterministic because following any input string, we

know exactly which state it‟s in and the path it took to

get there.[8]

Deterministic finite automata (DFA) can be described by 5-

tuples (Q, Σ, δ, q0, F), where

Q is a finite non-empty set of states

Σ is a finite non-empty set of symbols

δ is the next state function, that is, δ: Q × Σ → Q.

q0 is the initial state; qo ⊆Q

F is a set of final states of Q (i.e. F⊆Q) called accept states

[9].

Transition functions can also be represented by transition

table as shown in table 1.1. A finite automata is represented

by ({0, 1, 2}, {0}, δ, {0}, {2}) where, δ is shown in the

following table [10].

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 1, May 2014

36

Table 1.1: Transition Table representing transition

function of DFA

Transition function can also be represented by transition

diagram as shown below in figure 1.1.

Figure 1.1: Deterministic finite automata corresponding to

table 1.1.

2. PROBLEM STATEMENT
The problem of finding the redundant state in

deterministic finite automata. Different types of

technique and approaches are available for generating

useful state in DFA. Indistinguishable state is the one of

the major issue for DFA(deterministic finite automata).

For removing the dead state, unreachable state,

indistinguishable state some approaches are available.

First of all we know about what is the unreachable state,

dead state and indistinguishable state.

Unreachable state: All those states which can never be

reached from initial state are called inaccessible states

or unreachable state.

Dead state: All those non final state which transit to

itself for all input symbol in Σ are called Dead state.

Indistinguishable state: State p and q are

indistinguishable if, staring in p and q, every string leads

to the same state of “finality” (i.e., the string fail or

succeed together.)

 δ * (p, w) ∈ F => δ * (q, w) ∈ F, and

 δ * (p, w) ∉ F => δ * (q, w) ∉ F,

 for all string w ∈ ∑*

As shown in below figure:

Figure 2.1: Deterministic finite automata with

unreachable state, dead state and indistinguishable

state.

In the above figure state q8 is unreachable state because

if we will take any string from initial state q0 to q8 then

it is not possible. And state q5, q6, q7, q9 and q10 are

dead states because no any transition from another state

than itself. State q2 and q3 are indistinguishable states

because q2 and q3 use same input symbol for reach the

final state. Some approaches for finding this state.

DFS(depth first search) technique: In this approach first

of all take outgoing input symbol from initial state and

if outgoing input symbol is more than one then it will

follow depth first search technique that means, state q0

move q1,q2 and q3 so three path present from q0. But it

will take q1 if it is follow DFS (depth first search). After

completing total path from DFS (depth first search) root

then we will move q2 way as well as q3. So problem of

this technique or approach is taking time if loop

available in DFS root.

Any path choosing approach: In this approach any one

path select and move last possible state. In this approach

if any state remaining for not participating in input

symbol this state is an unreachable state. Problem of this

approach is it will taking more and more time for

removing unreachable state.

3. PROPOSED TECHNIQUE

In the proposed technique, for generate useful state

before minimization we have to remove all redundant

state from deterministic finite automata. This technique

is based on when indistinguishable state have

unreachable state and dead state. And in the pair of

indistinguishable we have to remove one state that is

equivalent to each other state. One of the merit of this

technique is we remove which state that have move

unreachable state and dead state. Then unreachable and

dead state are automatically remove from DFA.

State (Q) Next State δ(q,0)

0 1

1 2

2 2

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 1, May 2014

37

In proposed approach first of all take only one input

symbol from initial state and move simultaneously with

changing accepting input symbol state as shown in

below figure.

Figure 3.1 Deterministic finite Automata.

Step 1. Find Indistinguishable State:

In the above figure, taking outgoing input symbol from

q0 are a , b , c , bba , cba , abbba , abcba and in these

input symbol a , bba , cba , abbba , abcba accepting

symbol and b , c are rejecting symbol. We can see view

trace by JFLAP simulator [11]. In the accepting symbol

(bba , cba , abbba , abcba) ba string is common. We

reach the final state from these states {qo,q2,q4},

{q0,q3,q4},{q0,q1,q2,q4},{q0,q1,q3,q}and q2 ,q3 states

are satisfy the condion for indistinguishable state.

i.e., δ (q2 , ba) ∈ F => δ (q3 , ba) ∈ F

 ba ∈ ∑*

So q2 and q3 are equivalent state then we have to

remove one state for generating useful state.

Step 2. Check which indistinguishable state have more

unreachable and Dead state:

Check for q2 :

Figure 3.2 Deterministic finite Automata with ‘bc’

and ‘bd’ input symbol.

In above figure, no any state generating accepting input

symbol. „bc‟ and „bd‟ are rejecting input symbol. So we

can see view trace by JFLAP simulator.

So both q5 and q6 are dead state.

Check for q3:

Figure 3.3 Deterministic finite Automata with „cc‟, „cd‟,

„ce‟ input symbol.

In above figure, no any state generating accepting input

symbol. „cc‟, „cd‟ and „ce‟ are rejecting input symbol.

So we can see view trace by JFLAP simulator.

So both q7, q9 and q10 are dead state. And finally q3

have more dead state than q2 then we have to remove q3

and connecting string from q0 to q3 is „c‟ that is merge

with q2 state.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 1, May 2014

38

Figure3.4 Deterministic finite Automata with no any

indistinguishable state.

Step 3. Remove Dead state and unreachable state:

Figure 3.5 Deterministic finite Automata with ‘a’, ‘b’

and ‘c’ input symbol.

In this figure input symbol is „a‟, „b‟ and „c‟ because outgoing

symbol of state q0 are „a‟, „b‟ and „c‟. Input symbol „a‟ is

accepting but input symbol „b‟ and „c‟ are rejecting so we can

see View Trace by JFLAP simulator and finalized all state

including accepting input symbol. As shown in below figure.

Figure 3.6 Deterministic finite Automata with all possible

input symbol.

In above figure we finalize state q0 because this state

generating accepting input symbol with final state and take

next input symbol. In this figure we are taking all possible

input symbol and we can see view trace of JFLAP simulator

that shown input symbol „ab‟, „ba‟, „ca‟, „abba‟, „abca‟ are

accepting and others are rejecting. And then finalized all the

state including in accepting input symbols. As shown in the

figure.

Figure 3.6 Deterministic finite Automata with after

finalized all the state including in accepting input symbol.

In above figure state q1 is finalizing because this state

including accepting input symbol „ba‟, „ca‟ again we will take

next input symbol. If no any input symbol is accepting then

we will take next possible input symbol. Again if no input

symbol accepting then repeat it whenever all possible input

not finished. When all possible input taken so we will remove

all non-final state. as shown in below figure. In above figure

final state indicate accepting string generated by using these

state and non- final state indicated no any string generated by

using these state.

Figure 3.7 deterministic finite Automata with unreachable

state and dead state.

In this figure all final state available and no any non- final

state available. Final state shows these state are including in

accepting string. Now nest step for proposing technique,

remove all finalized label of state except initialized form

means in initial form of deterministic finite automata initial

state was q0 and final state was q1 and q4 so these state are

not same as a previous form and all updated label should be

remove. As shown in below figure.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 1, May 2014

39

Figure 3.8 Deterministic finite Automata with useful state.

In above figure all useful state available means only whose

state is available those are including in accepting string and all

Dead state remove in this process. So this is a proposed

technique for removing unreachable state, Dead state and

indistinguishable state of deterministic finite automata.

4. PROPOSED ALGORITHM
INPUT: A= (Q,Ʃ,δ,q0,qf) – Deterministic finite automata.

OUTPUT: A‟=(Q‟,Ʃ,δ‟,q0‟,qf‟) – Deterministic finite automata

without unreachable state.

1. For (q € Q) /*all state belong to given set of deterministic

finite automata *\

2. Go to (qi <- Initial State) /* go to initial state *\

3. If (δi-Fi ->qf) /* this show transition function if any state

reach to final state that means input string is accepted *\

4. If (δ (qm , a) ∈ F = = (δ (qn , a) ∈ F || δ (qm , a) ∉ F = = (δ

(qn , a) ∉ F /* this show these state are indistinguishable.

And n= 1,2,3,……; m= 1,2,3……; m≠n; a (input symbol

) ∈ ∑*(non-empty finite set of input symbols) *\

5. If (qm -> qm next ∉ F > qn -> qn next ∉ F) /* this show qn

have more dead state.

6. qn<-Remove, /* remove indistinguishable state and

connecting input symbol from qn to its privious state is

merge with qm state.*\

7. Else

qm<-Remove,/* remove indistinguishable state and connecting

input symbol from qm to its previous state is merge with

qn state.*\

8. Go to (qi <- Initial State) /* go to initial state after

removing the indistinguishable state for dead state *\

9. Else

Go to (qi <- Initial State) /* go to initial state *\

10. END Else

11. END if

12. MAKE qi-Fi <- Final State /* if any iteration for

accepting state then all the state including in this iteration

should be final state*\

13. Else

qi -> qnext /*if input string is not accepted then move to another

state qnext *\

14. END Else

15. END if

16. END For

17. For (q‟ € q‟f) /*after checking all possible input string

according to proposed technique all useful state should

be final state*\

18. If (q‟ €! q'f) Then /* unreachable state*\

19. q‟ <- Remove /* remove unreachable state*\

20. END if

21. END For

22. For (q‟i € q‟f) /* after removing unreachable state all

useful state present and all state shuld be final state *\

23. if(qinitial € q‟f) Then /* checking proposed initial state is

final or not *\

24. qinitial <- previous position /* if proposed initial state is

final the it will form previous state*\

25. Else

q‟f € qf Then /* all proposed state is final state*\

26. q‟f <- Previous position /* all proposed state become

previous state*\

27. END Else

28. END if

29. END For.

5. CONCLUSION
Choosing the useful state of deterministic finite state

automaton is one of the challenging concepts for students at

an introductory level to understand and learn. In this paper

mainly removing of indistinguishable state with unreachable

and dead state of deterministic finite automata. We can follow

simple approach for generating useful state by given approach

in this thesis. We can choose JFLAP simulation for determine

indistinguishable state and remove unuseful state of

deterministic finite automata. If given technique apply for

generating useful state then both unreachable state and dead

state is simply remove. Also if we will follow given technique

or approach, number of step for taking input is lesser than

running technique. After selecting useful state we can

minimize simply of deterministic finite automata.

6. FUTURE WORK
In this paper, we remove indistinguishable state when

indistinguishable state have only unreachable and dead state

of Deterministic finite automata. But in this paper is not for

when indistinguishable state have reachable state that means

any state reach to final state that means input string is

accepted and this state is connected to indistinguishable state.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 1, May 2014

40

7. REFERENCES
[1] Alfred V. Aho, “Constructing a Regular Expression from

a DFA”, Lecture notes in Computer Science Theory,

September 27, 2010, Available at http://www.cscolum

bia.edu/ ~aho/cs3261/lectures.

[2] S. H. Rodger. Jap web site, 2011. www.jflap.org .

[3] Hao Wang, Student Member, IEEE, Shi Pu, Student

Member, IEEE, Gabe Knezek, Student Member, IEEE,

and Jyh-Charn Liu, Member, IEEE, MIN-MAX: A

Counter-Based Algorithm for Regular Expression

Matching, IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1,

JANUARY 2013.

[4] Domenico Ficara, Member, IEEE, Andrea Di Pietro,

Student Member, IEEE, Stefano Giordano, Senior

Member, IEEE, Gregorio Procissi, Member, IEEE, Fabio

Vitucci, Member, IEEE, and Gianni Antichi, Member,

IEEE, Differential Encoding of DFAs for Fast Regular

Expression Matching, IEEE/ACM TRANSACTIONS

ON NETWORKING, VOL. 19, NO. 3, JUNE 2011.

[5] Domenico Ficara, Member, IEEE, Andrea Di Pietro,

Student Member, IEEE, Stefano Giordano, Senior

Member, IEEE, Gregorio Procissi, Member, IEEE, Fabio

Vitucci, Member, IEEE, and Gianni Antichi, Member,

IEEE, Differential Encoding of DFAs for Fast Regular

Expression Matching, IEEE/ACM TRANSACTIONS

ON NETWORKING, VOL. 19, NO. 3, JUNE 2011.

[6] Jean-Charles Delvenne and Vincent D. Blonde,

Complexity of Control on Finite Automata, IEEE

TRANSACTIONS ON AUTOMATIC CONTROL,

VOL. 51, NO. 6, JUNE 2006.

[7] Attila Csenki, Flowgraph Models in Reliability and

Finite Automata: IEEE TRANSACTIONS ON

RELIABILITY, VOL. 57, NO. 2, JUNE 2008.

[8] R. W. Butler, “Reliabilities for feedback systems and

their saddle point approximation,” Statistical Science,

vol. 15, pp. 279–298, 2000.

[9] Gruber H. and Holzer, M., ”Provably shorter regular

expressions from deterministic finite automata”, LNCS,

vol. 5257, pages 383–395. Springer, Heidelberg (2008).

[10] H. Gruber and J. Johannsen, “Optimal lower bounds on

regular expression size using communication

complexity”, In Proceedings of the 11th International

Conference Foundations of Software Science and

Computation Structures, volume 4962 of LNCS, pages

273–286, Budapest, Hungary, March–April 2008.

[11] M. Procopiuc, O. Procopiuc, and S. Rodger,

Visualization and Interaction in the Computer Science

Formal Languages Course with JFLAP, 1996 Frontiers

in Education Conference, Salt Lake City, Utah, p. 121-

125, 1996

IJCATM : www.ijcaonline.org

