International Journal of Computer Applications (0975 8887)
Volume 93 - No. 14, May 2014

Enacted Software Development Process based on
Cross Platform Unified Framework in the Context of
Investment Banking

Pavitdeep Singh, MIE
Dept. of Credit Risk & Trading Book
Markets & International Banking
Royal Bank of Scotland

ABSTRACT

The demand for the rich web based solution changed the way
the application were developed in the investment banking industry
specifically for sales and trading (front office activities). Tradition-
ally, simple web application were considered to be enough power-
ful to provide the user with all the capabilities. Later on developer
started implementing mashup technology in order to cater to IBs
ever increasing demands, which actually is a technique for building
applications that combine data from multiple sources to create an
integrated experience. This paper extends the concept of enterprise
mashups to provide a new framework called cross platform unified
framework (CPUF ) which is a cross-technology and delivery plat-
form framework, services, patterns and practices aimed at changing
the way IB industry projects are design and delivered to business
users. This paper not only explains the various core components of
the framework it also highlights the important benefits of the CPUF.
It aimed at understanding the user needs from their technical inter-
face(s), identify the systems that can provide these features, provide
a technology agnostic framework that can stitch this information to-
gether without moving data or processes out of the existing system.

General Terms:

Design, Architecture

Keywords:

CPUF, Investment Banking, Offering, Sales and Trading, Trade
Deal Checking System, Context Event Bus, Context Events, Com-
ponent Registry, Offering repository

1. INTRODUCTION

Traditionally, applications were based upon client/ server archi-
tecture which takes the user request and process the data at the
server via web services and then return the processed data to the
client for GUI rendering. Gradually new applications were devel-
oped using component based approach wherein the focus was more
on the component rather than the whole application. As the de-
mand for rapid and situational development took place in the re-
cent times, the whole paradigm of development shifted towards the
concept of Mashups which actually is aggregation of content, pre-

Prof. Jatinder Kaur
Dept. of Applied Sciences
University College of Eng. & Tech.
Chandigarh University

sentation and application functionality from different sources. Cur-
rently, there are different types of mashups which are targeted to-
wards specific layer of architecture, namely Web mashups, Services
mashups, Data Mashups [3]. The most commonly mashups avail-
able in the internet world are Web mashups which actually takes
content and services readily available online [[6]. But there isn’t any
structured framework or tools around developing application using
web mashups .Moreover, it is limited to the applications that may
be hosted through web only. Serivce Mashup provides the com-
munication among different heterogeneous and distributed applica-
tions. Various standards which support the web services are Web
Services Description Language (WSDL), UDDI, and SOAP [1].
Recently, light weight services are available namely, Web APIs
and RESTful (Representational State Transfer). The other kinds
of mashups available in the market are business and consumer
mashups. Business or enterprise mashups combines their own re-
sources, application functionality and content with various external
services. They mainly work on a single presentation which allows
for easy collaboration between developers and business. It is best
suitable for agile methodology of development. Apart from these,
there are few other kinds of mashups available which are getting
recongintion. One such is information mashup, which is specifi-
cally designed for situational applications where applications are
developed “on the fly” for some adhoc requirement [S]. There is
a Tool named Damia which actually is a enterprise data integra-
tion service used for searching, managing and storing existing data
mashups. It mainly consists of three components namely, browser
based GUI, a server engine and APIs for searching , managing ,
debugging and executing mashups [4]. IBM moving one step fur-
ther have desgined Shared Code online service platform which uses
domain-specific language to design mashups and assist in sharing
and re-using the mashups components for internet applications [2].

With the advent of different kinds of mashups, industries have
started realizing the real power of combining the content, presen-
tation and functionality to provide a rapid solution to ever increas-
ing requirement of their business users. Investment banking is one
such industry where the requirement of the business changes more
rapidly as compared to other industry as it is quite volatile to the
market changes. Regulatory changes also trigger modification to
the strategy of existing processes within the bank. One of the key
tasks at Front Office (FO) in Investment banking is sales and trad-



ing. The bank deals with buying and selling products on the behalf
of their customer with the sole purpose of making money in each
trade. Moreover, it provides trading ideas for their institutional and
high net worth investors. Thus it also demands for situational, un-
structured and volatile requirements from the business to address
the issues of their clients. Currently, FO applications are developed
using traditional integration methodology called component based
development. The major disadvantage of this approach is that it
may not suitable for applications that for required for short pe-
riod of time (short lived application) and will require more effort
in combining with newer technologies like Web APIs and RESTful
for communication apart from the existing web services.

This paper proposes a new framework called Cross Platform Uni-
fied Framework (CPUF) for developing applications specifically
for Investment banking system which is actually based upon on the
concept of enterprise mashups. It provides a standard way of cre-
ating visual and non-visual components and services. Additionally,
it also defines a comprehensive way of using the existing compo-
nents / services to meet individual business requirements that may
be short lived with minimum development effort. This paper is or-
ganized as follows: section 2 discusses the key benefits of CPUF
framework. Section 3 talks about the overall architecture of the
framework with emphasis on each core element of it, section 5
discusses the case study where the framework has applied to one
of the projects in investment banking. Finally, section 6 draws the
conclusions and section 7 discusses the future work.

2. STRATEGIC BENEFITS OF CPUF

The key principle behind CPUF is the separation of functionality
into distinct services that are made available over the network, de-
scribed in a consistent and standardized manner. Consumers can
subsequently combine and reuse these visual and non-visual ser-
vices in the production of business-aligned offerings.

CPUF’s main focus is on taking all existing components and putting
them together in one architecture, thus reducing the number of
needed frameworks. As a result, this simplifies creation of new of-
ferings for other developers.

A large amount of duplication is avoided and reuse of existing re-
sources is enforced by having all components shared within one
framework,. Therefore, this greatly saves the time for the develop-
ment of new offerings.

In order to achieve the same level of understanding and give similar
user experience from the application, it is essential to have the same
tools on both sides.

Infrastructure independence helps to avoid specific bottlenecks in
components deployment, as well as their maintenance. This helps
developers create and add new components without affecting the
system as a whole.

Providing only specific functionality to the end user greatly in-
creases effective use of application and simplifies the use of the
offering.

Broader support in terms of environments and paradigms greatly
simplifies the use of our framework and increases its accessibility
among all clients.

International Journal of Computer Applications (0975 8887)
Volume 93 - No. 14, May 2014

CPUF
Container

Offering

Repository v
aa
View &
Frame

4 Core
- Framework

-

v

Layout
Transition

Fig. 1. Overview of CPUF Architecture

3. CPUF ARCHITECTURE

A technology agnostic presentation framework designed to bind
loosely-coupled interfaces together to support the specific needs or
views required by individual business units and roles. It’s based on
the architecture concept of enterprise mashups. A collection of GUI
components (called CPUF core components) and services provid-
ing common capabilities to be used by other services. These com-
ponents provide no direct business value until combined with other
business-aligned services. A set of standards policies that define
how services should be designed to allow for consistent, standard-
ized integration with other services and the mashup of presentation
interfaces.

From architect’s perspective CPUF has taken many of its principals
and approaches from Service Oriented Architecture.

Following are the key elements which constitute the core frame-
work.

3.1 CPUF Container

The CPUF Container or runtime is the software that runs, reads the
offering definition, performs the authentication, loads and hosts the
components, routes context events and context properties. It is writ-
ten in Java and runs in a Java VM. The initial download of CPUF
is done via Java web start. Once the container is downloaded from
web start, it connects to the Offering Repository and downloads the
Offering. The container then uses the Offering to download and run
the components from the endpoints specified.

3.2 Offering

An offering is an application that is runs on CPUF and is made up
of one or more components. An offering is described by an XML
document which defines the components, their interactions via con-
text events and properties, the layout and layout transitions.

3.3 Components

In CPUF, a component is a reusable piece of software. Components
come in three flavors, HTML, Silverlight and Java which reflect
the programming language they were written in. Components are
assembled together to form an offering.



Spotfire, Business
Objects)

Silverlight

Component
Development

Fig. 2. Component Development Languages

Table 1. Different Component Types

Component Type API End Point
HTML End Web Page
Java Java ZIP
Silverlight Silverlight ZAP

Components ultimately run within the CPUF runtime, which is a
container component. The container exposes functionality to the
components via an API. For java components this is a Java APL
For Silverlight, Silverlight and for HTML it is java script. Among
other things, the APIs allow components to create and respond to
context events, retrieve and provide context properties and access
the security context.

Components are deployed to endpoints. An endpoint is a url. Com-
ponents will be deployed to an endpoint per environment. Compo-
nents interact with other components via context events and context
properties. They are registered in the component registry. This in-
cludes the details of the context events they publish and subscribe
to and the context properties they publish and consume. This makes
up the interface of the component and allows offering writers to as-
semble them into offerings.

3.4 View & Frame

A view if for structuring how your components are laid out in your
offering. A view can be used as docked or floatable and can have
frames added to it at different locations - side-center, side-north,
side-south, side-east, side-west.

A frame is for displaying visual components within a panel in your
offering. A frame can be used as docked or floatable and can have
components added to it at different locations - side-center, side-
north, side-south, side-east, side-west. Frames are lower down the
visual hierarchy than Views. A view can have frames in it, but a
frame cannot have views in it.

3.5 Context Event & Event Bus

Context events are the primary mechanism that components use to
communicate. Context events consist of two parts, the topic and the
payload. The topic describes the source of the event, the nature of
the event and the version. The payload is the content of the event.

The context event bus allows the integration of multiple client-
side components within a single container, providing a client-side
framework that allows trusted and untrusted components to co-exist

International Journal of Computer Applications (0975 8887)
Volume 93 - No. 14, May 2014

and communicate with each other. The primary function of the con-
text event bus is the ability for components to publish and subscribe
to topics that are used to send messages asynchronously to each
other.

3.6 Layout Transition

A Layout Transition is the idea that visual components can have
different layout states and switch between them e.g. open, close,
hidden. This is normally used in conjunction with View/Frame. An
example is when a Layout Transition is used to target opening an
instance of a view template with a payload based on a particular
context event.

3.7 Component Registry

It contains all the components that have been developed to the cur-
rent date. The records store the current version, developing team
and business stream of the project. When developing, it is not
mandatory to register your components however as you progress
through to unit acceptance & testing phase you will be required to
do. This will provide the necessary information to other offering
developers to develop and validate their offerings.

3.8 Offering Repository

It stores all the offerings that are available. When you run CPUF
it loads the specified offering from the Offering Repository when
launching your offering.

4. LAYOUT

Clients can provide their own layouts (custom layouts) according
to their individual needs. Custom layouts could be configured and
reused. To enable this, as well as the layout being stored in the
CPUF Store, we also store an xml schema and usage instructions.
When the layout is specified, xml can be specified under it, we
can validate this with what is in the CPUF Store and then pass the
configuration xml to the layout code which will understand it and
lay out appropriately.

<view id="viewId">
<visualComponents>
<swingComponent id="Componentl"/>
<swingComponent id="Component2"/>
<swingComponent id="Component3"/>
<swingComponent id="Component4"/>
</visualComponents>
<layout>
<custom id="fourWindowLayout">
<windows top="Component1"
bottomLeft="Component2"
bottomCenter="Component3"
bottomRight="Component4"/>
</custom>
</layout>
</view>

Below is the sample layout generated by loading the custom layouts
for various components mentioned in the xml file.

5. CPUF IN THE DEVELOPMENT OF
INVESTMENT BANKING SYSTEMS

An example of usage of CPUF in the investment banking domain is
a component based solution for Trade Deal Checking System for a



Component 1

Component 2

Fig. 3. Component Layout Design

relatively complex business problem. The solution involve develop-
ing the components in such a way that other application can make
use of these components when required. Moreover, the components
can be written in different languages supported by the framework.
Figure 4 shows the overall architecture diagram for Trade Deal
Checking System.

As depicted, there are 4 GUI components namely, Counterparty
Search, Product Selection, Trade Attributes and Notional Avail-
ability Information. These independent components interact with
each other through context events. For example, Trade Attributes
components has subscribed to 2 events, one from each Counter-
party Search and Product Selection component. Whenever there is
a change in counterparty, the event corresponding to counterparty
search get triggered and the components which have registered for
this event will be able to listen. In our case, Trade Attributes will
get the new selection for counterparty. The components can invoke
internal or external service depending upon the requirement. These
services can further interact with different databases to provide the
data. These components needs to be registered in the component
registry. On the other hand, a classical approach would have in-
volved all the components to be developed irrespective of their
availability might be with little re-usability. Moreover, the com-
ponents already available may not be utilized in case it’s not de-
veloped with the differnt technology. This would have resulted in
higher development effort and which in turn requires high cost for
the project. However, a CPUF based solution with the Client, Prod-
uct Selection and Trade Entry components already developed (ir-
respective of any technology) and registered with the component
registry this would simply mean developing the core component
for Trade Deal Checking application.

Components can be developed in any one of the technologies
namely java, Silverlight or html. Once the component is devel-
oped, component is registered with the component registry and en-
try is made in the offering file to add the component to this offer-
ing. Custom layouts as defined earlier can be used to position the
component in the mail GUI screen. The whole process of software
development of the component would have resulted in drastically
less effort. Moreover the deployment process would have required
the deployment of this core component only (if other dependent
components are already deployed and currently in available in ap-
plication).Thus, CPUF has drastically reduced the effort required
for development and deployment of the application components.

International Journal of Computer Applications (0975 8887)
Volume 93 - No. 14, May 2014

Product Event

=
%o Product Selection
2 o Counterparty ANo_tl:.il:_:a_i
g = Selection wvailability
= a Information
&t
% = Trade Attributes Trade
G Attributes

Counterparty Event

Event

External Serivces Application Serivces

Bloomberg Service Trade Deal Service

Static Data Service

w
@
-
=
=
@
7]

=
o©
Fud
oD
s
o
@
e
=1
=
(=]
@
=
T
o
=4
<

(S e
External Application
Database Database

Database

Fig. 4. Architecture of Trade Deal Checking System

6. CONCLUSIONS

This paper presents a brief description of CPUF framework and
its core elements and its application in the context of investment
banking Trade Deal Checking System. Due care is given to present
the main ways in which CPUF based framework is used to develop
application (mainly components) and how these components are
laid out in the GUI with the help of various custom layouts. The
best part is components can be developed in differnt technologies
(technology agnostic), it can be Java, Silverlight or html. This pa-
per shows that CPUF is most suitable for IB application as it in-
volves hosting of various components for a particular offering. Data
among the various components can be passed with the help of con-
text bus and context events (through subscription and publication
mechanisms). This framework is well suitable for large scale ap-
plications in investment banking domain specifically FO which re-
quires the interaction among various parts (or components) of the
application. This also reduces the development life cycle of vari-
ous components and helps in quick testing and deployment of var-
ious components developed. Due to time to market criticality of IB
projects CPUF framework emerge as a very strong and workable
paradigm that investment banking industry tend to adopt. This pa-
per shows that various components developed at global level are
consistent within IB organization.

7. FURTHER RESEARCH CHALLENGES

This section summarizes advanced features and improvements that
we are currently exploring as enhancements to CPUF:

(1) Performance Improvement: CPUF relies heavily on compo-
nents defined in the offering file. More the number of com-
ponents more the time it take to load them in memory and this
would result in decrease in performance in case a business user
if interested in very few components. There should a way in
which only those components should be loaded in memory for
which the user has registered rather than loading all the com-
ponents defined in offering file (xml file).

Updating Custom Layout at Run time: Changing the layout
of various components at run time and then allowing the busi-
ness user to save those changes will not only help in organizing
the various components across his/her screen according to his
choice but will also help in removing (or hiding) those com-

(@)




3

(1]

(2]

(3]

(4]

(5]

(6]

ponents which does not interest him. The next time user runs
the application on the desktop, components should be shown
as per the saved preferences.

System Memory Constraints: Memory is finite in any system
so special attention needs to the given to this parameter. The
more the numbers of components the more the memory it
would requires. There should be some mechanism to circum-
vent this problem.

REFERENCES

Schahram Dustdar Djamal Benslimane and Amit Sheth. Ser-
vices mashups: The new generation of web applications. Inter-
net Computing IEEE, 12(5):13—-15, Oct 2008.

A. Ranabahu E.M. Maximilien and K. Gomadam. An online
platform for web apis and service mashups. Internet Comput-
ing IEEE, 12(5):32-43, Oct 2008.

Hakim Hacid Giusy Di Lorenzo and Hye young Paik. Data
integration in mashups. SIGMOD Record, 38(1):59-66, May
2009.

Susan Cline Rajesh Kartha Eric Louie Volker Markl Louis Mau
Yip-Hing Ng David Simmen Ashutosh Singh Hmet Altinel,
Paul Brown. Damia - a data mashup fabric for intranet applica-
tions. ACM, pages 1370-1373, Sept 2007.

A. Jhingran. Enterprise information mashups: Integrating
information, simply. Proc. 32nd Int’l Conf. Very Large
Databases (VLDB 06), VLDB Endowment, pages 3—6, 2006.
Fabio Casati Jin Yu, Boualem Benatallah and Florian Daniel.
Understanding mashup development. Internet Computing
IEEE, pages 44-52, Oct 2008.

International Journal of Computer Applications (0975 8887)
Volume 93 - No. 14, May 2014




	Introduction
	STRATEGIC BENEFITS OF CPUF
	CPUF ARCHITECTURE
	CPUF Container
	Offering
	Components
	View & Frame
	Context Event & Event Bus
	Layout Transition
	Component Registry
	Offering Repository

	LAYOUT
	CPUF IN THE DEVELOPMENT OF INVESTMENT BANKING SYSTEMS
	CONCLUSIONS
	FURTHER RESEARCH CHALLENGES
	References

