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ABSTRACT  
The paper introduces two new parametric generalizations of 

one of existing R  norm fuzzy information measures with the 

proof of their validity. In addition, particular cases and 

important properties of the proposed measures are discussed. 

A numerical example is given to establish the similarity 

between the proposed R  norm fuzzy information measures 

with one of the existing R  norm fuzzy information 

measures. Further, a comparison among them is shown with 

the help of a table and graph. 
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1. INTRODUCTION 
Entropy is very important for measuring uncertain 

information. Shannon [12] was first to use the word “entropy” 

to measure the uncertain degree of the randomness in a 

probability distribution. Let X  is a discrete random variable 

with probability distribution 1 2( , ,... )nP p p p  in an 

experiment. The information contained in this experiment is 

given by  

1

( ) log
n

i i

i

H P p p


      

            (1) 

which is the well known Shannon [12] entropy.  

A fuzzy set A  defined on a universe of discourse X  is given 

as Zadeh [13]: 

    , ( )AA x x x X    

where  : 0,1A X   is the membership function of A . The 

membership value ( )A x describes the degree of the 

belongingness of x X in A . When ( )A x  is valued in 

 0,1 , it is the characteristic function of a crisp (i.e., non-

fuzzy) set. 

A fuzzy set *A  is the sharpened version of A  if the following 

conditions are satisfied: 

 

* ( ) ( )i A iA
x x  , if ( ) 0.5A ix  ; i  

and      * ( ) ( )i A iA
x x  , if ( ) 0.5A ix  ; i . 

Zadeh [13] gave some notions related to fuzzy sets, which are 

used in the discussion, as follows: 

(1) Compliment: A  Compliment of 

A ( ) 1 ( )AA
x x   for all x X . 

(2) Union: A B   Union of A  and B  

( ) max{ ( ), ( )}A B A Bx x x     for all x X . 

(3) Intersection: A B   Intersection of A  and B  

( ) min{ ( ), ( )}A B A Bx x x     for all x X . 

Fuzziness is found in our decision, in our language and in the 

way we process information. Fuzziness, a feature of 

uncertainty, results from the lack of sharp difference of being 

or not being an element is the member of a set. A measure of 

fuzziness is called the fuzzy entropy, first mentioned by Zadeh 

[14]. Fuzzy entropy is an important tool for measuring fuzzy 

information. It has wide applications in the area of pattern 

recognition, image processing, speech recognition, medical 

diagnosis, decision making etc.  

De Luca and Termini [3] introduced the measure of fuzzy 

entropy corresponding to Shannon [12] entropy given in (1) as 

i i i i

1

( ) [ (x )log (x ) (1 (x ))log(1 (x ))]
n

A A A A

i

H A


        

                                                    (2) 

satisfying the following essential properties: 

(P1) ( )H A  is minimum if and only if A  is a crisp set, i.e. 

( ) 0A ix  or 1 for all ix . 

(P2) ( )H A  is maximum if and only if A  is most fuzzy set, 

i.e. ( ) 0.5A ix  for all ix . 

(P3) *( ) ( )H A H A , where *A is sharpened version of A . 

(P4) ( ) ( )H A H A , where A  is the complement of A . 

Later on Bhandari and Pal [1] defined the following 

exponential fuzzy entropy corresponding to Pal and Pal [11] 

exponential entropy as 
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(1 ( )) ( )

1

1
( ) [ ( ) (1 ( )) 1]

( 1)
A i A i

n
x x

A i A i

i

E A x e x e
n e

 



    

  

                                    (3) 

Boekee & Lubbe [2] defined and studied R  norm 

information measure of the distribution P  for R   as 

given by 

1

1

( ) 1 ( ) ; 0, 1
1

n
R R

R i

i

R
H P p R R

R 

 
    

  
 

 .         (4) 

Analogous to (4) Hooda [4] proposed the following R  norm 

fuzzy measure of information  

1

1

( ) 1 ( ( ) (1 ( )) )
1

n
R R R

R A i A i

i

R
H A x x

R 

 
    

  
 

   ;

( 0) 1R   .                       (5) 

Further, from the significant studies it is noted that Hooda and 

Bajaj [7] and Hooda and Jain [8] provide the generalization of 

R  norm fuzzy information measure (5) corresponding to 

generalized R  norm information measures proposed by 

Hooda and Ram [5] and Hooda and Sharma [6] respectively. 

Kumar [9] generalized the measure (4) and gave R  norm 

measure of information of order   which is  

1

( ) 1

R Rn

R i
i

R
H P p

R


 
  
   

   
 

  





 


; 0 1  , ( 0) 1R   . (6) 

Further, Kumar and Choudhary [10] generalized the measure 

(4) and gave the R  norm information measure of degree m  

as 

1

1
1

1

1
( ) 1

n R m
m R m
R i

i

R m
H P p

R m

 
 



 
   

        
 

 ; 1 0R m   , 

R m , , 0( 1)R m   .                        (7) 

Inspired by the above-mentioned work, the paper proposes 

two new generalized R  norm fuzzy information measures 

and provides the study of the essential properties of these 

measures in order to check their validity. The remainder of the 

paper is organized as follows: In section 2, two new 

parametric generalizations of R  norm measure of fuzzy 

information are defined and the essential properties are proved 

to check their authenticity. In section 3, a numerical example 

is given to make a comparison between the proposed 

generalized R  norm measures of fuzzy information with 

R  norm fuzzy information measure (5). Finally, the 

concluding remarks are given in section 4. 

2. PARAMETRIC GENERALIZED 

R NORM FUZZY INFORMATION    

MEASURES 
Corresponding to measures given by Kumar [9] & Kumar and 

Choudhary [10] in (6) and (7), the following generalized 

R  norm fuzzy information measures are proposed: 

1

( ) 1 ( ( ) (1 ( )) )

R Rn
R

R i A iA
i

R
H A x x

R


 
    

  
 




   


; 

0 1  , ( 0) 1R   .                                                   (8) 

 

1

1 1 1

1

1
( ) 1 ( ( ) (1 ( )) )

n
m R m R m R m
R A i A i

i

R m
H A x x

R m

     



  
    

  
 

  

; 1 0R m   , R m , , 0( 1)R m   .                      (9) 

Theorem 1: The generalized R  norm fuzzy information 

measures given by (8) and (9) are valid measures of fuzzy 

information. 

Proof: P1 (Sharpness): The measures (8) and (9) clearly 

satisfy the property P1, i.e., ( ) 0RH A  if and only if A  is 

non-fuzzy set or crisp set and
 

( ) 0m
RH A  if and only if A  is 

non-fuzzy set or crisp set. 

P2 (Maximality):  To verify that the proposed measure is 

concave; the different values of ( )RH A  firstly for a fixed 

value of R  and different values of , secondly for a fixed 

value of  and different values of R  are computed. 

Case 1: Let us assume a particular value of 0.5R  and 

different values of . The computed values of ( )RH A  for 

0.5R using (8) and different values of  are given in Table 

1. 

 

Table 1 Different values of ( )RH A


 for . 0 5R and for different values of   

 

  ( )A ix  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.1 0.1
0.5 ( )H A  0.0 0.1250 0.2498 0.3725 0.4812 0.7179 0.4812 0.3725 0.2498 0.1250 0.0 

0.3 0.3
0.5 ( )H A  0.0 0.2155 0.3832 0.5054 0.5802 0.6053 0.5802 0.5054 0.3832 0.2155 0.0 

0.4 0.4
0.5 ( )H A  0.0 0.2705 0.4437 0.5588 0.6254 0.6472 0.6254 0.5588 0.4437 0.2705 0.0 

0.7 0.7
0.5 ( )H A  0.0 0.4319 0.6124 0.7204 0.7797 0.7988 0.7797 0.7204 0.6124 0.4319 0.0 

1.0 1.0
0.5 ( )H A  0.0 0.6 0.8 0.9165 0.9798 1 0.9798 0.9165 0.8 0.6 0.0 
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Case 2: Let us assume a particular value of 0.7 and 

different values of R . The computed values of ( )RH A  for 

0.7 using (8) and different values of R are given in Table 

2. 

 

 

Table 2 Different values of ( )RH A
  for .0 7 and for different values of R  

 

R  ( )A ix  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.1 0.7
0.1 ( )H A  0.0 6.8071 8.6641 9.7356 10.3152 10.5 10.3152 9.7356 8.6641 6.8071 0.0 

0.2 0.7
0.2 ( )H A  0.0 1.2087 1.5379 1.7276 1.8301 1.8627 1.8301 1.7276 1.5379 1.2087 0.0 

0.4 0.7
0.4 ( )H A  0.0 0.5275 0.7174 0.8289 0.8896 0.9090 0.8896 0.8289 0.7174 0.5275 0.0 

0.6 0.7
0.6 ( )H A  0.0 0.3698 0.5467 0.6552 0.7153 0.7348 0.7153 0.6552 0.5467 0.3698 0.0 

0.8 0.7
0.8 ( )H A  0.0 0.2911 0.4652 0.5783 0.6429 0.6640 0.6429 0.5783 0.4652 0.2911 0.0 

 

 

Thus ( )RH A  is a concave function with respect to R  and   

and its maximum value exists at ( ) 0.5A ix  . Similarly, the 

concavity of ( )m
RH A can be proved. Thus, ( )RH A  and 

( )m
RH A  are concave functions and their maximum values 

exist at ( ) 0.5A ix  , i.e., maxima exists if and only if A  is 

the fuzziest set. Thus, (8) and (9) satisfy the property P2. 

P3 (Resolution): Since ( )RH A  and ( )m
RH A are increasing 

functions of ( )A ix in the range [0, 0.5) and decreasing 

function in the range (0.5, 1] , therefore 

*
*( ) ( ) ( ) ( )i A i R RA

x x H A H A      in [0, 0.5)  

and *
*( ) ( ) ( ) ( )i A i R RA

x x H A H A      in (0.5, 1] .  

Taking the above equations together, it comes 

 *( ) ( )R RH A H A  . 

Similarly, *( ) ( )m m
R RH A H A . 

P4 (Symmetry): From the definition of ( )RH A  and ( )m
RH A  

and with ( ) 1 ( )i A iA
x x   , it is obvious that 

( ) ( )R RH A H A    and ( ) ( )m m
R RH A H A . 

Hence ( )RH A

 
and ( )m

RH A  satisfy all the four properties 

(P1) to (P4) of measures of fuzzy information, therefore these 

are valid measures of fuzzy information. The measure (8) can 

be called as the generalized R  norm fuzzy information 

measure and (9) as the generalized R  norm fuzzy 

information measure of type R  and degree m . 

Limiting and Particular Cases: 

(i) When 1  and 1m  , (8) and (9) reduce 

to ( )RH A . 

(ii) When 1 , 1m  and 1R , (8) and (9) reduce 

to ( )H A . 

(iii) When 1 , 1m  and R , (8) and (9) reduce 

to  
1

1 max{ ( ),1 ( )}
n

A i A i

i

x x


    .       

Theorem 2: For ( )A,B FS X  

( ) ( ) ( ) ( )R R R RH A B H A B H A H B        . 

Proof: Let  1 / , ( ) ( )A i B iX x x X x x      

      (10) 

    2 / , ( ) ( )A i B iX x x X x x      

       (11) 

Where ( )A ix and ( )B ix be the fuzzy membership 

functions of A and B  respectively. 

1

( ) 1 ( ( ) (1 ( )) )

R Rn
R

R i A B iA B
i

R
H A B x x

R




 
     

  
 




   


     

1 2

[1 ( ( ) (1 ( )) ) ] [1 ( ( ) (1 ( )) ) ]

R RR R

R R
i A i i B iBA

X X

R
x x x x

R

 
        

  
 

 
 

     


                                                    (12)         

                

1

( ) 1 ( ( ) (1 ( )) )

R Rn
R

R i A B iA B
i

R
H A B x x

R




 
     

  
 




   


 

1 2

[1 ( ( ) (1 ( )) ) ] [1 ( ( ) (1 ( )) ) ]

R RR R

R R
i B i i A iB A

X X

R
x x x x

R

 
        

  
 

 
 

     


                                           (13) 

Adding (12) and (13) gives 

( ) ( ) ( ) ( )R R R RH A B H A B H A H B        . 

Hence, the proof of theorem. 

 

In Particular: For ( )A FS X , ( )A FS X where A the 

complement of fuzzy set A , it gets 

( ) ( ) ( ) ( )R R R RH A H A H A A H A A                    (14)
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Theorem 3: For ( )A,B FS X , 

( ) ( ) ( ) ( )m m m m
R R R RH A B H A B H A H B     .                                                

 

Proof: Clearly the result can be proved on similar lines as in 

theorem 2. 

In Particular: For ( )A FS X , ( )A FS X where A  the 

complement of fuzzy set A , it gets  

( ) ( ) ( ) ( )m m m m
R R R RH A H A H A A H A A     .         (15) 

3. NUMERICAL EXAMPLE  

Example: Let {( , ( )) / }i A i iA x x x X   be a fuzzy set 

in 1 2( , ,..., )nX x x x . For any real number n, from the 

operation of power of a fuzzy set:  

 {( ,[ ( )] ) / }n n
i A i iA x x x X  . 

Let us assume a standard fuzzy set A  on 1 2( , ,..., )nX x x x  

defined as: 

(0.2,0.3,0.2,0.4,0.5)A  

By taking into consideration the characterization of linguistic 

variables, A  is considered as “LARGE” on X . Using the 

above operation: 

1/ 2A  may be treated as “More or less LARGE”; 2A  may be 

treated as “Very LARGE”; 

3A  may be treated as “Quite very LARGE”; 4A  may be 

treated as “Very very LARGE”. 

Next these fuzzy sets are used to compare the above proposed 

fuzzy entropy measures with one of R  norm fuzzy entropy 

measures. From the point of logical consideration, it may be 

mentioned that the entropies of fuzzy sets are required to 

follow the following order pattern:

 
1/ 2 2 3 4( ) ( ) ( ) ( ) ( )R R R R RH A H A H A H A H A      

(16) 

The calculated numerical values of three fuzzy information 

measures for these cases are given in Tables 3, 4 and 5 below: 

 

Table 3 Numerical values of the R norm fuzzy entropy measure RH  

RH  A
1/ 2  A  2A  3A  A

4  

0.1R   328.9041 258.0100 179.0883 118.0176 79.5181 

0.5R   4.8587 4.4963 2.9554 1.8314 1.1392 

0.9R   4.4643 3.1244 1.7781 0.9322 0.4897 

2R   2.7415 2.3220 1.0367 0.4409 0.1940 

5R   2.3658 1.8854 0.7242 0.2900 0.1242 

 

For any particular value of 0.7 , 

 

Table 4 Numerical values of the R norm fuzzy entropy measure RH
  

RH
  A

1/ 2  A  2A  3A  A
4  

0.1R   51.2045 47.8754 33.5312 22.6947 15.6592 

0.5R   3.8610 3.5240 2.1409 1.2058 0.6798 

0.9R   3.0597 3.3325 1.3683 0.5984 0.3062 

2R   2.5640 2.1088 0.8703 0.3548 0.1527 

5R   2.2744 1.7958 0.6744 0.2698 0.1156 

 

 

For any particular value of 0.7m  , 

Table 5 Numerical values of R norm fuzzy entropy measure 
m
RH  

m
RH  A

1/ 2  A  2A  3A  A
4  

0.1R   5.9352 5.5234 3.7551 2.4330 1.5886 

0.5R   3.6502 3.3124 1.9470 1.0613 0.5777 

0.9R   3.1255 2.7618 1.4353 0.6890 0.3335 

2R   2.6660 2.2309 0.9625 0.4010 0.1743 

5R   2.3492 1.8684 0.7144 0.2859 0.1225 

 

The numerical values given in Table 3 reveal that the 

R  norm fuzzy entropy measure ( )RH A  satisfies (16). The 

results presented in Tables 4 & 5 clarify that the proposed new 

generalized R  norm fuzzy entropy measures ( )RH A and 

( )m
RH A satisfy the same: 

1/ 2 2 3 4( ) ( ) ( ) ( ) ( )R R R R RH A H A H A H A H A       
                                                                     

(17) 

and   

1/ 2 2 3 4( ) ( ) ( ) ( ) ( )m m m m m
R R R R RH A H A H A H A H A    .                                                                           

(18) 
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Thus, the behaviour of new generalized R  norm fuzzy 

entropy measures ( )RH A  and ( )m
RH A is also consistent for 

the structured linguistic variables. Table 6 and Figure 1 

display a declining trend in the numerical values of three 

entropy measures corresponding to the logical order of fuzzy 

sets.1 

 

Table 6 Calculated numerical values of proposed fuzzy entropy measures and the existing one 

R 0.5                RH ( Existing)               RH
  ( Proposed) m

RH ( Proposed) 

1/ 2A  4.8587 3.8610 3.6502 

A  4.4963 3.5240 3.3124 

2A  2.9554 2.1409 1.9470 

3A  1.8314 1.2058 1.0613 

4A  1.1392 0.6798 0.5777 

 

Figure 1 also depicts the similarity between the proposed entropy measures and the existing one. 

 

 

Figure 1: Comparison of numerical values of RH , RH
 and m

RH  

 

 

An inequality among two proposed measures of fuzzy 

information and the existing one may also be seen from Figure 

1, that is:   m
R R RH H H . 

4. CONCLUSION  
In the paper, two new parametric generalizations of one of 

existing R  norm fuzzy information measures are proposed 

with the proof of their validity. The proposed generalized 

fuzzy measures of information are valid measures which 

reduce to the known measure on substituting the particular 

values of parameters. Some of the interesting properties of 

these measures have also been studied. The given numerical 

example proves the similarity of proposed generalized 

measures of fuzzy information with ( )RH A . Thus, the 

proposed measures are more flexible measures from the 

application point of view. 
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