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ABSTRACT 

Reversible logic synthesis techniques will definitely be a 

necessary part of the long-term future of computing. The 

paper introduces the design of a new reversible logic module 

(RLM) with three versions I, II, and III. It is universal in two 

arguments. A proposed design of reversible programmable 

gate array (RPGA) based on the new (RLM) is presented. It is 

superior to previous types of (RPGA) structures in that the 

same type of reversible logic modules is used in the 

implementation of the entire circuit. Symmetric and no 

symmetric functions can be realized by the proposed (RPGA). 

Synthesizing reversibly the logic functions using this method 

is good for multi-output functions as well as it can be 

extended to incompletely specified functions.   
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1. INTRODUCTION 
Interest in reversible logic started when Landauer (1961) 

proved that traditional binary irreversible gates lead to power 

dissipation in a circuit regardless of implementation [1]. Each 

bit of information that is lost, generates KT ln(2) Joules of 

heat energy, where K is Boltzmann’s constant and T the 

absolute temperature (Kelvins) at which computation is 

performed [2, 3]. Bennett (1973) showed that for power not to 

be dissipated in an arbitrary circuit, it is necessary that this 

circuit be built from reversible gates. The importance of 

Bennett’s theorem lies in the technological necessity that 

every future technology will have to use reversible gates in 

order to reduce power loss [4]. Reversible logic is an 

emerging research area. It has attracted significant attention in 

recent years. It has applications in quantum computing, 

nanotechnology, low power CMOS, optical computing, and 

DNA computing. Reversible technologies and the synthesis of 

reversible networks are potentially very promising areas of 

study with regard to further technological advances [5]. The 

high rate of power consumption and the emergence of 

quantum effects for highly dense ICs are the biggest problems 

in system design today and in the future. It is necessary to 

design reliable systems consuming as little power as possible 

and in which the signals are processed and transmitted at very 

high speeds with very high signal integrity. In order to reduce 

power consumption, physical processes have to be logically 

reversible. 

Reversible circuits are those circuits that do not lose 

information and reversible computation in a system can be 

performed only when the system comprises of reversible 

gates. These circuits can generate unique output vector from 

each input vector, and vice versa, that is, there is a one-to-one 

mapping (a permutation) between input and output vectors [6, 

7]. Two constraints for reversible logic synthesis are: (1) 

feedback is not allowed, and (2) fan-out is not allowed (i.e., 

fan-out = 1). Reversible logic circuits have the same number 

of inputs and outputs. For an (n, k) function, i.e. function with 

n-input k-output, it is necessary to add inputs and/or outputs 

to make it reversible. “Garbage” is the number of outputs 

added to make an (n, k) function reversible. While the word 

“constant inputs” is used to denote the preset value inputs that 

were added to an (n, k) function to make it reversible. 

One of the important methodologies of reversible logic 

synthesis is the reversible programmable gate array (RPGA) 

method. This method is introduced in [8, 9]. It is based on 

regular structure to realize binary functions in reversible 

logic. This structure called a 2*2 Net structure, allows for 

efficient realization of symmetric functions. A regular 

structure means a logic circuit and its physical layout structure 

being an array of identical cells regularly connected, or a 

structure composed of few, regularly connected, structures of 

this type, called planes. By regularly connected, it is 

understood that every cell (except of boundary cells) is 

connected to its k neighbors. There is a subset of Boolean 

expressions that are specified as sum-of-products, in which 

every variable is either negated or not negated, but not both 

[9, 10]. The following three important definitions are mainly 

based on the topics described in [9]. 

Definition 1. The variable that stands non-negated (positive) 

throughout the expression is called a positive polarity 

variable. Variable that stands always in negated (negative) 

form is called a negative polarity variable.  

Definition 2. Unate function is a function expressed only 

using AND and OR operators in which every variable has 

either positive or negative polarity, but not both. 

Definition 3. Totally symmetric function that has value 1 

when exactly k of its n inputs are equal 1 and exactly (n – k) 

remaining inputs are equal 0, is called a single-index 

symmetric function and denoted by Sk(x1, x2,  , xn). 

Analogously, S{i, j, k} denotes the function that is 1 when i, j, or 

k of its variables are equal 1. 

The regular structure of RPGA has two regular planes (Figure 

1, the Feynman gates are denoted as Feyn.). The first plane 

from left is planner, regular and algorithmically created (it is 

also called the triangular plane). It consists of OR/AND 

(MAX/MIN) combination cells, made up of (2, 2) reversible 

gates [8], to realize all positive unate symmetric functions 

(PUS) of its input variables. The second plane is just a 

sequence of columns of Feynman gates that converts these 

PUS functions to arbitrary symmetric functions at the bottom. 

Every output function is realized as an EXOR of PUS 
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functions. The cells of both planes are implemented using 

different reversible logic modules (RLMs). The main 

contribution of this paper is the use of the same RLM in 

synthesizing the cells of the entire RPGA structure. That will 

simplify both the circuit’s design and implementation. As 

well, the paper presents a new type of RLMs with three 

versions giving more flexibility in the design process. In 

addition, the paper gives a solution to the realization problem 

of no symmetric functions in RPGAs. 
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Fig 1: Realization of 3-input 2-output function < S1, 2(A, B, C), S2(A, B, C) > in RPGA. 

 

                   T                                            F 

 A                                                                                                

 

 B                                                                                             

 

 C                                                                                            

                                         F 

(a) 

 

                     T                   F                                                                                                          

 A                                                                                                                  

 

 B                                                                                               

 

 C                                                                                             

                                                                 F                                                                 

(b) 

                      T                 F                             F     

 A                                                                                                        

 

 B                                                        

 

 C                                                                                                  

 

(c) 

Fig 2: The three versions of Saleem RLM, (a) Saleem-I, (b) Saleem-II, and (c) Saleem-III.

2. THE NEW REVERSIBLE LOGIC 

MODULE (SALEEM) 
Reversible (3, 3) gates, that are universal in two arguments, 

can be used for the construction of the RPGA. Reversible 

gates are computationally universal if they can be used to 

generate AND, OR, NOT gates, i.e. they can be used to 

generate any Boolean functions. A new (3, 3) reversible logic 

module (RLM), called Saleem, is designed in this work to 

implement the AND/OR cells of the RPGA. It is universal in 

two arguments. It consists of a Toffoli gate and two Feynman 

gates connected in three different ways (versions), called 

Saleem – I, II and III, as shown in Figure 2 (the Toffoli and 

Feynman gates are denoted as T and F, respectively).  
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The truth tables of the Saleem RLM are shown in Table 1, 

from which it is clear that the Saleem RLM is balanced but 

not conservative. The Saleem RLM is universal in two 

arguments, as is proved in Table 2. The production of 

cofactors for the (3, 3) Saleem RLM is shown in Table 3. 

Table 1. The truth tables of the Saleem RLM. 

 

Inputs 

A  B  C 

Outputs of Saleem versions 

Saleem-I Saleem-II Saleem-III 

P  Q  R P  Q  R P  Q  R 

0  0  0 0  0  0 0  0  0 0  0  0 

0  0  1 1  1  1 0  1  1 1  0  1 

0  1  0 1  1  0 0  1  0 1  1  0 

0  1  1 0  0  1 0  0  1 0  1  1 

1  0  0 1  0  0 1  1  0 1  0  0 

1  0  1 0  1  1 1  0  1 0  0  1 

1  1  0 1  0  1 1  1  1 1  1  1 

1  1  1 0  1  0 1  0  0 0  1  0 

Table 2. Proof of universality of the Saleem RLM in two 

arguments. 

                                           Saleem-I 

Inputs Outputs 
A = 0 P = B   C, Q = B   C, R = C 

A = 1 P =   , Q = C, R = B   C 

B = 0 P = A   C, Q = C, R = C 

B = 1 P =   , Q =               , R = A   C   

C = 0 P = A + B, Q =    , R = AB 

C = 1 P =            , Q =        , R =        

                                           Saleem-II 

Inputs Outputs 

A = 0 P = 0, Q = B   C, R = C 

A = 1 P = 1, Q =   , R = B   C 

B = 0 P = A, Q = A   C, R = C 

B = 1 P = A, Q =   , R = A   C 

C = 0 P = A, Q = A + B, R = AB 

C = 1 P = A, Q =            , R =        

                                           Saleem-III 

Inputs Outputs 

A = 0 P = B   C, Q = B, R = C 

A = 1 P =   , Q = B, R = B   C 

B = 0 P = A   C, Q = 0, R = C 

B = 1 P =   , Q = 1, R = A   C 

C = 0 P = A + B, Q = B, R = AB 

C = 1 P =            , Q = B, R =        

3. PROPOSED DESIGN OF RPGA 

BASED ON SALEEM RLM 
The Saleem RLM is required to achieve the AND and OR 

operations when it is used to implement the cells in the first 

plane of the RPGA, while it is required to achieve the EXOR 

and copy operations when it is used to implement the cells in 

the second plane. 

From Tables 2 and 3, it is clear that; when the input C = 0, the 

Saleem-I, II, and III RLMs can achieve the AND and OR 

operations. Thus, any one of these three RLMs can be used to 

implement the cells in the first plane. For the second plane, 

the Saleem-II (with the input B = 0) and the Saleem-III (with 

the input A = 0) can be used to implement the cells in this 

plane. For the circuit regularity, the same type of Saleem 

RLMs is used in both planes of the RPGA. The choice is 

made to use the Saleem-II RLMs for the implementation of 

the cells for the whole RPGA circuit. The notations for the 

Saleem-II RLMs used in the first and the second planes are 

shown in Figure 3. The realization of 4-input 3-output 

function in RPGA using the Saleem-II RLM is shown in 

Figure 4. 

Table 3. Demonstration of the number of cofactors for the 

(3, 3) Saleem RLM. 

         Saleem-I                  Saleem-II               Saleem-III 

(11 cofactors) (11 cofactors) (11 cofactors) 
P(0, B, C) = B   C 

P(1, B, C) =    
P(A, 0, C) = A   C 
P(A, B, 0) = A + B 

P(A, B, 1) =             
Q(1, B, C) = C 

Q(A, 1, C) =              
Q(A, B, 0) =      

Q(A, B, 1) =             
R(A, B, 0) = A B 

R(A, B, 1) =          

P(0, B, C) = 0 
P(1, B, C) = 1 

P(A, 0, C) = A 

Q(0, B, C) = B   C 

Q(1, B, C) =    
Q(A, 0, C) =A   C 
Q(A, B, 0) = A + B 

Q(A, B, 1) =             
R(0, B, C) = C 

R(A, B, 0) = A B 

R(A, B, 1) =          

P(0, B, C) = B   C 

P(1, B, C) =    
P(A, 0, C) = A   C 
P(A, B, 0) = A + B 

P(A, B, 1) =             
Q(0, B, C) = B 

Q(A, 0, C) = 0 
Q(A, 1, C) = 1 

R(0, B, C) = C 
R(A, B, 0) = A B 

R(A, B, 1) =          

It is clear from Figure 4, that horizontal outputs from the first 

plane PUS functions are EXOR-ed in the second plane to 

create arbitrary symmetric functions at the bottom. The 

additional garbage outputs of the Saleem-II RLMs (hexagon 

cells) in the first plane must be forwarded to the primary 

outputs of the first plane, and can be used in the same way as 

the horizontal outputs to realize some nonsymmetrical 

functions in the second plane with no repeated variables. This 

facility does not exist in the previous RPGA structures (shown 

in Figure 1). The following example should clarify this fact. 

Example  The RPGA method is to be used to realize the no 

symmetric function: 

                                    . 
The Karnough map (K-map) of the function f can be obtained 

by EXOR-ing the two K-maps of functions S1, 2, 3, 4 and (ab + 

ac + bc), as shown in Figure 5. Referring to Figure 4, the 

function f can be realized by EXOR-ing the first PUS function 

horizontal output of the first plane with the additional garbage 

output of cell 5. 

4. DISCUSSION 
The proposed design uses the same type of RLMs in 

implementing both the first and second planes of the RPGA. 

The cost of the Saleem RLM used in implementing the second 

plane is more than the cost of the Feynman reversible gates 

that are usually used. But, the advantage is the simplicity in 

fabricating the entire RPGA circuit with the same type of 

cells. That is not the case in the first plane, where the Saleem 

RLM is used to implement (MAX/MIN) cells. 

In the previous RPGA structure, the circuit shown in Figure 6 

is used as the (MAX/MIN) cell [11]. It consists of one 

Feynman gate and two Toffoli gates. The cost of Saleem 

RLM is less than that of the circuit in Figure 6. To explain 

that, let us consider the following definition [11]: 

Definition 4. The cost of a reversible circuit equals the 

summation of the cost values of its individual gates. 

 It should be noted that the cost for a single gate depends on 

the type but also on the technology. The following metrics are 

used: 

 Gate count denotes the number of gates the circuit 

consists of. 
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 Quantum cost denotes the effect needed to 

transform a reversible circuit to a quantum circuit. 

For example, the quantum cost of Feynman gate is 1 

and that of the Toffoli gate is 5. 

 Transistor cost denotes the effort needed to realize 

a reversible circuit in CMOS. The transistor cost of 

a reversible gate is (8   s) where s is the number of 

control lines. 

              B = Input 2               P = A = Garbage                            B = Control = 0          P = Output 1 = A 
 

 
 

 A = Input 1                                         Q = Output 1            A = Input 1                                         Q = Output 2        

                                                                 = A + B                                                                                = A    C    

 
 

         C = Control = 0                  R = Output 2 = A * B                         C = Input 2               R = Output 3 = C            

(a)                                                                                          (b) 

Fig 3: The notations for the Saleem-II RLMs (hexagon cells), (a) used in the first RPGA plane, (b) used in the second RPGA 

plane. 
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Fig 4: Realization of 4-input 3-output function < S1, 2(a, b, c, d), S1, 2, 4(a, b, c, d), S1, 3,4(a, b, c, d) > in RPGA. 

            cd                                                         cd                                                      cd                                                

       ab         00    01   11  10                     ab           00   01  11   10                    ab          00   01  11   10                      

             00             1     1    1                           00             1    1     1                           00                                              

             01     1      1                                        01      1     1    1     1                           01                   1     1       

             11                                      =               11      1     1    1     1                           11     1     1     1     1                            

             10     1      1                                        10      1     1    1     1                           10                   1     1                          

  

                                f                                                      S1, 2, 3, 4                                         (ab + ac + bc) 

Fig 5: Realization of the function f by EXOR-ing of two functions. 

                                  1                                                                   Garbage output 

 

                                  A                                                                  (A AND B) 

 

                                  B                                                                  (A OR B) 

Fig 6: The OR/AND (MAX/MIN) reversible circuit used in previous methods. 
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The gate count is often used to evaluate the quality of a 

reversible circuit. Also, the quantum cost metric is popular 

because it represents a measure for the quantum computation 

and considers larger gates to be more costly. The transistor 

cost model is a relatively new model that arose with the 

application of reversible circuits to the area of low-power 

CMOS design. Gate count and quantum cost are primarily 

considered as it allows a fair comparison of synthesis results 

with respect to previous work. Transistor costs are 

additionally addressed where appropriate. 

 

Consider the circuit in Figure 6, it has a gate count of 3, 

quantum cost of 11, and transistor cost of 40, while the 

Saleem RLM circuit has a gate count of 3, quantum cost of 7, 

and transistor cost of 32, respectively. Therefore, the use of 

Saleem RLM circuit is superior to the use of the circuit in 

Figure 6. 

The proposed work can be used to synthesize nonsymmetrical 

Boolean functions, by firstly converting them to symmetric 

functions. Then they can be easily synthesized by the 

proposed technique. One method to characterize a symmetry 

that might exist in a logic function is using symmetry indices 

Si [12]. A symmetry index (Si) has superscript i equals to the 

count of the number of “1” values in the states of variables in 

the corresponding cell in a K-map as in Figure 7a. The K-map 

in Figure 7b represents a three variable symmetric function, 

because the values of a specific symmetry index are equal for 

the whole map (S0 is equal to 1, S1 is equal to 1, S2 is equal to 

0, and S3 is equal to 0). A function which is not symmetric 

can be made symmetric by repeating its variables. This 

method of variable repetition transforms the values of K-map 

cells which make the function nonsymmetrical into don’t care, 

i.e. cases that never occur, which make the function 

symmetric. The K-map in Figure 7c represents a 

nonsymmetrical function that has conflicting values in the 

same symmetry indices, which are S1 and S2. The function can 

be made symmetric by repeating variable a as in Figure 7d. 

 

                   cd                                                                               bc                         

            ab             00        01     11      10                                   a            00       01      11      10                          

                  00       S0        S1      S2       S1                                         0    S0  1   S1  1    S2 0    S1 1                     

                  01       S1        S2      S3       S2                                         1    S1  1   S2  0    S3 0    S2 0                     

                  11       S2        S3      S4       S3                                                                     

                  10       S1        S2      S3       S2                                                               (b)  

                     

                                           (a)                                                        bc  

                                                                                                aa              00       01      11       10                     

                   bc                                                                                00    S0  0    S1 0   S2  1    S1  0 

            a                00      01      11      10                                       01    S1  -     S2 -    S3  -     S2  -               

                   0       S0  0   S1 0    S2 1   S1 0                                      11    S2  1    S3 0   S4  1     S3  0    

                   1       S1  1   S2 0    S3 1   S2 0                                      10    S1  -     S2 -    S3  -     S2  -        

 

                                           (c)                                                                                 (d) 

Fig 7: (a) K-map of a 4 variable function showing the symmetry indices, (b) K-map of a 3 variable symmetric function, (c) no 

symmetric function with conflicting values, (d) function in (c) being made symmetric by repeating variable a.  

 

          bc                                                              bbc                                                           

         a        00      01      11     10                  a            000    010  110   100   101   111    011    001 

0 S0  0  S1  1  S2 1  S1  0                          0    S0 0  S1 -   S2 0   S1 -   S2 -   S3 1   S2 -    S1 1 

1 S1  1  S2  0  S3 0  S2  1                          1    S1 1  S2 -   S3 1   S2 -   S3 -   S4 0   S3 -    S2 0   

  

                              (a)                                                                                  (b)           

 
Fig 8: (a) K-map of a no symmetric function with conflicting values of symmetry indices, (b) function in (a) being made 

symmetric by repeating variable b.

The no symmetrical function in Figure 7c cannot be 

represented by elementary symmetric functions S0, S1,  , Sn. 

However, after it is converted to symmetric form as shown in 

Figure 7d, it can be represented as f = S2, 4(a, b, c) and easily 

realized by the proposed RPGA structure. Here, the repetition 

of the input variable a is required to achieve this process. The 

choice of repeated variables depends on the type of non-

symmetry of the function, and the size of the RPGA depends 

on it. For example, the function in Figure 8a is not symmetric 

because of conflicting values in the same symmetry indices of 

S1 and S2. Here, the repetition of variable a will not convert 

the function to a symmetric form. But the repetition of 

variable b will do, as shown in Figure 8b. The function can be 

represented as f = S1, 3(a, b, c) and be easily realized by the 

proposed RPGA. Note that the cases corresponding to the 

values of bbc = 010, 100, 101, or 011 in K-map of Figure 8b 

are impossible to be occurred and are denoted as dashes (-), or 

don’t cares, in their respective cells. 

5. CONCLUSIONS 
This paper presents the design of RPGA circuits based on the 

use of a new (Saleem) RLM with three versions. Some 

advantages that have been observed so far when synthesizing 

reversibly the logic functions using RPGA method are: (1) 

Good for multioutput functions, (2) Can be extended to 

incompletely specified functions, (3) Symmetry is used. The 

RPGA method also has some disadvantages: (1) Produces 

garbage outputs, (2) Inefficient for strongly nonsymmetrical 

functions. The RPGA technique presented in this work is 

superior to previous types, because the same type of RLM 

circuits is used here in the implementation of the two RPGA’s 

planes. Also, the cost of the proposed design is lower than 

previous types. In addition, the proposed RPGA structure is 
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efficient in realizing nonsymmetrical functions by converting 

them first to symmetrical forms, via repeating variables, and 

then applying the design procedure. A promising task for the 

future is to make a scheme (rules and guidelines) for the 

choice of the variables to be repeated such that the final 

design is minimal. Also, the cases of incompletely specified 

functions can be considered as further work. Finally, the use 

of the new Saleem RLM makes the design of the proposed 

RPGA more flexible as compared with previous methods. As 

well, it becomes possible for some types of nonsymmetrical 

functions to be realized directly without the need for variable 

repetitions due to the use of the new RLM, a facility not found 

in previous methods. 
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