
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 10, May 2014

26

Design of Reversible Programmable Gate Array based

on New Reversible Logic Modules

Saleem M. R. Taha, Ph.D.
Dept. of Electrical Engineering,

College of Engineering,
University of Baghdad,
Jadiryah, Baghdad, Iraq

ABSTRACT

Reversible logic synthesis techniques will definitely be a

necessary part of the long-term future of computing. The

paper introduces the design of a new reversible logic module

(RLM) with three versions I, II, and III. It is universal in two

arguments. A proposed design of reversible programmable

gate array (RPGA) based on the new (RLM) is presented. It is

superior to previous types of (RPGA) structures in that the

same type of reversible logic modules is used in the

implementation of the entire circuit. Symmetric and no

symmetric functions can be realized by the proposed (RPGA).

Synthesizing reversibly the logic functions using this method

is good for multi-output functions as well as it can be

extended to incompletely specified functions.

General Terms

Design, Theory

Keywords

Reversible Logic Module, Reversible Logic Synthesis, RPGA

1. INTRODUCTION
Interest in reversible logic started when Landauer (1961)

proved that traditional binary irreversible gates lead to power

dissipation in a circuit regardless of implementation [1]. Each

bit of information that is lost, generates KT ln(2) Joules of

heat energy, where K is Boltzmann’s constant and T the

absolute temperature (Kelvins) at which computation is

performed [2, 3]. Bennett (1973) showed that for power not to

be dissipated in an arbitrary circuit, it is necessary that this

circuit be built from reversible gates. The importance of

Bennett’s theorem lies in the technological necessity that

every future technology will have to use reversible gates in

order to reduce power loss [4]. Reversible logic is an

emerging research area. It has attracted significant attention in

recent years. It has applications in quantum computing,

nanotechnology, low power CMOS, optical computing, and

DNA computing. Reversible technologies and the synthesis of

reversible networks are potentially very promising areas of

study with regard to further technological advances [5]. The

high rate of power consumption and the emergence of

quantum effects for highly dense ICs are the biggest problems

in system design today and in the future. It is necessary to

design reliable systems consuming as little power as possible

and in which the signals are processed and transmitted at very

high speeds with very high signal integrity. In order to reduce

power consumption, physical processes have to be logically

reversible.

Reversible circuits are those circuits that do not lose

information and reversible computation in a system can be

performed only when the system comprises of reversible

gates. These circuits can generate unique output vector from

each input vector, and vice versa, that is, there is a one-to-one

mapping (a permutation) between input and output vectors [6,

7]. Two constraints for reversible logic synthesis are: (1)

feedback is not allowed, and (2) fan-out is not allowed (i.e.,

fan-out = 1). Reversible logic circuits have the same number

of inputs and outputs. For an (n, k) function, i.e. function with

n-input k-output, it is necessary to add inputs and/or outputs

to make it reversible. “Garbage” is the number of outputs

added to make an (n, k) function reversible. While the word

“constant inputs” is used to denote the preset value inputs that

were added to an (n, k) function to make it reversible.

One of the important methodologies of reversible logic

synthesis is the reversible programmable gate array (RPGA)

method. This method is introduced in [8, 9]. It is based on

regular structure to realize binary functions in reversible

logic. This structure called a 2*2 Net structure, allows for

efficient realization of symmetric functions. A regular

structure means a logic circuit and its physical layout structure

being an array of identical cells regularly connected, or a

structure composed of few, regularly connected, structures of

this type, called planes. By regularly connected, it is

understood that every cell (except of boundary cells) is

connected to its k neighbors. There is a subset of Boolean

expressions that are specified as sum-of-products, in which

every variable is either negated or not negated, but not both

[9, 10]. The following three important definitions are mainly

based on the topics described in [9].

Definition 1. The variable that stands non-negated (positive)

throughout the expression is called a positive polarity

variable. Variable that stands always in negated (negative)

form is called a negative polarity variable.

Definition 2. Unate function is a function expressed only

using AND and OR operators in which every variable has

either positive or negative polarity, but not both.

Definition 3. Totally symmetric function that has value 1

when exactly k of its n inputs are equal 1 and exactly (n – k)

remaining inputs are equal 0, is called a single-index

symmetric function and denoted by Sk(x1, x2, , xn).

Analogously, S{i, j, k} denotes the function that is 1 when i, j, or

k of its variables are equal 1.

The regular structure of RPGA has two regular planes (Figure

1, the Feynman gates are denoted as Feyn.). The first plane

from left is planner, regular and algorithmically created (it is

also called the triangular plane). It consists of OR/AND

(MAX/MIN) combination cells, made up of (2, 2) reversible

gates [8], to realize all positive unate symmetric functions

(PUS) of its input variables. The second plane is just a

sequence of columns of Feynman gates that converts these

PUS functions to arbitrary symmetric functions at the bottom.

Every output function is realized as an EXOR of PUS

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 10, May 2014

27

functions. The cells of both planes are implemented using

different reversible logic modules (RLMs). The main

contribution of this paper is the use of the same RLM in

synthesizing the cells of the entire RPGA structure. That will

simplify both the circuit’s design and implementation. As

well, the paper presents a new type of RLMs with three

versions giving more flexibility in the design process. In

addition, the paper gives a solution to the realization problem

of no symmetric functions in RPGAs.

 First plane Second plane

 C MAX(A,B,C) 0 0

 MAX(A,B) =(A+B)+C

A = A+B = S
1,2,3

(A,B,C) S
1,2,3

B MIN(A,B) C(A+B) S
1,2,3

 = A*B S
2,3

 S
2,3

(A,B,C)

 =(A*B)+C(A+B) S
2,3

 S
3
 S

3

 MIN(A,B,C)

 =(A*B)*C=S
3
(A,B,C)

 S
1,2

 S
2

 Arbitrary symmetric functions

Fig 1: Realization of 3-input 2-output function < S1, 2(A, B, C), S2(A, B, C) > in RPGA.

 T F

 A

 B

 C

 F

(a)

 T F

 A

 B

 C

 F

(b)

 T F F

 A

 B

 C

(c)

Fig 2: The three versions of Saleem RLM, (a) Saleem-I, (b) Saleem-II, and (c) Saleem-III.

2. THE NEW REVERSIBLE LOGIC

MODULE (SALEEM)
Reversible (3, 3) gates, that are universal in two arguments,

can be used for the construction of the RPGA. Reversible

gates are computationally universal if they can be used to

generate AND, OR, NOT gates, i.e. they can be used to

generate any Boolean functions. A new (3, 3) reversible logic

module (RLM), called Saleem, is designed in this work to

implement the AND/OR cells of the RPGA. It is universal in

two arguments. It consists of a Toffoli gate and two Feynman

gates connected in three different ways (versions), called

Saleem – I, II and III, as shown in Figure 2 (the Toffoli and

Feynman gates are denoted as T and F, respectively).

Max/Min

 gate

Max/Min

 gate

Max/Min

 gate

Feyn.
gate

Feyn.
gate

Feyn.

gate

Feyn.
gate

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 10, May 2014

28

The truth tables of the Saleem RLM are shown in Table 1,

from which it is clear that the Saleem RLM is balanced but

not conservative. The Saleem RLM is universal in two

arguments, as is proved in Table 2. The production of

cofactors for the (3, 3) Saleem RLM is shown in Table 3.

Table 1. The truth tables of the Saleem RLM.

Inputs

A B C

Outputs of Saleem versions

Saleem-I Saleem-II Saleem-III

P Q R P Q R P Q R

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 1 1 1 0 1

0 1 0 1 1 0 0 1 0 1 1 0

0 1 1 0 0 1 0 0 1 0 1 1

1 0 0 1 0 0 1 1 0 1 0 0

1 0 1 0 1 1 1 0 1 0 0 1

1 1 0 1 0 1 1 1 1 1 1 1

1 1 1 0 1 0 1 0 0 0 1 0

Table 2. Proof of universality of the Saleem RLM in two

arguments.

 Saleem-I

Inputs Outputs
A = 0 P = B C, Q = B C, R = C

A = 1 P = , Q = C, R = B C

B = 0 P = A C, Q = C, R = C

B = 1 P = , Q = , R = A C

C = 0 P = A + B, Q = , R = AB

C = 1 P = , Q = , R =

 Saleem-II

Inputs Outputs

A = 0 P = 0, Q = B C, R = C

A = 1 P = 1, Q = , R = B C

B = 0 P = A, Q = A C, R = C

B = 1 P = A, Q = , R = A C

C = 0 P = A, Q = A + B, R = AB

C = 1 P = A, Q = , R =

 Saleem-III

Inputs Outputs

A = 0 P = B C, Q = B, R = C

A = 1 P = , Q = B, R = B C

B = 0 P = A C, Q = 0, R = C

B = 1 P = , Q = 1, R = A C

C = 0 P = A + B, Q = B, R = AB

C = 1 P = , Q = B, R =

3. PROPOSED DESIGN OF RPGA

BASED ON SALEEM RLM
The Saleem RLM is required to achieve the AND and OR

operations when it is used to implement the cells in the first

plane of the RPGA, while it is required to achieve the EXOR

and copy operations when it is used to implement the cells in

the second plane.

From Tables 2 and 3, it is clear that; when the input C = 0, the

Saleem-I, II, and III RLMs can achieve the AND and OR

operations. Thus, any one of these three RLMs can be used to

implement the cells in the first plane. For the second plane,

the Saleem-II (with the input B = 0) and the Saleem-III (with

the input A = 0) can be used to implement the cells in this

plane. For the circuit regularity, the same type of Saleem

RLMs is used in both planes of the RPGA. The choice is

made to use the Saleem-II RLMs for the implementation of

the cells for the whole RPGA circuit. The notations for the

Saleem-II RLMs used in the first and the second planes are

shown in Figure 3. The realization of 4-input 3-output

function in RPGA using the Saleem-II RLM is shown in

Figure 4.

Table 3. Demonstration of the number of cofactors for the

(3, 3) Saleem RLM.

 Saleem-I Saleem-II Saleem-III

(11 cofactors) (11 cofactors) (11 cofactors)
P(0, B, C) = B C

P(1, B, C) =
P(A, 0, C) = A C
P(A, B, 0) = A + B

P(A, B, 1) =
Q(1, B, C) = C

Q(A, 1, C) =
Q(A, B, 0) =

Q(A, B, 1) =
R(A, B, 0) = A B

R(A, B, 1) =

P(0, B, C) = 0
P(1, B, C) = 1

P(A, 0, C) = A

Q(0, B, C) = B C

Q(1, B, C) =
Q(A, 0, C) =A C
Q(A, B, 0) = A + B

Q(A, B, 1) =
R(0, B, C) = C

R(A, B, 0) = A B

R(A, B, 1) =

P(0, B, C) = B C

P(1, B, C) =
P(A, 0, C) = A C
P(A, B, 0) = A + B

P(A, B, 1) =
Q(0, B, C) = B

Q(A, 0, C) = 0
Q(A, 1, C) = 1

R(0, B, C) = C
R(A, B, 0) = A B

R(A, B, 1) =

It is clear from Figure 4, that horizontal outputs from the first

plane PUS functions are EXOR-ed in the second plane to

create arbitrary symmetric functions at the bottom. The

additional garbage outputs of the Saleem-II RLMs (hexagon

cells) in the first plane must be forwarded to the primary

outputs of the first plane, and can be used in the same way as

the horizontal outputs to realize some nonsymmetrical

functions in the second plane with no repeated variables. This

facility does not exist in the previous RPGA structures (shown

in Figure 1). The following example should clarify this fact.

Example The RPGA method is to be used to realize the no

symmetric function:

 .
The Karnough map (K-map) of the function f can be obtained

by EXOR-ing the two K-maps of functions S1, 2, 3, 4 and (ab +

ac + bc), as shown in Figure 5. Referring to Figure 4, the

function f can be realized by EXOR-ing the first PUS function

horizontal output of the first plane with the additional garbage

output of cell 5.

4. DISCUSSION
The proposed design uses the same type of RLMs in

implementing both the first and second planes of the RPGA.

The cost of the Saleem RLM used in implementing the second

plane is more than the cost of the Feynman reversible gates

that are usually used. But, the advantage is the simplicity in

fabricating the entire RPGA circuit with the same type of

cells. That is not the case in the first plane, where the Saleem

RLM is used to implement (MAX/MIN) cells.

In the previous RPGA structure, the circuit shown in Figure 6

is used as the (MAX/MIN) cell [11]. It consists of one

Feynman gate and two Toffoli gates. The cost of Saleem

RLM is less than that of the circuit in Figure 6. To explain

that, let us consider the following definition [11]:

Definition 4. The cost of a reversible circuit equals the

summation of the cost values of its individual gates.

 It should be noted that the cost for a single gate depends on

the type but also on the technology. The following metrics are

used:

 Gate count denotes the number of gates the circuit

consists of.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 10, May 2014

29

 Quantum cost denotes the effect needed to

transform a reversible circuit to a quantum circuit.

For example, the quantum cost of Feynman gate is 1

and that of the Toffoli gate is 5.

 Transistor cost denotes the effort needed to realize

a reversible circuit in CMOS. The transistor cost of

a reversible gate is (8 s) where s is the number of

control lines.

 B = Input 2 P = A = Garbage B = Control = 0 P = Output 1 = A

 A = Input 1 Q = Output 1 A = Input 1 Q = Output 2

 = A + B = A C

 C = Control = 0 R = Output 2 = A * B C = Input 2 R = Output 3 = C

(a) (b)

Fig 3: The notations for the Saleem-II RLMs (hexagon cells), (a) used in the first RPGA plane, (b) used in the second RPGA

plane.

 b a c (a+b) d (a+b+c) Second plane

 a (a+b) (a+b+c) S1, 2, 3, 4

 c(a+b) 0 S1, 2, 3, 4

 0 0 0 d(a+b+c)

 ab ab (ab+ac+bc) S1,2,3,4 S1

 (ab+ac+bc) S2, 3, 4 S2, 3, 4

 0 0

 S1

 0 0

 S1, 2

 abc abc

 S3, 4 S3,4

 S3, 4 0

 0 S4

 First plane abcd S4

 S1,2,4 S1,2

 S1,3,4

Fig 4: Realization of 4-input 3-output function < S1, 2(a, b, c, d), S1, 2, 4(a, b, c, d), S1, 3,4(a, b, c, d) > in RPGA.

 cd cd cd

 ab 00 01 11 10 ab 00 01 11 10 ab 00 01 11 10

 00 1 1 1 00 1 1 1 00

 01 1 1 01 1 1 1 1 01 1 1

 11 = 11 1 1 1 1 11 1 1 1 1

 10 1 1 10 1 1 1 1 10 1 1

 f S1, 2, 3, 4 (ab + ac + bc)

Fig 5: Realization of the function f by EXOR-ing of two functions.

 1 Garbage output

 A (A AND B)

 B (A OR B)

Fig 6: The OR/AND (MAX/MIN) reversible circuit used in previous methods.

Saleem-

II

 II

Saleem-

II

 II

1 2 3

4 5

6

9

7

8

10

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 10, May 2014

30

The gate count is often used to evaluate the quality of a

reversible circuit. Also, the quantum cost metric is popular

because it represents a measure for the quantum computation

and considers larger gates to be more costly. The transistor

cost model is a relatively new model that arose with the

application of reversible circuits to the area of low-power

CMOS design. Gate count and quantum cost are primarily

considered as it allows a fair comparison of synthesis results

with respect to previous work. Transistor costs are

additionally addressed where appropriate.

Consider the circuit in Figure 6, it has a gate count of 3,

quantum cost of 11, and transistor cost of 40, while the

Saleem RLM circuit has a gate count of 3, quantum cost of 7,

and transistor cost of 32, respectively. Therefore, the use of

Saleem RLM circuit is superior to the use of the circuit in

Figure 6.

The proposed work can be used to synthesize nonsymmetrical

Boolean functions, by firstly converting them to symmetric

functions. Then they can be easily synthesized by the

proposed technique. One method to characterize a symmetry

that might exist in a logic function is using symmetry indices

Si [12]. A symmetry index (Si) has superscript i equals to the

count of the number of “1” values in the states of variables in

the corresponding cell in a K-map as in Figure 7a. The K-map

in Figure 7b represents a three variable symmetric function,

because the values of a specific symmetry index are equal for

the whole map (S0 is equal to 1, S1 is equal to 1, S2 is equal to

0, and S3 is equal to 0). A function which is not symmetric

can be made symmetric by repeating its variables. This

method of variable repetition transforms the values of K-map

cells which make the function nonsymmetrical into don’t care,

i.e. cases that never occur, which make the function

symmetric. The K-map in Figure 7c represents a

nonsymmetrical function that has conflicting values in the

same symmetry indices, which are S1 and S2. The function can

be made symmetric by repeating variable a as in Figure 7d.

 cd bc

 ab 00 01 11 10 a 00 01 11 10

 00 S0 S1 S2 S1 0 S0 1 S1 1 S2 0 S1 1

 01 S1 S2 S3 S2 1 S1 1 S2 0 S3 0 S2 0

 11 S2 S3 S4 S3

 10 S1 S2 S3 S2 (b)

 (a) bc

 aa 00 01 11 10

 bc 00 S0 0 S1 0 S2 1 S1 0

 a 00 01 11 10 01 S1 - S2 - S3 - S2 -

 0 S0 0 S1 0 S2 1 S1 0 11 S2 1 S3 0 S4 1 S3 0

 1 S1 1 S2 0 S3 1 S2 0 10 S1 - S2 - S3 - S2 -

 (c) (d)

Fig 7: (a) K-map of a 4 variable function showing the symmetry indices, (b) K-map of a 3 variable symmetric function, (c) no

symmetric function with conflicting values, (d) function in (c) being made symmetric by repeating variable a.

 bc bbc

 a 00 01 11 10 a 000 010 110 100 101 111 011 001

0 S0 0 S1 1 S2 1 S1 0 0 S0 0 S1 - S2 0 S1 - S2 - S3 1 S2 - S1 1

1 S1 1 S2 0 S3 0 S2 1 1 S1 1 S2 - S3 1 S2 - S3 - S4 0 S3 - S2 0

 (a) (b)

Fig 8: (a) K-map of a no symmetric function with conflicting values of symmetry indices, (b) function in (a) being made

symmetric by repeating variable b.

The no symmetrical function in Figure 7c cannot be

represented by elementary symmetric functions S0, S1, , Sn.

However, after it is converted to symmetric form as shown in

Figure 7d, it can be represented as f = S2, 4(a, b, c) and easily

realized by the proposed RPGA structure. Here, the repetition

of the input variable a is required to achieve this process. The

choice of repeated variables depends on the type of non-

symmetry of the function, and the size of the RPGA depends

on it. For example, the function in Figure 8a is not symmetric

because of conflicting values in the same symmetry indices of

S1 and S2. Here, the repetition of variable a will not convert

the function to a symmetric form. But the repetition of

variable b will do, as shown in Figure 8b. The function can be

represented as f = S1, 3(a, b, c) and be easily realized by the

proposed RPGA. Note that the cases corresponding to the

values of bbc = 010, 100, 101, or 011 in K-map of Figure 8b

are impossible to be occurred and are denoted as dashes (-), or

don’t cares, in their respective cells.

5. CONCLUSIONS
This paper presents the design of RPGA circuits based on the

use of a new (Saleem) RLM with three versions. Some

advantages that have been observed so far when synthesizing

reversibly the logic functions using RPGA method are: (1)

Good for multioutput functions, (2) Can be extended to

incompletely specified functions, (3) Symmetry is used. The

RPGA method also has some disadvantages: (1) Produces

garbage outputs, (2) Inefficient for strongly nonsymmetrical

functions. The RPGA technique presented in this work is

superior to previous types, because the same type of RLM

circuits is used here in the implementation of the two RPGA’s

planes. Also, the cost of the proposed design is lower than

previous types. In addition, the proposed RPGA structure is

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 10, May 2014

31

efficient in realizing nonsymmetrical functions by converting

them first to symmetrical forms, via repeating variables, and

then applying the design procedure. A promising task for the

future is to make a scheme (rules and guidelines) for the

choice of the variables to be repeated such that the final

design is minimal. Also, the cases of incompletely specified

functions can be considered as further work. Finally, the use

of the new Saleem RLM makes the design of the proposed

RPGA more flexible as compared with previous methods. As

well, it becomes possible for some types of nonsymmetrical

functions to be realized directly without the need for variable

repetitions due to the use of the new RLM, a facility not found

in previous methods.

6. REFERENCES
[1] Landauer, R. 1961. Irreversibility and heat generation in

the computing process. IBM J. of Research and

Development, vol.5, no. 3, 183-191.

[2] Dueck, G. W. and Maslov, D. 2003. Reversible function

synthesis with minimum garbage outputs. Proceedings of

the 6th International Symposium on Representations and

Methodology of Future Computing Technologies (RM),

Trier, Germany, March 2003, pp. 154-161.

[3] Maslov, D. and Dueck, G. W. 2003. Garbage in

reversible designs of multiple output functions.

Proceedings of the 6th International Symposium on

Representations and Methodology of Future Computing

Technologies (RM), Trier, Germany, March 2003, pp.

162-170.

[4] Bennet, C. H. 1973. Logical reversibility of computation.

IBM J. of Research and Development, 17 (November

1973), 525-532.

[5] Maslov, D., Dueck, G. W., and Miller, D. M. 2005

Synthesis of Fredkin-Toffoli reversible networks. IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, vol.13, no. 6, (June 2005), 765-769.

[6] Lukac, M., Pivtoraiko, M., Mishchenko, A., and

Perkowski, M. 2002. Automated synthesis of generalized

reversible cascades using genetic algorithms.

Proceedings of 5th International Workshop on Boolean

Problems, Freiburg, Germany, 19-20 September 2002,

pp. 33-45.

[7] Thapliyal, H., Kotival, S., and Srinivas, M. B. 2006.

Novel BCD adders and their reversible logic

implementation for IEEE 754r format. Proceedings of the

IEEE 19th International Conference on VLSI Design

(VLSID’06), Hyderabad, India, 4-7 January 2006, pp.

387-392.

[8] Al-Rabadi, A. N. 2004. Reversible logic synthesis: from

fundamentals to quantum computing. Springer-Verlag.

[9] Perkowski, M., Kerntopf, P., Buller, A., Chrzanowska-

Jeske, M., Mishchenko, A., Song, X., Al-Rabadi, A.,

Jozwiak, L., Coppola, A., and Massery, B. 2001.

Regularity and symmetry as a base for efficient

realization of reversible logic circuits. Proceedings of

IWLS’01, Lake Tahoe, California, USA, 12-15 June

2001, pp. 90-95.

[10] Perkowski, M., Kerntopf, P., Buller, A., Chrzanowska-

Jeske, M., Mishchenko, A., Song, X., Al-Rabadi, A.,

Jozwiak, L., Coppola, A., and Massery, B. 2001. Regular

realization of symmetric functions using reversible logic.

Proceedings of EUROMICRO Symposium on Digital

Systems Design (Euro-Micro’01), Warsaw, Poland,

September 2001, pp. 245-252.

[11] Wille, R., and Drechsler, R. 2010. Towards a design flow

for reversible logic. Springer Science + Business Media

B. V.

[12] Al-Rabadi, A. N. 2005. Three dimensional lattice logic

circuits, part III: solving 3D volume congestion problem.

Facta Universitatis, University of Nis, Serbia, vol. 18, no.

1, April 2005, pp. 29-43.

IJCATM : www.ijcaonline.org

