
International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.15, April 2014

13

Formal Model based Specification of Authorization

Framework for Ubiquitous Enterprise Computing

Environment

Supreet Kaur
PURCITM, Punjabi University, Patiala

India

Kawaljeet Singh, Ph. D
UCC, Punjabi University, Patiala

India

ABSTRACT
With the emergence of new dynamic computing

environments, the traditional identity based authorization

models are unable to meet multiple attribute based policy

requirements through single function based access control

model. There is need for a flexible and scalable authorization

model that can meet the different protection requirement of

the computing system and adapt to the demand of real world

security requirements. In this paper a formal authorization

model for ubiquitous computing environment is proposed.

Ubiquitous computing environment demands a dynamic

access control mechanism that can adapt to the changing

security requirement of the computing environment. The

proposed security model has taken these factors into

consideration and adopted a formal approach to design a

flexible and scalable model to support intelligent

authorization process in ubiquitous computing environment.

Keywords
Access Control, Authorization, Formal Methods, Security

Model, Ubiquitous Computing.

1. INTRODUCTION
The use of formal methods based approach has become an

essential part of the development process of secure systems

keeping in view the increased complexity of the computing

environments. In order to achieve high degree of safety,

reliability and security, formal methods play a very important

role in system development process. Formal methods refer to

the set of activities that rely on mathematically-based

languages and tools for specification, verification and systems

requirement validation. The formal specification helps in

presenting the system in a precise and unambiguous way. A

formal specification has well defined syntax and semantics

based mathematical concepts drawn from set theory and

Logic. Moreover formal methods can help in reducing high

validation costs in case of complex system by discovering

specification errors at an early stage and hence reduce the rate

of system failures.

In this paper formal methods based approach is used for the

development of specification framework for authorization

model defined for secure ubiquitous enterprise computing

environment [1-2]. The main advantage of the formal

specification approach is that it allows reasoning about the

security properties of the system which is very important

feature for the successful implementation of the security

mechanism based on the proposed model. In the proposed

work the model based approach to formal specification is used

to write detail specification for the ubiquitous authorization

model. In model based approach a model of the proposed

system is built using state machine based approach and the

system management operations are defined for performing

system state transitions. In literature different languages exists

like VDM, OCL, B and Z notation that have been developed

to formally specify the systems. The formal specification

language used for development in proposed work is Z formal

specification notation [3] that is based on set theory, first

order predicate logic and schema calculus. In Z, states, as well

as operations, are described with a two-dimensional notation

called a schema. The Formal notation of Z provides well

defined semantics and complement informal requirements

specifications with formal description. The Z language

notation provides high degree of expressiveness and precise

specification for development of state based model.

The proposed model specification is based on state based

ubiquitous authorization model that has been designed to

provide the reliable authorization service of ubiquitous

computing environment. The formal description is presented

as small modules called schemas. Schemas are used to

describe the state variables and to define constraints and set of

management operations on system state. The proposed model

based specification includes schemas defined primarily for

describing state variables and operation with respect to

security aspect of the ubiquitous computing environment.

1.1 Background and Related Work
Formal specification approach has been widely applied for the

development of security system to achieve higher rate of

reliability and efficiency. In the context of information

security systems, it has become a standard feature to use

formal specification techniques and tools before the

implementation of the system. In view of complexity and

heterogeneity of ubiquitous computing environments, formal

specification approach provides precise, unambiguous and

explicit specification of access control framework in order to

achieve the organizational security objectives.

Ubiquitous computing environments are physical

environments saturated with computing and communication,

yet gracefully integrated with human users [4].These

computing environment are collection of heterogeneous

entities which are computationally autonomous. These

computational entities are embedded in physical environment,

distributed over network and interact with each other to

provide smart service to the users. In recent years, the rapid

growth of networking technologies and influx of smart

devices has significantly promoted level of interaction among

the computing entities in computing environments. The

interactions between these autonomous entities are adhoc in

nature and can happen in anywhere anytime mode. This

ubiquity property imposes a new set of security challenges in

computing environment [4].In order to provide secure service,

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.15, April 2014

14

the computing environment should incorporate secure access

control mechanism.

The literature review reveals that recent approaches are

moving towards the development of flexible frameworks with

the support of multiple parameters and policies as per the

requirements of the specific application environment. In

traditional access control models like DAC [5], MAC [6] and

RBAC [7-8] authorization decisions are determined according

to identities of subjects and objects, which are authenticated

by a system completely. Given the complexity of the scenario,

the simple authorization function triple (subject, object,

operation) is no more sufficient. Modern access control

practices for emerging computing requirements require

flexible authorization policies. A survey of the literature in

this direction shows significant amount of work done for the

development of models for the emerging computing

environments. Al-Muhtadi et al. [9] in their paper presented a

ubiquitous security mechanism that integrates context-

awareness with automated reasoning to perform

authentication and access control in ubiquitous computing

environments. Kim et al. [10] in their paper proposed an

extended RBAC model to deal with context, which

dynamically adjusts role assignments (UA) and permission

assignments (PA). Sampemane et al. [11] in their paper

studied the problem of access control for new emerging

environments, which are called Active Spaces. Song-hwa et

al. [12] in their paper proposed new access control model

supporting time and location dimensions. The proposed access

control model can effectively support various ubiquitous

computing environments. Wang et al. [13] in their paper

presented a usage control model to protect services and

devices in ubiquitous computing environments, which allows

the access restrictions directly on services and object

documents. Lin at al. [14] in their paper presented a flexible,

autonomous and non-redundancy access control model for

ubiquitous computing environment which dynamically grants

and adapts permissions to users based on context information

including time, location and trust value. Hung et al. [15] in

their paper proposed Activity-Oriented Access Control

(AOAC) model, aiming to support user's activity in ubiquitous

environments. Filho et al. [16]in their paper proposes a

generalized context-based access control model for making

access control decisions completely based on context

information. Sejong et al. [17] in their study proposed a new

access control model termed the Ubi-RBAC model. It is based

on the RBAC model and adds new components such as space,

space hierarchy, and context constraints.

Major work in the literature has focused on role based access

control model and proposed new model around it only. Less

attention has been paid on the rest of approaches like attribute

based approach or policy based approach. Recently attribute

based approach has been standardized with the draft

publication by NIST [18]. ABAC is a logical access control

methodology where authorization to perform a set of

operations is determined by evaluating attributes associated

with the subject, object, requested operations, and, in some

cases, environment conditions against policy, rules, or

relationships that describe the allowable operations for a given

set of attributes.

In our proposed work our target system is ubiquitous

computing environment. The ubiquity property of the

computing environment and anywhere anytime computing

system complicate the implementation of reliable

authorization service as it demands a dynamic and an

intelligent approach towards modeling of authorization

framework. Ubiquitous computing environment involves

arbitrary attributes of system entities in authorization process.

In this work attribute centric authorization framework for

managing authorization in ubiquitous computing environment

is proposed. The Z notation is found as most suitable choice

for development of a complex authorization model

specification.

2. FORMAL SPECIFICATION
Formal specification is an approach for description of relevant

properties of a system using formal notation. The choice of

specification notation used in our proposed work is based

certain characteristics described below.

 Generic Specification

The specification notation should result in a generic

specification and not inclined towards certain programming

paradigm or tied to the specifics of a particular

implementation language. It should complement informal

requirements specification techniques

 Precision and Unambiguous

The specification notation should support precise and

Unambiguous specification. The specification format should

match naturally for expressing the target system with a

minimum of needs to compromise. It should help in removing

area of ambiguity in specification and avoid any instance of

misinterpretation.

 Abstraction and High degree of Expressiveness

The specification notation should support high degree of

expressiveness to specify the system details to the desired

level. This would allow system components to be stated at

multiple levels of abstraction and allow model components

reusability. Good specification notation will simplify the

system behavioral specification.

 User friendly
In general Formal specification is found to be difficult and

tedious to read especially when specifications are purely

based on mathematical constructs and formulae. To be user

friendly formal specification must be supplemented by

supporting informal text and description.

 Support for Formal analysis and Validation.

The principle advantage of using Formal method approach is

that it forces an analysis of the system requirements at an

early stage. The Formal specification notation should support

interaction with computer tools for verifying notation, as a

verified model specification reduces the system failure rate by

highlighting errors at an early stage of system development

and increases the level of assurance.

Based on the above considerations and criteria a survey of

various specification notation like B, OCL, VDM and Z was

performed. The standard Z notation is selected as

specification notation due to the fact that it is generic, precise,

user friendly and support model analysis and verification.

2.1 The Formal Specification Notation
Formal specification notation has been widely used for

development of model based systems. Among various mature

notations the Z formal specification notation is well

established typed formal specification language and has been

adopted as an international standard through the publication of

ISO/IEC 13568:2002.

In Z, systems are modeled using concepts based on set theory

and first order predicate calculus. It provides a precise syntax

and semantics based on mathematical constructs for the

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.15, April 2014

15

abstract specification of system. The main feature of the Z is a

way in which formal description is split into small pieces

called schemas. Schemas are considered as building block of

Z specification. These schemas are used to describe both static

and dynamic components of the system. The static component

defines state and the system invariant that system should

maintain while transition from one state to another state. The

dynamic component defines the set of system management

operation. The structural representation of the elementary

schema used in Z specification is as follow.

 SchemaName________________________

Signature

Predicates

Figure 1. The structure of the Z Schema.

The Z schema presentation provides structure to the

specification. A schema has shown in Figure 1 has two

sections. The Schema signature section defines the state

elements used to define the state of system. The Schema

predicates section defines the conditions that must always be

satisfied for these state elements. The elements in the

signature section are called components of the schema. A

schema can be considered as a set of named components that

constrained by predicates. This can be specified as follow.

 SchemaName ≙ [Signature | Predicates]

When Schema is used to define system operation , the

predicate section may have pre-conditions and post-conditions

which are used to define state before and after the operation.

The ‘before’ state of the schema is indicated by unprimed

variables, the ‘after’ by primed variables. The Table 1 briefly

explains the Z notations used in our proposed model.

3. MODEL BASED SPECIFICATION
In this section the development of model oriented formal

specification in Z for Ubiquitous Authorization model is

presented.

3.1 Formal Model Framework
In this section a general schema of formal model for

Ubiquitous computing system is described. The proposed

model is referred as Ubiquitous authorization model (UAM).

The proposed model captures the system state from secure

authorization service perspective only. The state machine

based approach is adopted to model the system state. The

system is represented as collection of entities with properties

relevant to describe the secure state of the system. The system

state machine describes the instance of the system that should

satisfy the system security invariant to qualify as secure state.

The system undergoes transition whenever there is a change

in the state security variables or request of new system

operation is generated. The system after transition will be

continue in secure state subject to fulfillment of the criteria of

system security invariant.

The set of system states of the system is represented as

UbSysState. The set UbSysState describes the system security

related state variables and relation of the system. The user

access request is represented as AccReq. The system will be in

secure state when all allowed access request are covered under

the system authorized permissions represented as

UbAuthPerm. The criteria for the secure state is defined as

security invariant that need to be satisfied for any system state

to be secure state. The transition function defines the state

transition on execution of system operation on behalf of

system users. The system operation defines the security

criteria at operation level that should be satisfied for

successful execution of the operation. The derived state after

system transition is represented as UbSysState′ and is

evaluated against the security invariant to be an eligible

secure state. Formally the generic schema of UAM is

specified as follow.

 UAMSM_____________________________

UbSysStates : ℙ State

AccReqs : ℙ UbACCREQ

AccPerms : ℙUbACCPERM

Tf : ℙUbMOp ×UbSysState→UbSysState′

UbIntState : ℙ State

Dom Tf ⊆ ℙUbMOp ×UbSysState

Ran Tf ⊆ UbSysState

The set UbMOp describes the system management operations

related to access control and system administration. The

transition function Tf describes the transition from one state to

another state by applying one or a sequence of operations

from the set UbMOp. After defining the generic schema of the

proposed model the development process is initiated. The

formal development process is divided into the following

phases.

1. Formal definition of Model Basic Entities of System: In

this phase a precise definition of model basic entities are

specified. These definitions will be used to build the formal

specification for the proposed model.

2. Formal definition of Model State Security Variables: In this

phase a precise definition of model state security variables

are specified. These definitions are used to describe the

security information in terms of security function for the

state machine model specification.

3. Formal definition of Abstract State: In this phase a precise

definition of model abstract state is specified. Abstract state

specification describes the relationship between the various

components of the model and is used represent the system

state at abstract level.

4. Formal definition of Initial State: In this phase a precise

definition of model initial state is specified.

5. Formal Definition of System Management Operations: In

this phase a precise definition of model system

management operation is specified. These functions control

the changes of model state variables as per constraints

defined under system operations.

6. Formal Definition of Model Secure State Invariant: In this

phase secure state invariant for the model is developed. In

order to implement a secure authorization system, the

proposed model should maintain secure state of the system.

To maintain the secure state of the system a security criteria

as system security invariant is defined.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.15, April 2014

16

7. Model Implementation, Analysis and Verification: In this

phase formal model analysis and verification is performed.

The Formal specification notation developed in previous

phases can be analyzed and verified using computer tools

designed for model verification. A verified model

specification reduces the system failure rate by highlighting

errors at an early stage of system development and

increases the level of assurance.

3.2 UAM Basic Elementary Sets
In this section the elementary sets used to describe the

ubiquitous authorization model is introduced.

 Subject: Subject refers to an entity, which can be a user or

a process on behalf of users. A user is an entity that

generates an access request for accessing resources in the

ubiquitous computing environment. The set of all subjects

is represented as UbSUB. Formally, a subject is associated

to different sets through the association functions.

 Object: This set includes the set of all entities designated

as object in ubiquitous computing system. The set of all

objects is represented as UbOBJ.

 Environment Domain: Environment domain represents

the computing environment or location or surroundings in

which an object resource is being accessed by the subject.

The set of environment domains for ubiquitous computing

environment can be represented as UbENVDOM.

 System Entities: The collection of all active computing

system elements like subject , objects and Computing

domains can be represented under universal set called

Entities. This set of all computing elements is represented

as UbSYSENTITY.

3.3 UAM State Security Elements
 Subject Attribute: Subject Attribute represent

characteristic relevant to subject/user like subject id,

subject name etc. The set of Subject attribute is represented

as UbSUBATT. Formally subjects are associated with a set

of attributes through many to many relation ship.The

function AssignAttS returns the list of subjects attributes to

which a given subject is associated

AssignSAtt : UbSUB → ℙ UbSUBATT.

 Object Attribute: Object Attribute represent characteristic

relevant to subject/user like subject id, subject name etc.

The set of Subject attribute is represented as UbOBJATT.

Formally a subject is associated with a set of attributes

through a function

AssignOAtt : UbOBJ → ℙ UbOBJATT.

 Environment Domain Attribute: Ubiq-Env domain

attribute represent characteristic relevant to Environment

domain under consideration during active access operation.

The set of Environment domain attribute is represented as

UbENVDOMATT. Formally a environment domain is

associated with a set of attributes through a function

 AssignEDAtt : UbENVDOM → ℙ UbENVDOMATT.

 Contextual Attribute: Contextual Attribute represents an

additional constraint as a part of applicable policy rule or

as security parameter that can be used to determine the

applicability of the access control policy in particular state.

Contextual Attribute is dynamic and can be associated with

subject, object or environment. The set of Context

Attribute is represented as UbCTXATT. Formally a subject

,object or any system entity is associated with a set of

contextual attributes through a function

AssignCtxAtt : UbSUB → ℙ UbCTXATT.

 Trust Attribute: Trust attributes represents the trust

oriented constraints. Trust oriented constraints are

represented as an edge in an Attribute based Trust relation

graph and assigned a trust value. The set of Trust Attribute

is represented as UbTRUSTATT. Formally a subject

,object or any system entity is associated with a set of trust

attributes through a function

AssignTrAtt : UbSUB → ℙ UbTRUSTATT

 System Attributes: The collection of all computing system

elements properties like attributes of subject, objects,

computing domains, context attributes and trust attributes

can be represented under universal set called System

Attributes. This set of all computing elements properties is

represented as UbSYSATT.

 Access Operation: An access operation is defined as

action that subject is authorized to perform on an object as

per access policy. The type of operation will depend upon

the protected system entity and computing environment.

The set of Access Operations is represented as UbACCOP.

The Access List represents the operation that can be

performed on an object.

UbACCLIST : UbACCOP × ℙUbOBJ

 Authorization Policy: The authorization policy represents

a function that maps set of subject attribute, a set of object

attributes and set of environment attributes to set of access

operations. Formally the authorization policy function can

be specified as follow.

 AUTHPOL: ℙUbSUBATT × ℙ UbOBJATT ×

ℙUbENVATT × ℙ UbCOND → ℙ UbACCOP

 System Access Permission: The access permission allows

subject with specific attributes to perform specific

operation on an object. The semantics of the permission

p(Sub,Obj,AccOp) specifies the prerequisites that subject

should satisfy before being allowed to exercise the set of

privileged operation over resource object. Such permission

is called conditional permission. The conditions of such

permission are represented as referenced security

parameters RSP(). These referenced parameters can be

authorization policy, attribute constraint, contextual

constraint, trust based constraint, semantic property

constraint or any other constraint defined in the model.

Formally the Access permission function can be specified

as follow.

AccessPerm(P): ℙ 1RSP ×ℙ iRSP ×…× ℙ nRSP →

ℙUbAccOp

 System Management Operation: The UAM Management

Operation set UAMMOp is a collection of Administrative

and User operations for management of the UAM model

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.15, April 2014

17

components. These functions control the changes of model

state variables as per constraints defined under system

operations. The set of operation can be represented as

UbMOP. The set of user access request operation

UbACCREQ is considered as subset of System

Management operations.

3.4 Abstract State
After defining basic state variables and generic schema of

UAM model, the formal specification of the Abstract State of

the UAM model is presented in this section. Abstract state

precisely represents state variables and invariants on them.

The following schema captures the abstract state of the UAM

model.

 UAMS____________________________________

Subs : ℙ UbSUB;Objs : ℙ UbOBJ;EnvDoms : ℙUbENVDOM

SubAtts : ℙ UbSUBATT;ObjAtts : ℙ UbOBJATT

EnvDomAtts : ℙ UbENVDOMATT;CtxAtts : ℙ UbCTXATT

TrustAtts : ℙ UbTRUSTATT;SysEnitites : ℙUbSYSENTITY

SysAtts : ℙUbSYSATT;AccOps : ℙ UbACCOP

AttConsts : ℙATTCONSTCLAUSE;

AccPermPols : ℙ1 UbACCPERMPOL;

SysAuthPols : ℙ UbPOLRULES

AuthStatePerms : ℙUbSTATEPERM ; Rsps : ℙ1 UbRSP

 AssignSAtt : UbSUB → ℙ UbSUBATT

AssignOAtt : UbOBJ → ℙ UbOBJATT

AssignEDAtt : UbENVDOM → ℙUbENVDOMATT

AssignCtxAtt : UbSYSENTITY→ℙ UbCTXATT

AssignTrAtt : UbSYSENTITY→ℙ UbTRUSTATT

AuthStatePerms : ℙUbSUB × ℙUbOBJ × ℙUbACCOP

PermSub: UbACCPERMPOL →ℙUbSUB

PermObj: UbACCPERMPOL →ℙUbOBJ

PermAccOp: UbACCPERMPOL →ℙUbACCOP

PermCondCompl : UbACCPERMPOL → ℙATTCONSTCLAUSE

PermSEAtt : UbACCPERMPOL×UbSYSENTITY →ℙUbSYSATT

PermRsps : UbACCPERMPOL → ℙRSP

SysOp : ℙUbMOP

Dom AssignSAtt = Subs;Ran AssignSAtt ⊆ Subatts

Dom AssignOAtt = Objs;Ran AssignOAtt ⊆ Objatts

Dom AssignEDAtt = EnvDoms;Ran AssignEDAtt ⊆ EnvDomatts

Dom AssignCtxAtt = SysEntities;Ran AssignCtxAtt ⊆ CtxAtts

Dom AssignTrAtt = SysEntities;Ran AssignTrAtt ⊆ TrustAtts

 Figure 2. Abstract state of UAM model

The schema in Figure 2 captures the abstract state of UAM

model. The abstract schema defines the state of the system

with basic state variables like Subject, Object, Environment

Domain, Basic Attributes, Context Attributes and Trust

Attributes. The Subject represents an entity that initiates

access request to access a resource of the system. Object

represents an entity that is designated as a resource in the

system and accessed by the other entities designated as

subjects. Environment domain represents the computing

environment or location or surroundings in which an object

resource is being accessed by the subject. Attributes are

security relevant characteristics. Subject Attribute represent

characteristic relevant to subject/user like subject id, subject

name etc. Object Attribute represent characteristic relevant to

object/resource like object id, object name etc. Ubiquitous

environment domain attribute represent characteristic relevant

to Environment domain under consideration during active

access operation. Contextual Attribute represents the state

conditions that can be used to determine the applicability of

the access permission in particular state or as an additional

constraint as a part of applicable policy rule. Trust attributes

represents the trust oriented constraints that can be used as an

additional constraints as part of authorization decision

process. Security Policy rules represents collection of finite

set of security policy rules built over security parameter

associated with system entities. An access operation is defined

as action that subject is authorized to perform on an object as

per access policy. The type of operation will depend upon the

protected system entity and computing environment.

The function AssignSAtt returns the list of attributes

associated with a subject. The function AssignOAtt returns the

list of attributes associated with an object. The function

AssignEDAtt returns the list of attributes associated with an

environment domain. The function AssignCtxAtt returns the

list of contextual attributes associated with a system entity.

The function AssignTrAtt returns the list of trust attributes

associated with a system entity. The Acclists represents set of

access lists in terms of allowed access operation on system

object entities.

The Access Permission Policy represents a set of permissions

where individual permission comprises of reference security

parameters as Boolean expression to decide the access

requests for system resources. The structure of Access

permission can be specified as follow.

The Access permission is identified with unique ID defined as

permission ID.The access permission has Permproperty that

represents a set of attribute clauses that restricts the

applicability of the access permission. Further the access

permission has a component defined as reference security

parameters. The referenced security parameter can be an

access control policy, knowledge based rules, facts, attribute

constraints or any other constraint expressed as Boolean

attribute expression. For each access permission there is non-

empty set of rsp statements that may evaluate to true to allow

access request or false to deny the access request.

 AccessPermissionPol__________________

Id : PermissionID

permproperty : ℙ1AttConstClause

rsps : ℙ1RSP

The rsp is also identified with unique id defined as RSP

ID.Each rsp also has component defines as Rspproperty that

represents a set of clauses that restricts the applicability of the

rsp statement. The RSP also has a precondition component

that is used to add granularity in the process of authorization.

The structure of RSP can be represented as follow.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.15, April 2014

18

 RSP________________________________

Id : RSPID

rspval : RSPVal

rspproperty : ℙ1AttConstClause

preconditons : ℙ Precondition

The AttConstClause contain multiple system attribute where

each attribute can have single or set of values as a part

Boolean expression. The structure of AttConstClause can be

represented as follow.

 AttConstClause______________________

sysAtts : ℙUbSYSATT

attvals : ℙ1 AttVal

The Precondition component has domain that defines

precondition type. The Precondition has a component

CondAttProperty that is represented as set of clauses. The

clause is composed of attributes relevant to the type of

condition domain. These attributes can have single or set of

values that are evaluated as a part of decision making process.

The structure of the Precondition can be represented as

follow.

 Precondition_________________________

Dom : PreCondDom

CondAttproperty : ℙ1AttConstClause

The Access Permissions implemented in UAM based system

defines the authorization matrix for the system, based on

which all access requests for the system resources is decided.

In UAM based system the access rights are derived from

access permission defined as attribute constrained policies.

3.5 Initial State of the Model
After defining Abstract state of the model in the previous

section, the UAM model initialization is presented in this

section. The following schema captures the initial state of the

UAM model. The following model initialization instance is an

example where each model elementary set is initialized with

empty set. As a result, the relationship between all elementary

sets is also represented as null set. For secure system, initial

state should also be a secure state i.e. initial state should also

satisfy the secure state invariant. In this case the initial state

can be assumed to be secure state as all its state variables

initialized to null value i.e. with the condition ,Subs it is

sufficient for the state to be declared as secure state

irrespective of the status of the other state variables .In order

to make transition from initial state to next secure state

administrative function is required to add subject into the

system. In the case of initial state where ,Subs the state

0s is said to be secure if it comply with all the conditions of

as defined for secure state invariant.

For another more realistic initial state where

 ObjsSubs , an example initial state is considered with

assumption that the initial system state 0s is defined in such a

way that it satisfies all the conditions of the system secure

state. For state initialization of the UAM to be correct and

secure, the Subjects, Objects and EnvDom should be valid

entities created by the system administrator as per

organization policy. The system attributes that includes

attributes of subjects, objects, environment domain, context

and trust should be valid attribute as per entity attribute

relations and should be defined for the state. The list of access

operation should be the valid operations as per organization

security policy and should be defined as a part of access

operation set. The association of attributes with the system

entities should be though entity attributes association function

and all attributes should be assigned a value from a valid

attribute value range. The list of access operation that system

user intend to perform on system entities should be defined as

a part of access list. The reference security policy defined for

access permission should be valid policy defined under

reference security policy set. The access permission under

which system user is authorized to perform access operations

on object entities should be defined as part of Access

Permission set. The Access permission set should be defined

as per organization policy and security requirements. The

example initial state is described through following schema.

4. SYSTEM OPERATION
System administrative operations are used for the

management of UAM State security variables. In this section

the administrative operations for the management of basic sets

of UAM model are described along with security predicate.

The system operations are described using schema notation of

Z.

4.1 System Admin Level Operation
Add Subject: This is an operation used to create a new system

entity subject Sub. The Add Subject system operation with

security predicate is statically represented as AddSubject

schema.

 AddSubject_________________________

 ΔUAMS

sub? : Subs

sub? ∉ Subs ; Subs′ = Subs ∪ {sub?}

AssignSAtt′ = AssignSAtt ∪{sub?→∅}

 AssignCtxAtt′=AssignCtxAtt∪{sub?→∅}

 AssignTrAtt′=AssignTrAtt∪{sub?→∅}

Add Subject Attribute: This is an operation used to create a

new system entity subject attribute SubAtt. The Add Subject

Attribute operation with security predicate is statically

represented as AddSubAtt schema.

 AddSubAtt__________________________

 ΔUAMS

sub?: Subs

sa? : SubAtts

sa? ∉ SubAtts ; SubAtts′ = SubAtts ∪ {sa?}

∀sub∈Subs ⦁ sa?∉AssignSAtt′(sub?)

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.15, April 2014

19

Add Contextual Attribute: This is an operation used to create a

new system entity contextual attribute CtxAtt. The Add

Contextual Attribute system operation with security predicate

is statically represented as AddCtxAtt schema.

 AddCtxAtt____________________________

 ΔUAMS

se?: SysEntities

ca? : CtxAtts

ca? ∉ CtxAtts ;CtxAtts′ = CtxAtts ∪ {ca?}

∀se∈SysEntities ⦁ ca?∉AssignCtxAtt′(se?)

Add Trust Attribute: This is an operation used to create a new

system entity trust attribute TrAtt. The Add Trust Attribute

system operation with security predicate is statically

represented as AddTrustAtt schema.

 AddTrustAtt__________________________

 ΔUAMS

se?: SysEntities

ta? : TrustAtts

ta? ∉ TrustAtts ; TrustAtts′ = TrustAtts ∪ {ta?}

∀se∈SysEntities ⦁ ta?∉AssignTrAtt′(se?)

Add Access Permission Policy: This is an operation used to

create a new access permission policy. The Add Access

Permission Policy system operation with security predicate is

statically represented as AddAccPermPol schema.

 AddAccPermPol_______________________

 ΔUAMS

p? : AccPermPols

rsp? : Rsps

p? ∉AccPermPols ; AccPermPols′ = AccPermPols ∪{p?}

PermRsp′=PermRsp ∪ {p?→rsp?}

4.2 System User Level Operation
In the following section system user level operations are

described using schema notation. The purpose of user level

system operation is to allow user interact with the system in

secure manner. The security conditions of the user level

operation are defined to allow only authorized transactions in

the system and secure transition from one state to another

state.

Access Request Evaluation: This is an operation used to

evaluate the access request generated by the system user. The

Access Request Evaluation system operation with security

predicate is represented as AccReqEval.

After defining the model components, initial state, abstract

state and set of operation the next section describes model

secure state invariant.

 AccReqEval___________________________

 ΞUAMS

ar? : AccReqs

sub? : Subs

obj? : Objs

accop? : AccOps

effect? : PolEffect

p? : AccPermPols

c? : Preconditions

result ! : DECISION

 ∃ p : UbACCPERMPOL⦁ p?∈AccPermPols ∧ ar. Sub? ∈ PermSub(p)

∧ ar.obj? ∈ PermObj(p) ∧ ar.accop?∈PermAccOp(p)

∧ ar.c ?∈ PermCondCompl(p)

∧ PermEffect(p) = Permit ⇒Result! = Allow

∃ p : UbACCPERMPOL⦁ p?∈AccPermPols ∧ ar. Sub? ∈ PermSub(p)

∧ ar.obj? ∈ PermObj(p) ∧ ar.accop?∈PermAccOp(p)

∧ ar.c ?∈ PermCondCompl(p)

∧ PermEffect(p) = Deny ⇒ Result! = NotAllowed

5. UAM MODEL STATE INVARIANT
In the previous sections the abstract state along with example

initial state of the model is defined. The abstract state of the

model captures the basic model sets along with model state

security variables. In order to implement a secure

authorization system, the proposed model should maintain

secure state of the system. To maintain the secure state of the

system a security criteria as system security invariant is

defined. The security invariant is defined at two levels. First

level is system state level and second level is system transition

function level. In this section security invariant at system state

level is described followed by description of security invariant

at transition function level.

5.1 System State Level Invariant
In this section system state level invariant is defined that is

used to characterize the secure state of the system. To

formulate the criteria for secure state for authorization model

there is a need to identify and consider all the security

properties with respect to authorization service that must hold

for state confirmation as secure state. In the following the

process of identifying the security properties that will form

the criteria for secure state under ubiquitous authorization

model is initiated.

1. The first phase of user/subject interaction with the

ubiquitous computing environment is considered initially.

In this phase it is assumed that user with basic credentials

has been successfully authenticated by system

authentication service. In secure state perspective, all active

subjects/users of the system are assumed to belong to

authenticated subject/user list. To check the compliance in

this context, secure state property termed as Secure System

Authentication Service Property can be defined.

2. In Ubiquitous computing environment the authorization

service works on the basis of the criteria defined in terms of

system entity attributes. In secure state perspective all

assignment of the system entity attributes are assumed to be

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.15, April 2014

20

valid. To check the compliance in this case, secure state

property as Secure System Attribute Assignment Property

can be defined.

3. In the next phase user submit a request to access a

particular service/resource to the system authorization

service. Based on the subject/user credentials, the relevant

access permission policy will be assigned. In secure state

perspective all access permission of the system are assumed

to be valid permissions. To check the compliance in this

case, secure state property as Secure System Access

Permission Validity Property can be defined.

4. The access permission will define reference security

policies and conditions under which the authorized access

to system resources will be allowed. In secure state

perspective all current accesses are assumed to be covered

under valid system access permission. To check the

compliance in this context, secure state property termed as

Secure System Resource Access Property can be defined.

After defining security properties for a given state, system

state level security invariant can be characterize by the

following security properties.

 System Authentication Service Compliance Property

 System Attribute Assignment Compliance Property

 System Access Permission Compliance Property

 System Authorized Resource Access Compliance

Property

These security properties collectively define the criteria that

must hold for a state to be a secure state. In the following the

specification of properties using Z Notation is presented.

After defining the security properties, the secure state of the

system can be defined in terms relationship between secure

state and security properties that system should satisfy.

Formally this can be represented as follow.

UAMSS ≙ AuthServProp ∧ AttrAssignProp ∧

AccPermProp ∧ AuthResAccProp.

5.2 System Transition function Level

Invariant
In this section a system transition function level invariant that

is used to characterize the secure state of the system is

presented. To formulate the criteria at the system transition

function level, the preconditions of all the system operation

those are required to maintain the secure state are identified

and represented as predicate in the schema representation of

each operation.

The UAM system operation set is a collection of

Administrative and User operations for management of the

UAM model components. These operations control the

changes of model state variables as per precondition defined

under system operations. The precondition of each system

operation that is part of system transition function together

constitutes system transition function level security invariant.

Each system transition should satisfy the system transition

function level invariant to maintain secure states.

6. UAM MODEL IMPLEMENTATION
In the previous section, an authorization model is proposed for

ubiquitous computing environment that provides the formal

security framework for implementation secure authorization

system. In this section the process of model implementation

and verification to complete the proposed development

process is presented. In order to implement the model the

following components are required

 Model Abstract State

 Model Initial State

 Model State Transition Function

 Model System Management Operations

 Model State Security Invariant.

The state security invariant described as a part of formal

model defines the security criteria for implementation of

secure authorization system. The section 5.4 provides the

detail description of all the components required for

implementation. The model implementation can be

represented as follow.

 ΔUAMS ≙ [UAMS, UAMS′ | Tf]

Where transition function Tf : ℙUbMOp ×UAMS→UAMS′

.The transition function is composed of system management

operation performed in a particular sequence and it allows the

system to transit from one state to another state. The transition

function for the proposed model can be represented as follow.

 ΔUAMS_____________________________

uams : ℙ State

uams′ : ℙ State

ss : ℙSecState

mop : ℙUbMOp

 tf : ℙTf

∀mop ∈ tf ; uams∈ss ⦁ tf(uams) ∈ss

After defining the model components, the security theorem

for model can be defined as follow.

Definition: The proposed model is said to be secure if and

only if

1. The initial state is a secure state.

2. The transition function satisfies all the security

invariant defined at the system operation level for all

member system operation.

3. All the states reachable from initial state satisfy the

system level security invariant and are secure state.

The implementation of authorization system based on

proposed model is said to be model compliant if it satisfies all

the conditions of model security theorem.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.15, April 2014

21

7. CONCLUSION
In this paper, the key components of Network Access Control

Model are formalized in order to be sharp, precise and prevent

their multiple interpretations. A state based approach to the

model is adopted, and precisely represented the operations

involved in the access control domain. The model is

represented using the well known formal notation, Z. Most of

the schemas used in the model were between 5 to 12 lines

long. The schema describing the basic system elements was

large due to multiple security constraints of network

computing environment. The model proposed in this paper

addresses only the access control aspect of security for the

network system and is intended to act as baseline for this area.

Since multiple aspects of access control like discretionary

control, mandatory control, multiple level security and role

base access control had to be integrated and expressed in

terms of target structure, level of complexity was a significant

issue. The level of complexity was controlled by using Z

notation to provide a simplified exposition of integrated rules,

without allowing the formal notation to add to the complexity.

In future work the use of logical formalism based approach is

planned to produce an animation of the formal specification to

further refine the framework. Because both Z and Symbolic

computation languages are based on predicate logic this

would be easier and straightforward task to carry out further

refinements in the model to meet the new challenges of the

information security systems and improve upon the existing

framework.

8. REFERENCES
[1] M. Weiser, "The Computer for the Twenty-First

Century," in Scientific American, vol. 265, 1991, pp. 94-

104.

[2] M. Weiser, Ubiquitous Computing, Computer, v.26 n.10,

p.71-72, October 1993

[3] Z-FSN. (2002).Information technology — Z formal

specification notation.Syntax, type system and semantics,

ISO/IEC 13568:2002(E), International Standard

[4] Lyytinen, K., Yoo, Y. 2002. Issues and Challenges in

Ubiquitous Computing. Communications of the

ACM45:62-65

[5] Lampson, Butler W. (1971). "Protection". Proceedings of

the 5th Princeton Conference on Information Sciences

and Systems. p. 437.

[6] Ravi S. Sandhu. Lattice-based access control models.

IEEE Computer, 1993.

[7] David F. Ferraiolo and D. Richard Kuhn, "Role-Based

Access Controls," Proceedings of the 15th NIST-NSA

National Computer Security Conference, Baltimore,

Maryland, October 13-16, 1992

[8] Ravi S. Sandhu and P. Samarati. Access control:

Principles and practice. IEEE Com. Mag., 1994.

[9] Al-Muhtadi, J., Ranganathan, A., Campbell, R.,

Mickunas, M.D. (2003).Cerberus: a context-aware

security scheme for smart spaces," Pervasive Computing

and Communications, 2003. Proceedings of the First

IEEE International Conference on, vol., no., pp. 489-496.

[10] Kim, Y., Moon, C.,Jeong, D., Lee,J., Song,C. and Baik,

D. (2005). Context-aware access control mechanism for

ubiquitous applications. In AWIC, pp. 236–242.

[11] Sampemane, G. (2005). Access Control for Active

Spaces. Doctoral Thesis. UMI Order Number:

AAI3199131., University of Illinois at Urbana-

Champaign.

[12] Song-hwa, C.,Wonil, K. and Dong-kyoo, K.(2006).

Role-Based Access Control Model for Ubiquitous

Computing Environment, LNCS, Volume 3786,pp. 354-

363.

[13] Wang, H.,Zhang, Y. and Cao, J.(2008). Access control

management for ubiquitous computing.Future

Generation Computer, pp. 870-878.

[14] Lin L. and Tianjie C., 2008. A Flexible, Autonomous and

Non-redundancy Access Control for Ubiquitous

Computing Environment. In Proceedings of the 2008

International Symposium on Information Science and

Engieering - Volume 01 (ISISE '08), Vol. 1. IEEE

Computer Society, Washington, DC, USA, 446-450

[15] Hung, L., Shaikh, A., Jameel, H., Raazi, S., Yuan, W.,

Ngo, T., Truc, P., Sungyoung, L., Heejo L.,Yuseung,

S.,Fernandes, M.(2009).Activity-Oriented Access

Control for Ubiquitous Environments. 6th IEEE

Consumer Communications and Networking Conference,

pp.1-5.

[16] Filho, J., Martin, H.(2008).Using Context Quality

Indicators for Improving Context-Based Access Control

in Pervasive Environments. IEEE/IFIP International

Conference on Embedded and Ubiquitous Computing,

pp. 285-290.

[17] Sejong, O.(2010). New role-based access control in

ubiquitous e-business environment. Journal of Intelligent

Manufacturing,pp. 607-612.

[18] Hu, T.C., Ferraiolo, D., Kuhn, R., Friedman, A.R., Lang,

A.J., Cogdell, M.M., Schnitzer, A., Sandlin, K.,Miller,

R., Scarfone, K(2013).Guide to Attribute Based Access

Control (ABAC) Defnition and Considerations (Draft)

,NIST Special Publication 800-162.

IJCATM : www.ijcaonline.org

