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ABSTRACT 

The computing resources used in safety-critical systems have 

stringent timing requirements due to mission critical nature of 

their tasks. A fault in these systems could lead to mission 

failure and catastrophic consequences. To avoid this various 

redundancy schemes are built in to mission critical 

applications to ensure the overall success of the system. The 

usual industrial practice is to employ fault tolerance using 

hardware redundancy where costs are highly exorbitant 

depending on the mission. In this paper, a prototype tool has 

been designed and developed for testing and evaluation of a 

framework for adaptive fault tolerance on an existing dual 

hardware redundancy with resource augmentation. This 

proposed model gives enhanced resource management and 

improved system performance under normal runtime and 

provides minimal safe functionality under permanent fault 

condition. It has been implemented  with a practical case 

study of Cruise Control System using NXP LPC2148 

processors. The results demonstrate the better performance 

and process speedup (execution time of process) vis-à-vis 

over a traditional dual redundant processor system and the 

high performance that can accrue by applying this model to an 

m-processor redundancy model.     
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1. INTRODUCTION 
Safety-critical systems are those systems whose failure could 

result in loss of life, significant property damage, or damage 

to the environment. There are many well known examples in 

the application areas such as medical devices, aircraft flight 

control, nuclear systems and modern automotives. Current 

automotive systems employ up to 100 electronic control units 

(ECUs) exchanging more than 2500 signals over different 

communication systems [1]. These ECUs control and monitor 

many subsystems of a vehicle such as cruise control, chassis 

control, vehicle stability and engine control. The development 

of control software and scheduler for such systems has 

become one of the greatest challenges in the automotive 

domain due to the increasing complexity of automotive 

systems [1]. The computing systems used in such applications 

have to perform several critical tasks and any failure in their 

execution could lead to complete failure of the system with 

catastrophic effects. Due to real-time nature of such systems, 

they also need to satisfy the timing correctness in addition to 

the correctness requirements of the generated output.  

A typical fault tolerant system need to work correctly even 

under specified fault condition and should provide high 

reliability. To increase reliability there are two commonly 

used approaches [7], one is fault avoidance strategy by using 

highly reliable components, conservative design practices and 

an extensive testing to eliminate flaws. The second method is 

fault tolerance which depends on redundancy either hardware 

or software or both to overcome the effects of failure. In 

general based on the criticality of the system the level of 

redundancy is increased which directly increases the cost of 

the system. The major disadvantages of such system are high 

power consumption, increased weight and size and incomplete 

used of resources under fault free condition [13]. An 

innovative fault tolerant framework called Enhanced Resource 

Management Scheme (ERMS) has been designed and 

analyzed in [2]. This scheme uses task level criticality, 

replicates the critical tasks on all the processors and non-

critical tasks are shared between the processors. An 

application where tasks are parallelizable can effectively use 

the redundant computing capacity during fault free operation. 

A Global Real-time Executive Manager (GREM) acts as a 

master/server node and plays a major role in task allocation 

and providing fault tolerant real-time scheduling. An 

algorithm has been developed for the given framework and 

implemented with simulation results. A comparison has been 

done vis-à-vis a traditional dual redundant system. Validation 

of the framework has been carried out with a case study of  

Cruise Control System (CCS), an important aspect of safety 

critical structure in automotives. 

The gain accrued in terms of high performance and process 

speedup as seen in the framework laid out in [2] emphasizes 

the significance of this model in any safety-critical 

application. In this paper a hardware implementation of dual 

redundant model and ERMS strategies have been undertaken 

on ARM LPC2148. A prototype tool for testing and 

evaluation of the proposed fault tolerant algorithms has been 

designed and developed for a cruise control system. This tool 
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can form the basis for testing the scheduling performance of 

safety-critical systems in terms of improvement in resource 

utilization and process speedup. 

The rest of the paper is organized as follows. Section 2 

references the related work and Section 3 gives the 

background study for the hardware implementation of fault 

tolerant real-time systems and the case study of cruise control 

system. In section 4, a brief understanding of the framework is 

given and implementation of the case study with the 

experimental setup has been elaborated. In Section 5 the 

results of the implementation with performance evaluation is 

presented. The conclusion and future scope is given in 

Section6.     

       

2. RELATED WORKS 
J. Von Neumann [3], E. F. Moore, C. E. Shannon, [4] and 

their successors developed theories of using redundancy to 

build reliable logic structures from less reliable components, 

whose faults were masked by the presence of multiple 

redundant components. The theories of masking redundancy 

were unified by W. H. Pierce as the concept of failure 

tolerance in 1965 [5]. In 1967, A. Avizienis integrated 

masking with the practical techniques of error detection, fault 

diagnosis, and recovery into the concept of fault-tolerant 

systems [6]. Further a fault tolerant scheduling algorithm for 

multiprocessors has been analyzed by Ghosh [7]. Krishna and 

Shin [8] proposed a fault tolerant scheme for quick recovery 

of tasks from failure. Oh and Son [9] proposed a scheme that 

enhances the fault tolerance in static realtime scheduling. 

Resource augmentation [10], allows for the use of extra 

resources so that scheduler can provide a specific guarantees 

with respect to some constraints where the scheduler under 

study is given extra resources such as more number of 

processors or faster processors, such that a certain goal is 

achieved. Kalyanasundaram [10] introduced resource 

augmentation, which studied the effectiveness of online 

scheduling of real-time tasks by augmenting the processor 

with more speed. The effectiveness of fixed priority scheduler 

using resource augmentation, scheduling all the feasible tasks 

is studied by Davis et. al [11]. A resource augmentation 

bounds on the processor speed-up required for a fixed priority 

scheduler to schedule all the task sets scheduled by an optimal 

scheduling algorithm was also derived by Davis. Abilash 

et.al., [12] focused on guaranteeing fault tolerance under error 

bursts on uni-processor systems by resource augmentation. A 

novel paradigm for fault tolerance of a permanent fault is 

explained in detail in [13,14,15], using task level criticality for 

redundancy. This ensures safe functionality of the system 

even during the occurrence of fault by operating in different 

modes where certain optional tasks and non-critical tasks are 

dropped.   
 

3. BACKGROUND STUDY 

3.1 Safety-critical systems 
Safety critical systems are hard real time systems whose 

failure might lead to catastrophic effects, substantial economic 

loss, or cause extensive environmental damage Knight [16]. 

With the advent of increased development in on-chip 

technology multiprocessors came into existence for highly 

complex and sophisticated systems like safety critical 

systems. A worth mentioning example of safety-critical 

system in medical domain is modern heart pacemaker with 

specialized peripherals.    

Task set consists of a set of tasks in an application classified 

as critical, non-critical and optional tasks, based on the 

criticality level of the task. In some sense, non-critical and 

optional tasks can be considered as soft real time tasks. In 

general, all controlling and actuating tasks are considered as 

critical tasks and sensing tasks are considered as non-critical 

tasks. One such critical task in the patient monitoring system 

is the task which controls the oxygen supply to the patient in 

ICU. Tasks in safety critical systems, periodic tasks are time 

driven tasks which occur at regular intervals of time, example 

- task which monitors the temperature of the patient in a 

patient monitoring system. The important task attributes are 

computation time (Ci), deadline (Di), time period (Ti). 

 

3.2 Faults and Fault tolerance 
Dependability is a vital system requirement, in safety critical 

due to the potentially catastrophic consequences of failures 

[12]. Dependability of the system is typically achieved by use 

of fault tolerance mechanism using redundancy, which 

involves the execution of tasks on both primary and redundant 

units. Faults can be broadly classified according to their 

duration as permanent, intermittent and transient faults. 

Permanent faults exist indefinitely if no corrective action is 

taken. Intermittent faults appear, disappear and reappear 

repeatedly. It is very difficult to predict such faults. Transient 

faults appear and disappear quickly, they are mainly due to 

random environmental disturbances such as EMI [12]. In real-

time safety-critical systems fault tolerance is typically 

provided by redundancy either hardware or software or both.  

 

3.3 Scheduling paradigm 
Static table-driven approach-In most of the safety-critical 

systems a static table-driven approach is followed where 

schedulability analysis is performed offline and the resulting 

schedule is used at runtime to decide which task must begin 

execution [18]. 

Static priority driven preemptive approach-This approach also 

produces static schedulability analysis but unlike the table 

driven approach no explicit schedule is constructed. During 

runtime whichever the highest priority task in the ready queue 

will be executed [18].   

From the above mentioned scheduling approaches Static table 

driven approach is selected for implementation in this work, 

where a table is constructed with task attributes that indicates 

the start and completion of each task and tasks are dispatched 

accordingly.   

 

3.4 Performance Metrics    
Many performance metrics have been used for validating the 

effectiveness of scheduling paradigms for real time systems. 

Amongst these, improving the execution time and schedule 

length are mainly considered in this work. Effective 

Utilization (Ue) is the normalized utilization of the process 

during the execution of an application [19]. Process Speedup 

(Sp) indicates the overall execution time for the process [20]. 

 

4.  SYSTEM MODEL 

4.1 Assumptions 
 Non-critical tasks being low priority over critical tasks 

are preemptable.  
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 An appropriate watchdog mechanism is assumed to be 

present that enables the detection of processor failures 

with a bounded latency.  

 Execution time of each task is assumed to be worst case 

execution time(WCET) and  includes time overheads for 

context switches and communication costs.  

The fault tolerant model with a dual processor system and a 

master node for the given safety-critical system [2] is given in 

Figure 1.   

 

 

   Fig 1: Schematic representation of fault tolerant model 

 

Health check - A self check logic circuit in each processor 

periodically sends the health status of the processor as an 

ALIVE signal to the global real time executive manager.  

Global Real time executive manager (GREM) - The GREM 

acts as a master node, maintains the global task table matrix, 

updation table matrix during runtime and monitors the health 

status of the processors. Absence of the ALIVE signal 

indicates the permanent failure of the processor under which a 

fault recovery algorithm reallocates the tasks of the failed 

units to the rest of the units by dynamic online 

reconfiguration.  

Global table matrix - This table consists of all the tasks with 

its task attributes, nature and criticality of the task.  

Updation table - This table indicates the remaining utilization 

of the processors and the level of criticality of each task that is 

executed in each processor. It is updated for every instance of 

time based on the information from each processor.  

Local table matrix – Each processor is provided with a local 

table matrix which indicates the tasks that are to be executed 

by the processor.   

 

4.2 Dual Redundant Scheme (DRS) 
The fault tolerant scheme with dual redundancy employs two 

independent, identical processors for performing the same 

computations as shown in Figure 2. Error detection is done by 

a synchronized internal hardware by a specified voting 

mechanism and if there is failure, the hardware disables that 

system. If the primary processor fails then the corresponding 

redundant processor takes over the operation in hot standby. 

Such an implementation ensures that in case of failure, the 

system continues to function without any break in the 

computations, thus meeting the real time constraints essential 

for such critical missions.  

 

 

 

 

 

 

 
 
                  Fig 2: Dual Redundant scheme 

 

4.3 Enhanced Resource Management 

Scheme (ERMS) 
In ERMS scheme, Swetha et.al., [2] describes an innovative  

paradigm for load sharing using task level criticality shown in 

Figure 3. Critical tasks (C) are duplicated in both the 

processors and non-critical tasks (N) are shared among the 

processors. The additional slack time which is made available 

by the ERMS can be effectively utilized for scheduling any 

arrivals of aperiodic events and extra optional tasks.  An 

algorithm TaAl - ERMS represents the task allocation in 

ERMS considering a dual processor system [2]. 

 

 
 

                                      Fig 3: ERMS 

 

Algorithm for Normal mode - Task allocation and 

scheduling (TaAl - ERMS)  

Input: τ is a given task set of periodic tasks stored in GREM  

Output: ERMS schedule in normal mode  

1: for i = 1 to n do  

2:    Check the criticality of task  

3:    Set time (P1), time(P2) corresponding to the required        

        workload of the processor 

4: if (Non-critical) then  

5:      if (time(P1) > time(P2))  

6:          Add task to Processor P1  

7:      else  

8:          Add task to processor P2  

9:  else  

10:    Add task to both P1 and P2  

11: for each clock pulse do  

12:    Trigger the transmission of ALIVE signal in P1 and P2  

13:    Update GREM  

Under fault mode seen in Figure 4 where one of the 

processors fails permanently, GREM reallocates all the non-

critical tasks of the failed processor to the functioning 

processor and schedules the tasks in this processor 

dynamically keeping all precedence constraints intact.   

 

Primary 

Redundant 
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           Fig 4: ERMS – Fault Mode 

 

Algorithm for fault mode  

Input: An external or internal cause leading to permanent 

failure of a processor  

Output: Fault tolerant ERMS schedule  

1: for i =1 to hyper period do  

2: if (Alive signal (P1) is absent) then  

3: GREM reallocates the non-critical tasks of P1 to P2 

     without violating the precedence constraints 

4:  if (Alive signal (P2) is absent) then  

5: GREM reallocates the non-critical tasks of P2 to P1 

     without violating the precedence constraints  

 

The periodic tasks are allocated to the processor and  table 

driven scheduling is  performed in each processor during 

runtime, where the task table gives the start and stop time of 

the tasks along with the task attributes. On the execution of 

each task, GREM is updated with the status of the executed 

task.  

4.4 Case study: Cruise Control System 
A Cruise Control System (CCS) which is one of the major 

safety critical unit in automotives is taken as a case study for 

the implementation of the proposed scheme. The main 

function of the CCS is to maintain a constant speed which is 

set by the driver there by reducing the driving load of the 

driver. 

The task set of CCS with its task attributes (time in units) is 

given in Table 1. The periodic tasks τ1 to τ5 are classified as 

non-critical sensing tasks that can be parallelizable. Because 

these tasks are parallelizable, this scheme utilizes the 

otherwise redundant computing capacity for scheduling. 

Tasks τ6, τ7 are critical tasks and are precedence constrained 

with sensing tasks. 

 

Table 1: Task set 

  Ci – Computation Time,  Di – Deadline,  Ti – Time Period 

4.5 Experimental Setup 
The experimental setup for designing the prototype tool is 

given in Figure 5. GREM acts as server node and contains all 

tasks and task attributes of CCS. The algorithm implemented 

in GREM periodically monitors the health condition of 

working processors P1, P2 and ensures  all  critical task 

deadlines are met. Processors P1, P2 execute the tasks 

allocated to them and periodically send an ALIVE signal to 

GREM as part of health check process. It  updates the GREM 

with the current status of task execution.  

The microcontroller chosen for the implementation is ARM 

LPC2148 shown in Figure 6. It is a 32 bit processor with very 

low power consumption. It has high speed flash memory 

ranging from 32 kB to 512 kB and has an highly efficient 

peripherals like 2x10bit ADC, 2xUARTs, Timers, DAC etc 

supporting In System Programming (ISP).                                                                                                                                                                

 

Fig 5: Experimental Setup 

 
                                 Fig 6: ARM LPC2148 

A performance evaluation board Figure 7 is used for 

displaying the scheduling and health monitoring. A series of 8 

LEDS are connected to each processor which indicates the 

execution of 8 tasks. The health status of the processor is 

indicated by an LED.  In order to demonstrate the fault 

tolerant mechanism, an external fault can be injected into the 

system by using a push button. Two push buttons have been 

placed to select one among the two fault tolerant schemes. 

Based on the selected scheme GREM allocates the tasks to the 

processors P1 P2. Execution of each task in a processor can be 

illustrated by the glowing of LED in the corresponding 

processor and there by the total execution time of the process 

can be determined using the TIMER0 in each processor.   

The operation of the experimental setup is projected in 

Figure8 as an implementation portarit. Visualisation of the 

ERMS schedule under normal mode is highlighted in blue in 

the figure.  The  duplication of critical tasks and the sharing of 

Sl.no Tasks / nature (P - Periodic) Processors Ci Di Ti 

1. Monitoring the Speed  τNC1 

(P) 

P1 3 15 30 

2. Monitoring acceleration   τ 

NC2 (P) 

P1 2 10 20 

3. Monitoring the CCS clutch  τ 

NC3 (P) 
P2 2 10 20 

4. Monitoring the brakes   τ NC4 

(P) 

P2 3 15 30 

5. Monitoring proximity sensor 

τ NC5(P) 

P1 2 15 20 

6. Computing the control values  
τ C6 (P) 

P1,P2 10 55 60 

7. Actuating the throttle valves  
τ C7 (P) 

P1,P2 5 30 60 

8. Updating the parameters in   
τ NC8(P) 

P1 10 15 60 

GREM 

Processor P1 Processor P2 



International Journal of Computer Applications (0975 – 8887)  

Volume 92 – No.14, April 2014 

48 

non-critical tasks in both the processors is shown highlighted.  

Further, the performance evaluation has been obtained by the 

metrics, Effective Utilization and  Process Speedup.     

 

 
Fig 7: Performance Evaluation Board 

 
                  Fig 8: Implementation Portrait 

 

5. RESULTS AND DISCUSSIONS  
The execution time of the application by DRS and ERMS 

under the normal mode is 37 and 32 time units respectively. 

This proves that ERMS speeds up the process by reducing the 

total execution time by 13% over the DRS. Under fault mode, 

the execution time of DRS remains constant as 37 time units, 

whereas in ERMS it increases by 2 time units. Further, in the 

next hyper period, execution time of ERMS becomes equal to 

that of DRS as expected.  

Table 2 a) Performance Metrics – DRS 

                                 

b) Performance Metrics – ERMS 

The normalized utilization (Ue) of the processors under DRS 

and ERMS  have been calculated to be 78% and 48% 

respectively, thus providing an additional 30% of computing 

resources for the execution of extra optional tasks as 

compared to DRS. Under the fault mode, the effective 

utilization of ERMS increases to 68% due to reallocation of 

tasks to the working processor.  

    
Fig 9: Process Speedup with varying workloads 

Variation in process speedup with respect to workload under 

normal mode for DRS and ERMS models is given in Figure 9, 

as the workload increases the execution time of the 

application increases proportionally. Even under varying 

workload conditions ERMS speeds up the process by a 

minimum of 5 time units than DRS, thus providing a chance 

for the execution of optional tasks and aperiodic tasks. 

    
Fig 10: Effective utilization with varying workloads 

Effective utilization of the processors with varying workload 

under normal mode for DRS and ERMS models is represented 

in Figure 10. In DRS as the workload increases utilization of 

the processor increases due to replications of tasks. In case of 

ERMS processor utilization increases with a step size of 0.07 

which is based on percentage of critical tasks in an 

application. Thus this scheme, performs efficiently in 

applications where percentage of critical tasks are 

significantly lower than the percentage of non-critical tasks.     

6. CONCLUSION 
In this paper, a prototype of fault tolerant multiprocessor 

scheduling of cruise control system with effective resource 

management has been designed, implemented and tested using 

LPC2148 processors. Quality timeliness, a schedule  with 

fault tolerance constraints and resource reclaiming are the  

significant gains of the implementation of this framework. A 

comparison of performance of ERMS over a traditional dual 

redundancy scheme (DRS) demonstrates the improvement 

which is translated in terms of additional computing 

resources. The ERMS speeds up the process by reducing the 

total execution time of the process by 13% over the DRS 

under runtime normal mode. The effective utilization of the 

processors using ERMS has been enhanced by 30% over 

DRS. The results emphasizes   the tremendous gains that can 

be obtained in terms of improved   performance   and process 

speed up especially if this model is extended to an m-

processor redundancy system. The metrics of importance in 

real time safety critical systems which are minimizing the sum 

of completion time, minimizing the schedule length and cost 

have been achieved to an extent. 

  Mode Normal Fault 

Metrics Ue (units) Sp (units) Ue (units) Sp (units) 

 0.78 37 0.78 37 

  Mode Normal Fault 

Metrics Ue (units) Sp (units) Ue (units) Sp (units) 

 0.48 32 0.68 34 

DRS 

Performance Evaluation Board 

ERMS 

P1 

P2 
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This work can be further extended by the inclusion of 

aperiodic arrivals   and inclusion of optional tasks for 

implementing complex algorithms which may be needed to 

fine tune the computations. A working prototype with a user 

friendly GUI can make the implementation of this framework 

more effective for any application. Research on the WCET of 

the ERMS algorithm which has been developed in this work 

can be of use for further implementations in different 

applications.       
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