
International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

44

A Real-Time Performance Monitoring Tool for Dual

Redundant and Resource Augmented Framework of

Cruise Control System

Annam Swetha

Amrita Vishwa Vidyapeetham
(University)

Coimbatore, India

Radhamani Pillay V
Amrita Vishwa Vidyapeetham

(University)
Coimbatore, India

Santanu Dasgupta
Mohandas College of

Engineering & Technology
 India

Senthil Kumar Chandran

AERB-Safety Research Institute
Kalpakkam, India

ABSTRACT

The computing resources used in safety-critical systems have

stringent timing requirements due to mission critical nature of

their tasks. A fault in these systems could lead to mission

failure and catastrophic consequences. To avoid this various

redundancy schemes are built in to mission critical

applications to ensure the overall success of the system. The

usual industrial practice is to employ fault tolerance using

hardware redundancy where costs are highly exorbitant

depending on the mission. In this paper, a prototype tool has

been designed and developed for testing and evaluation of a

framework for adaptive fault tolerance on an existing dual

hardware redundancy with resource augmentation. This

proposed model gives enhanced resource management and

improved system performance under normal runtime and

provides minimal safe functionality under permanent fault

condition. It has been implemented with a practical case

study of Cruise Control System using NXP LPC2148

processors. The results demonstrate the better performance

and process speedup (execution time of process) vis-à-vis

over a traditional dual redundant processor system and the

high performance that can accrue by applying this model to an

m-processor redundancy model.

General Terms

Redundancy, Safety-critical systems, Real-time scheduling,

Hardware implementation

Keywords

Fault tolerance, Resource management, Cruise control system,

Process speedup, Prototype tool

1. INTRODUCTION
Safety-critical systems are those systems whose failure could

result in loss of life, significant property damage, or damage

to the environment. There are many well known examples in

the application areas such as medical devices, aircraft flight

control, nuclear systems and modern automotives. Current

automotive systems employ up to 100 electronic control units

(ECUs) exchanging more than 2500 signals over different

communication systems [1]. These ECUs control and monitor

many subsystems of a vehicle such as cruise control, chassis

control, vehicle stability and engine control. The development

of control software and scheduler for such systems has

become one of the greatest challenges in the automotive

domain due to the increasing complexity of automotive

systems [1]. The computing systems used in such applications

have to perform several critical tasks and any failure in their

execution could lead to complete failure of the system with

catastrophic effects. Due to real-time nature of such systems,

they also need to satisfy the timing correctness in addition to

the correctness requirements of the generated output.

A typical fault tolerant system need to work correctly even

under specified fault condition and should provide high

reliability. To increase reliability there are two commonly

used approaches [7], one is fault avoidance strategy by using

highly reliable components, conservative design practices and

an extensive testing to eliminate flaws. The second method is

fault tolerance which depends on redundancy either hardware

or software or both to overcome the effects of failure. In

general based on the criticality of the system the level of

redundancy is increased which directly increases the cost of

the system. The major disadvantages of such system are high

power consumption, increased weight and size and incomplete

used of resources under fault free condition [13]. An

innovative fault tolerant framework called Enhanced Resource

Management Scheme (ERMS) has been designed and

analyzed in [2]. This scheme uses task level criticality,

replicates the critical tasks on all the processors and non-

critical tasks are shared between the processors. An

application where tasks are parallelizable can effectively use

the redundant computing capacity during fault free operation.

A Global Real-time Executive Manager (GREM) acts as a

master/server node and plays a major role in task allocation

and providing fault tolerant real-time scheduling. An

algorithm has been developed for the given framework and

implemented with simulation results. A comparison has been

done vis-à-vis a traditional dual redundant system. Validation

of the framework has been carried out with a case study of

Cruise Control System (CCS), an important aspect of safety

critical structure in automotives.

The gain accrued in terms of high performance and process

speedup as seen in the framework laid out in [2] emphasizes

the significance of this model in any safety-critical

application. In this paper a hardware implementation of dual

redundant model and ERMS strategies have been undertaken

on ARM LPC2148. A prototype tool for testing and

evaluation of the proposed fault tolerant algorithms has been

designed and developed for a cruise control system. This tool

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

45

can form the basis for testing the scheduling performance of

safety-critical systems in terms of improvement in resource

utilization and process speedup.

The rest of the paper is organized as follows. Section 2

references the related work and Section 3 gives the

background study for the hardware implementation of fault

tolerant real-time systems and the case study of cruise control

system. In section 4, a brief understanding of the framework is

given and implementation of the case study with the

experimental setup has been elaborated. In Section 5 the

results of the implementation with performance evaluation is

presented. The conclusion and future scope is given in

Section6.

2. RELATED WORKS
J. Von Neumann [3], E. F. Moore, C. E. Shannon, [4] and

their successors developed theories of using redundancy to

build reliable logic structures from less reliable components,

whose faults were masked by the presence of multiple

redundant components. The theories of masking redundancy

were unified by W. H. Pierce as the concept of failure

tolerance in 1965 [5]. In 1967, A. Avizienis integrated

masking with the practical techniques of error detection, fault

diagnosis, and recovery into the concept of fault-tolerant

systems [6]. Further a fault tolerant scheduling algorithm for

multiprocessors has been analyzed by Ghosh [7]. Krishna and

Shin [8] proposed a fault tolerant scheme for quick recovery

of tasks from failure. Oh and Son [9] proposed a scheme that

enhances the fault tolerance in static realtime scheduling.

Resource augmentation [10], allows for the use of extra

resources so that scheduler can provide a specific guarantees

with respect to some constraints where the scheduler under

study is given extra resources such as more number of

processors or faster processors, such that a certain goal is

achieved. Kalyanasundaram [10] introduced resource

augmentation, which studied the effectiveness of online

scheduling of real-time tasks by augmenting the processor

with more speed. The effectiveness of fixed priority scheduler

using resource augmentation, scheduling all the feasible tasks

is studied by Davis et. al [11]. A resource augmentation

bounds on the processor speed-up required for a fixed priority

scheduler to schedule all the task sets scheduled by an optimal

scheduling algorithm was also derived by Davis. Abilash

et.al., [12] focused on guaranteeing fault tolerance under error

bursts on uni-processor systems by resource augmentation. A

novel paradigm for fault tolerance of a permanent fault is

explained in detail in [13,14,15], using task level criticality for

redundancy. This ensures safe functionality of the system

even during the occurrence of fault by operating in different

modes where certain optional tasks and non-critical tasks are

dropped.

3. BACKGROUND STUDY

3.1 Safety-critical systems
Safety critical systems are hard real time systems whose

failure might lead to catastrophic effects, substantial economic

loss, or cause extensive environmental damage Knight [16].

With the advent of increased development in on-chip

technology multiprocessors came into existence for highly

complex and sophisticated systems like safety critical

systems. A worth mentioning example of safety-critical

system in medical domain is modern heart pacemaker with

specialized peripherals.

Task set consists of a set of tasks in an application classified

as critical, non-critical and optional tasks, based on the

criticality level of the task. In some sense, non-critical and

optional tasks can be considered as soft real time tasks. In

general, all controlling and actuating tasks are considered as

critical tasks and sensing tasks are considered as non-critical

tasks. One such critical task in the patient monitoring system

is the task which controls the oxygen supply to the patient in

ICU. Tasks in safety critical systems, periodic tasks are time

driven tasks which occur at regular intervals of time, example

- task which monitors the temperature of the patient in a

patient monitoring system. The important task attributes are

computation time (Ci), deadline (Di), time period (Ti).

3.2 Faults and Fault tolerance
Dependability is a vital system requirement, in safety critical

due to the potentially catastrophic consequences of failures

[12]. Dependability of the system is typically achieved by use

of fault tolerance mechanism using redundancy, which

involves the execution of tasks on both primary and redundant

units. Faults can be broadly classified according to their

duration as permanent, intermittent and transient faults.

Permanent faults exist indefinitely if no corrective action is

taken. Intermittent faults appear, disappear and reappear

repeatedly. It is very difficult to predict such faults. Transient

faults appear and disappear quickly, they are mainly due to

random environmental disturbances such as EMI [12]. In real-

time safety-critical systems fault tolerance is typically

provided by redundancy either hardware or software or both.

3.3 Scheduling paradigm
Static table-driven approach-In most of the safety-critical

systems a static table-driven approach is followed where

schedulability analysis is performed offline and the resulting

schedule is used at runtime to decide which task must begin

execution [18].

Static priority driven preemptive approach-This approach also

produces static schedulability analysis but unlike the table

driven approach no explicit schedule is constructed. During

runtime whichever the highest priority task in the ready queue

will be executed [18].

From the above mentioned scheduling approaches Static table

driven approach is selected for implementation in this work,

where a table is constructed with task attributes that indicates

the start and completion of each task and tasks are dispatched

accordingly.

3.4 Performance Metrics
Many performance metrics have been used for validating the

effectiveness of scheduling paradigms for real time systems.

Amongst these, improving the execution time and schedule

length are mainly considered in this work. Effective

Utilization (Ue) is the normalized utilization of the process

during the execution of an application [19]. Process Speedup

(Sp) indicates the overall execution time for the process [20].

4. SYSTEM MODEL

4.1 Assumptions
 Non-critical tasks being low priority over critical tasks

are preemptable.

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

46

 An appropriate watchdog mechanism is assumed to be

present that enables the detection of processor failures

with a bounded latency.

 Execution time of each task is assumed to be worst case

execution time(WCET) and includes time overheads for

context switches and communication costs.

The fault tolerant model with a dual processor system and a

master node for the given safety-critical system [2] is given in

Figure 1.

 Fig 1: Schematic representation of fault tolerant model

Health check - A self check logic circuit in each processor

periodically sends the health status of the processor as an

ALIVE signal to the global real time executive manager.

Global Real time executive manager (GREM) - The GREM

acts as a master node, maintains the global task table matrix,

updation table matrix during runtime and monitors the health

status of the processors. Absence of the ALIVE signal

indicates the permanent failure of the processor under which a

fault recovery algorithm reallocates the tasks of the failed

units to the rest of the units by dynamic online

reconfiguration.

Global table matrix - This table consists of all the tasks with

its task attributes, nature and criticality of the task.

Updation table - This table indicates the remaining utilization

of the processors and the level of criticality of each task that is

executed in each processor. It is updated for every instance of

time based on the information from each processor.

Local table matrix – Each processor is provided with a local

table matrix which indicates the tasks that are to be executed

by the processor.

4.2 Dual Redundant Scheme (DRS)
The fault tolerant scheme with dual redundancy employs two

independent, identical processors for performing the same

computations as shown in Figure 2. Error detection is done by

a synchronized internal hardware by a specified voting

mechanism and if there is failure, the hardware disables that

system. If the primary processor fails then the corresponding

redundant processor takes over the operation in hot standby.

Such an implementation ensures that in case of failure, the

system continues to function without any break in the

computations, thus meeting the real time constraints essential

for such critical missions.

 Fig 2: Dual Redundant scheme

4.3 Enhanced Resource Management

Scheme (ERMS)
In ERMS scheme, Swetha et.al., [2] describes an innovative

paradigm for load sharing using task level criticality shown in

Figure 3. Critical tasks (C) are duplicated in both the

processors and non-critical tasks (N) are shared among the

processors. The additional slack time which is made available

by the ERMS can be effectively utilized for scheduling any

arrivals of aperiodic events and extra optional tasks. An

algorithm TaAl - ERMS represents the task allocation in

ERMS considering a dual processor system [2].

 Fig 3: ERMS

Algorithm for Normal mode - Task allocation and

scheduling (TaAl - ERMS)

Input: τ is a given task set of periodic tasks stored in GREM

Output: ERMS schedule in normal mode

1: for i = 1 to n do

2: Check the criticality of task

3: Set time (P1), time(P2) corresponding to the required

 workload of the processor

4: if (Non-critical) then

5: if (time(P1) > time(P2))

6: Add task to Processor P1

7: else

8: Add task to processor P2

9: else

10: Add task to both P1 and P2

11: for each clock pulse do

12: Trigger the transmission of ALIVE signal in P1 and P2

13: Update GREM

Under fault mode seen in Figure 4 where one of the

processors fails permanently, GREM reallocates all the non-

critical tasks of the failed processor to the functioning

processor and schedules the tasks in this processor

dynamically keeping all precedence constraints intact.

Primary

Redundant

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

47

 Fig 4: ERMS – Fault Mode

Algorithm for fault mode

Input: An external or internal cause leading to permanent

failure of a processor

Output: Fault tolerant ERMS schedule

1: for i =1 to hyper period do

2: if (Alive signal (P1) is absent) then

3: GREM reallocates the non-critical tasks of P1 to P2

 without violating the precedence constraints

4: if (Alive signal (P2) is absent) then

5: GREM reallocates the non-critical tasks of P2 to P1

 without violating the precedence constraints

The periodic tasks are allocated to the processor and table

driven scheduling is performed in each processor during

runtime, where the task table gives the start and stop time of

the tasks along with the task attributes. On the execution of

each task, GREM is updated with the status of the executed

task.

4.4 Case study: Cruise Control System
A Cruise Control System (CCS) which is one of the major

safety critical unit in automotives is taken as a case study for

the implementation of the proposed scheme. The main

function of the CCS is to maintain a constant speed which is

set by the driver there by reducing the driving load of the

driver.

The task set of CCS with its task attributes (time in units) is

given in Table 1. The periodic tasks τ1 to τ5 are classified as

non-critical sensing tasks that can be parallelizable. Because

these tasks are parallelizable, this scheme utilizes the

otherwise redundant computing capacity for scheduling.

Tasks τ6, τ7 are critical tasks and are precedence constrained

with sensing tasks.

Table 1: Task set

 Ci – Computation Time, Di – Deadline, Ti – Time Period

4.5 Experimental Setup
The experimental setup for designing the prototype tool is

given in Figure 5. GREM acts as server node and contains all

tasks and task attributes of CCS. The algorithm implemented

in GREM periodically monitors the health condition of

working processors P1, P2 and ensures all critical task

deadlines are met. Processors P1, P2 execute the tasks

allocated to them and periodically send an ALIVE signal to

GREM as part of health check process. It updates the GREM

with the current status of task execution.

The microcontroller chosen for the implementation is ARM

LPC2148 shown in Figure 6. It is a 32 bit processor with very

low power consumption. It has high speed flash memory

ranging from 32 kB to 512 kB and has an highly efficient

peripherals like 2x10bit ADC, 2xUARTs, Timers, DAC etc

supporting In System Programming (ISP).

Fig 5: Experimental Setup

 Fig 6: ARM LPC2148

A performance evaluation board Figure 7 is used for

displaying the scheduling and health monitoring. A series of 8

LEDS are connected to each processor which indicates the

execution of 8 tasks. The health status of the processor is

indicated by an LED. In order to demonstrate the fault

tolerant mechanism, an external fault can be injected into the

system by using a push button. Two push buttons have been

placed to select one among the two fault tolerant schemes.

Based on the selected scheme GREM allocates the tasks to the

processors P1 P2. Execution of each task in a processor can be

illustrated by the glowing of LED in the corresponding

processor and there by the total execution time of the process

can be determined using the TIMER0 in each processor.

The operation of the experimental setup is projected in

Figure8 as an implementation portarit. Visualisation of the

ERMS schedule under normal mode is highlighted in blue in

the figure. The duplication of critical tasks and the sharing of

Sl.no Tasks / nature (P - Periodic) Processors Ci Di Ti

1. Monitoring the Speed τNC1

(P)

P1 3 15 30

2. Monitoring acceleration τ

NC2 (P)

P1 2 10 20

3. Monitoring the CCS clutch τ

NC3 (P)
P2 2 10 20

4. Monitoring the brakes τ NC4

(P)

P2 3 15 30

5. Monitoring proximity sensor

τ NC5(P)

P1 2 15 20

6. Computing the control values
τ C6 (P)

P1,P2 10 55 60

7. Actuating the throttle valves
τ C7 (P)

P1,P2 5 30 60

8. Updating the parameters in
τ NC8(P)

P1 10 15 60

GREM

Processor P1 Processor P2

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

48

non-critical tasks in both the processors is shown highlighted.

Further, the performance evaluation has been obtained by the

metrics, Effective Utilization and Process Speedup.

Fig 7: Performance Evaluation Board

 Fig 8: Implementation Portrait

5. RESULTS AND DISCUSSIONS
The execution time of the application by DRS and ERMS

under the normal mode is 37 and 32 time units respectively.

This proves that ERMS speeds up the process by reducing the

total execution time by 13% over the DRS. Under fault mode,

the execution time of DRS remains constant as 37 time units,

whereas in ERMS it increases by 2 time units. Further, in the

next hyper period, execution time of ERMS becomes equal to

that of DRS as expected.

Table 2 a) Performance Metrics – DRS

b) Performance Metrics – ERMS

The normalized utilization (Ue) of the processors under DRS

and ERMS have been calculated to be 78% and 48%

respectively, thus providing an additional 30% of computing

resources for the execution of extra optional tasks as

compared to DRS. Under the fault mode, the effective

utilization of ERMS increases to 68% due to reallocation of

tasks to the working processor.

Fig 9: Process Speedup with varying workloads

Variation in process speedup with respect to workload under

normal mode for DRS and ERMS models is given in Figure 9,

as the workload increases the execution time of the

application increases proportionally. Even under varying

workload conditions ERMS speeds up the process by a

minimum of 5 time units than DRS, thus providing a chance

for the execution of optional tasks and aperiodic tasks.

Fig 10: Effective utilization with varying workloads

Effective utilization of the processors with varying workload

under normal mode for DRS and ERMS models is represented

in Figure 10. In DRS as the workload increases utilization of

the processor increases due to replications of tasks. In case of

ERMS processor utilization increases with a step size of 0.07

which is based on percentage of critical tasks in an

application. Thus this scheme, performs efficiently in

applications where percentage of critical tasks are

significantly lower than the percentage of non-critical tasks.

6. CONCLUSION
In this paper, a prototype of fault tolerant multiprocessor

scheduling of cruise control system with effective resource

management has been designed, implemented and tested using

LPC2148 processors. Quality timeliness, a schedule with

fault tolerance constraints and resource reclaiming are the

significant gains of the implementation of this framework. A

comparison of performance of ERMS over a traditional dual

redundancy scheme (DRS) demonstrates the improvement

which is translated in terms of additional computing

resources. The ERMS speeds up the process by reducing the

total execution time of the process by 13% over the DRS

under runtime normal mode. The effective utilization of the

processors using ERMS has been enhanced by 30% over

DRS. The results emphasizes the tremendous gains that can

be obtained in terms of improved performance and process

speed up especially if this model is extended to an m-

processor redundancy system. The metrics of importance in

real time safety critical systems which are minimizing the sum

of completion time, minimizing the schedule length and cost

have been achieved to an extent.

 Mode Normal Fault

Metrics Ue (units) Sp (units) Ue (units) Sp (units)

 0.78 37 0.78 37

 Mode Normal Fault

Metrics Ue (units) Sp (units) Ue (units) Sp (units)

 0.48 32 0.68 34

DRS

Performance Evaluation Board

ERMS

P1

P2

International Journal of Computer Applications (0975 – 8887)

Volume 92 – No.14, April 2014

49

This work can be further extended by the inclusion of

aperiodic arrivals and inclusion of optional tasks for

implementing complex algorithms which may be needed to

fine tune the computations. A working prototype with a user

friendly GUI can make the implementation of this framework

more effective for any application. Research on the WCET of

the ERMS algorithm which has been developed in this work

can be of use for further implementations in different

applications.

7. REFERENCES
[1] Anthony Spiteri Staines, “Modeling and Analysis of Real

Time Control Systems: A Cruise Control System Case

Study”, University of Malta,DOI: 10.5772/7397.

[2] Annam Swetha, Radhamani Pillay V, Sasikumar

Punnekkat, “Design, Analysis and Implementation of

Improved Adaptive Fault Tolerant Model for Cruise

Control Mulatiprocessor System”, International Journal

of computer applications(0975-8887), Volume 86-No 15,

January 2014.

[3] J. Von Neumann. Probabilistic logics and the synthesis

of reliable organisms from unreliable components. In C.

E. Shannon and J. McCarthy, editors, Annals of Math

Studies, numbers 34, pages 43-98. Princeton Univ. Press,

1956.

[4] E.F. Moore and C.E. Shannon. Reliable circuits using

less reliable relays. J. Franklin Institute, 262:191-208

and 281-297, Sept/Oc. 1956.

[5] W.H. Pierce. Failure-Tolerant Computer Design.

Academic Press, 1965.

[6] Avizienis A., “Design of Fault-Tolerant Computers”

Fall Joint Computer Conference 1967 [Aviz67].

[7] D. Mosse, R. Melhem, and S. Ghosh, “Analysis of

fault tolerant multiprocessor scheduling algorithm” Proc.

IEEE Real Time Systems Symp, pp.129-139, Dec.1981.

[8] C. M. Krishna and K. G. Shin, “On scheduling tasks with

a quick recovery from failure” Proc. Fault-tolerant

Comput. Symp, pp. 234-239, 1985.

[9] Y. Oh and S. H. Son, “Enhancing fault-tolerance in rate

monotonic scheduling,” Real-Time Systems, vol. 7, no.3,

1994.

[10] B.Kalyanasundaram and K.Pruhs, “Speed is as powerful

as clairvoyance”, Journal of ACM, July 2000.

[11] R. Davis, T. RothvoSS, S. Baruah, and A. Burns, “Exact

quantification of the sub-optimality of uniprocessor fixed

priority pre-emptive scheduling”,Real-Time Systems,

July 2009.

[12] Abhilash Thekkilakattil, Radu Dobrin, Sasikumar

Punnekkat and Huseyin Aysan, “Resource Augmentation

for Fault-Tolerant Feasibility of Real-time Tasks under

Error Bursts”, 20th International Conference on Real-

time & network systems, November 2012.

[13] Radhamani Pillay, Sasikumar Punnekkat, Santanu

Dasgupta, “An improved redundancy scheme for optimal

utilization of onboard Computers”, IEEE INDICON

2009, India.

[14] Radhamani Pillay, Senthil Kumar Chandran, and

Sasikumar Punnekkat, “Optimizing resources in real-

time scheduling for fault tolerant processors”, IEEE,

International Conference on Parallel, Distributed and

Grid Computing (PDGC-2010), Solan India;

October2010.

[15] Senthil Kumar Chandran, Radhamani Pillay, Radu

Dobrin, and Sasikumar Punnekkat, “Efficient scheduling

with adaptive fault tolerance in heterogeneous

multiprocessor systems”, International Conference on

Computer and Electrical Engineering (ICCEE) Chengdu,

China; Nov 2010. China.

[16] John C.Knight, “Safety Critical Systems: Challenges and

Directions”, Department of Computer Science,

University of Virginia., Proceedings of the 24rd

International Conference on Software Engineering, 2002.

[17] Technical Report: “Adaptive Cruise Controllers – A

Literature Review”, Stefan Björnander, Mälardalen

University, Sweden 2008 C4-01 TR M50.

[18] N. Audsley, A. Burns, “Real time system scheduling”,

Department of Computer Science,University of York,

UK, Predicatably Dependable Computer Systems,

Volume 2, Chapter 2, Part II .

[19] Gurulingesh R, Neera Sharma, Krithi Ramamritham and

Sachitanand Malewar, “Efficient Real-Time Support for

Automotive Applications: A Case Study”, Indian

Institute of Technology Bombay.

[20] Robert I. Davis, Alan Burns, “A Survey of Hard Real-

Time Scheduling for Multiprocessor Systems”, Real-

Time Systems Research Group, Department of Computer

Science, University of York, York, UK.

[21] Sherin Abraham, Sivraj.P, Radhamani Pillay, “Hardware

Implementation of an Improved Resource Management

Scheme for Fault Tolerant Scheduling of a

Multiprocessor System”, International Journal of

Computer Applications (0975-8887), Volume 27-No.2,

August 2011.

[22] Akash Anand, Rajendra Y, Shreyas Narayan, Radhamani

Pillay, “Modelling, Implementation and Testing of an

Effective Fault Tolerant Multiprocessor Real-Time

System”, IEEE, International Conference on Parallel,

Distributed and Grid Computing (PDGC-2012), India.

IJCATM : www.ijcaonline.org

