
International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.8, April 2014

37

A Novel Strategy to Enhance the Android

Security Framework

Muneer Ahmad Dar
Scientist-B,

National Institute of Electronics & Information
Technology (NIELIT),

Srinagar India

Javed Parvez
 Assistant Professor,

 Department of Computer Science,
University of Kashmir

Srinagar India

ABSTRACT
With the widespread use of the Smartphone, the security of

data stored in a Smartphone has reached to an utmost

importance to all of us. Installation of every Android app asks

for some critical permission to access our critical files and we

have to accept the permissions in order to install that

application. We propose a novel approach of enhanced

security framework which can be integrated with the existing

Android Security Framework to make Android more secure

and to keep track of the files accessed by any of the

vulnerable apps downloaded from different sources on the

web. The proposed enhanced security framework enhances

the security of Android File System by restricting the apps

whose behavior matches with the malware. A novel approach

to secure the data on Smartphone’s using cryptographic

Algorithms is also discussed in this paper.

Keywords
Smartphone, Android app, Security Framework, File System,

Malware, Cryptographic Algorithms

1. INTRODUCTION
Smartphone have assumed an increasingly vital role in the

lives of Information and Communication Technology (ICT)

users. Today, a constantly increasing number of consumers use

Smartphone for a broad variety of tasks and purposes, ranging

from social networking to instant messaging, from mobile

banking to Global Positioning Satellite (GPS) based

navigation. Smartphone serve as special tools for organizing

the users’ daily lives through productivity applications such as

calendars, memos or calculators. The apps downloaded from

Google Play like True Caller, Viber, Whatsupp, IndiaLive and

billions of other apps have changed the life of a typical android

user with 1.2 billion people worldwide using mobile apps at

the end of 2012. This number is forecast to reach 4.4 billion

users by the end of 2017[21]. Analyst estimates for downloads

of apps in 2013 range from 56 to 82 billion. In 2017, there

could be 200 billion downloads [21]. With these many number

of users using the apps downloaded from the Google play,

securing the use of these apps is of paramount importance to

researchers.

Trusted apps are available in Google’s market which is self-

signed by the developers but Malware has even appeared in

Google’s market. Two examples are DroidDream[7, 8] and

Droid Dream Light [9]. Both these apps were found on the

Android market in early 2011 and both applications steal

personal data and are very much like traditional Trojans seen

on the desktop.

It is all too common to hear about these bad apps that steal and

alter our valuable data and can make our Smartphone non

functional, and those discussions always end with one thing --

someone says you need to read an app's permissions before

you install it.

Fig 1: Permission Screen for App Installation

In this paper we propose an enhanced security framework

which will restrict the access of vulnerable apps by checking

the behavior of these apps. In section 2 we identify the inbuilt

security features of Android and Its limitations. In section 3 we

give advantages and disadvantages of security apps available

on Google Play. In section 4 we then have a detailed

description of the proposed security Android Framework

which will protect our data on our personal Smartphone.

Finally we draw our conclusions in section 5.

International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.8, April 2014

38

2. EXISTING SECURITY OF ANDROID
Android is a Linux-based mobile operating system

programmed with Java and implemented with its own security

framework. Android combines OS features like efficient

shared memory management, preemptive multi-tasking of

processes, Unix user identifiers (UIDs) for each of its

programs in execution and file permissions with the type-safe

features of Java language and its well known API library. The

resulting security framework is much more like a multi-user

server than the sandbox found on the J2ME platforms. Unlike a

desktop computer operating system where a user’s applications

all run under the same UID, Android applications are

individually partitioned from each other. Android applications

run in distinct processes under distinct UIDs each with

different set of permissions. Programs have no permission to

read or write each other’s files/data or code, and sharing

data/files between applications must be done explicitly by the

programmer. The Android GUI environment has some novel

and distinct security features that help support this isolation of

processes [7].

The permission based model is the basic mechanism for

securing access to various files or resources in Android.

Although the app permissions are categorized to different

protection levels such as Normal, Dangerous, Signature and

Signature-Or-System, the assignment of these protection

levels of various resources is left to the developer’s will and

his/her own understanding. This feature of Android Security

framework may lead to attacks by malicious software and a

number of vulnerabilities in the security framework of

Android. When an application is downloaded and installed by

the user on Android, the Android framework prompts the user

to accept a list of required permissions, the user may grant all

of the permissions in order to install the application

successfully or deny the permissions to cancel the installation.

Practically, there are a number of security issues in such a

framework: 1) The user must accept and grant all of the

required permissions in order to install the application

successfully, 2) once the app is installed and permissions are

granted; there is no mechanism for restricting an application to

revoke the permissions already granted 3) there is no way of

restricting access to the resources based on dynamic

constraints as the permission model is based on install-time

check only, 4) granted permissions can only be revoked by

uninstalling the application.

At the time of installation, the user is presented with a dialog

box listing all permissions requested by the app to get

successfully installed. These permission requests are defined in

an XML File called AndroidManifest.xml, which is shipped

with every Android app.

However, this security framework has a few drawbacks [3]:

• All or No Permission:

A user cannot grant single permissions, while rejecting others

in order to install the app. Among the list of permissions an

app might request a suspicious permission among the other

legitimate permissions, will still be able to confirm the

installation.

• Often, the users of the app cannot judge the appropriateness

and legitimacy of permissions for the app in question. In some

cases it may be well understood, for example when a chess

game app requests the privilege to reboot the Smartphone or to

send SMS messages. In many cases, however, users will

simply not be able to understand the appropriateness of the

permission.

• Functionality, which is supposed to be possible only given

the appropriate permissions, can still be achieved with less

number of permissions or even with none at all.

3. EXISTING SECURITY APPS
The Google store contains numerous apps that cater to the need

of protecting files in Android phones. All these apps are

developed at application layer and have their own pros and

cons. Given below are a few apps that are widely used by

Android phone users.

 File Cover

 Smart App Protector

 Gallery Private

 APP Lock

 Gallery Lock Pro

 Free Data Vault

3.1 Advantages

3.1.1 Safety

Once you begin using these apps you will feel safe knowing

that your files/folders are properly protected and no one can

see what you do not want them to see.

3.1.2 Easy To Use

 These apps are so easy to use that anyone can install them.

3.1.3 Free of cost
Most of the apps mentioned above are free of cost and can be

easily downloaded from Google store.

3.2 Disadvantages
3.2.1 Locks
Once you begin using these apps you will not be able to access

your files as quickly as you used to. Locked files take time to

unlock.

3.2.2 Passwords
When one uses a password to protect files one must make sure

that it is something that one can remember. This ensures access

of file whenever required.

Other than the security Apps downloaded from the Google

Store which can protect our files from the unauthorized access

by simply encrypting them and making them password

protected, we have other Antivirus Apps which are listed

below:

 AhnLab Mobile Security.

 AVG Antivirus FREE for Android.

 Avira Free Android Security.

 F-Secure Mobile Security.

 BullGuard Mobile Security.

 EndUser Protection.

3.3 Advantages
3.3.1 On Demand Scan.

3.3.2 Anti Theft.

3.3.3 On Access Scan

.

International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.8, April 2014

39

3.4 Disadvantages
3.4.1 No Firewall.

3.4.2 No Privacy Advisor.

3.4.3 No Web Protection.

4. PROPOSED SECURITY

FRAMEWORK
The objective is to provide security against the Apps which are

installed by the end user and is given all the permissions at the

time of installation. This enhanced security has the desirable

property of not disturbing a regular user in any noticeable way.

In fact, the user need not even be aware that the Security API

has been applied. We have to prevent the modification and

access of data from mobile phones by other external malicious

applications unknowingly. We propose an API which will

enhance the security of existing Android Framework by

addressing the following limitations of Android Security

Framework.

Fig 2: System Architecture

 Data/Files are not stored in encrypted format within

media.

 The lack of strong security control of user´s private

information that permits malware to access the

information stored in the device.

 Configurable firewalls are not integrated into

Smartphone operating systems.

4.1. File Encryption
The first step in our proposed security API is implemented by

adapting an encryption technique utilizing Advanced

Encryption Algorithm (AES) and applying it to all the

personal files in the Smartphone. All the files which are

important for the cell phone owner should be encrypted.

Nobody can break the algorithm password as AES is

considered to be the strongest cryptographic algorithm among

the existing ones. When any app attempts to access any

encrypted file it will notify the security API. If the security

API finds any vulnerability it will restrict the access

mechanism of the app and will deny it access to the file. If it

fails to find any vulnerability It will allow the app to access

the file by decrypting the file.

International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.8, April 2014

40

Fig 3: System Flow

4.2. Malware Detection
File operations offered by the proposed Security API should

aid in the detection of potentially malicious Apps whose

behavior matches that of Malware. Malware recognition is

usually achieved by signature matching, heuristic analysis, or

comparing hash-values. We provide details in the following

sections about how our proposed API can provide for these

malware recognition techniques.

4.2.1. Signature Matching
Our Proposed API shall provide a method to conduct pattern

matching using regular expressions. That method will only

return true or false for any given pattern described by a

regular expression passed to the method. Currently one or

multiple byte sequences are found in common signatures

which can be linked in various relations, such as logical

(AND, OR) or regarding location in a target file. Such

relations can be implemented through regular expressions

which will ensure user and system data privacy, while still

allowing signature-based detection. Different pattern

matching algorithms can also be used, which can improve

pattern matching performance or compatibility with the use of

existing vendor signature databases.

4.2.2. Heuristics
Apart from pattern or hash matching we also propose to use

heuristic techniques to detect the malicious applications. The

major advantage is that potentially malicious behavior can

also expose currently unknown malware, and is often

unaffected by minor alterations which would circumvent

pattern or hash matching. Such heuristics are mostly based on

sequential execution of specific library, API, or system calls,

and may contain also certain passed arguments. Heuristic

techniques can be divided into static and dynamic heuristics

[6]. While the former is easier to implement, the latter yields

better results.

4.2.3. Hashes
Malware can also be detected using hash functions. Desktop

malware is usually spread in a highly decentralized manner

via exploitation of software vulnerabilities, and often the same

malware may be spread by many people for whom it has been

“personalized”. This leads to hashes being a less useful

approach. On mobile platforms, however, with difficult app

vulnerability exploitation and with centralized software

distribution, hash-based malware detection gains value.

Fig 4: Sequence Diagram of the System

4.3. Advantages of the Proposed System
4.3.1. There is no need for a user to create

passwords for files and to remember those

passwords. The Security API will automatically

encrypt and decrypt files.

4.3.2. If a novice user has installed any

malicious app and has given all the permissions at

install time, this Security API will restrict the app

from accessing any of the files.

4.3.3. Our proposed system uses the latest

techniques to detect Malware which includes

signature matching, Heuristics and Hash functions.

4.3.4. This enhanced security has the desirable

property of not disturbing a regular user in any

noticeable way. In fact, the user need not even be

aware that the Security API has been applied.

5. CONCLUSION
With the current security architecture, many Smartphone

operating systems are vulnerable to attacks because the

Smartphone user is instrumental in deciding which

applications will be installed on the phone. It is not easy for a

user to judge applications by their description. The Android

framework is one platform that expects the user to be security

conscious and implicitly assumes applications developers are

not malicious. Because of this, a user may unknowingly

install software that poses a security threat or is not efficient

enough to handle the user’s privacy issues. Our aim is to

provide a system to free the user from making decisions as to

which applications to install and to provide protection to the

user’s personal files and data from any malicious apps

downloaded from Google store. Thus, our proposed Security

API enables users to install the apps and if the built-in

security of Android is not able to prevent the unauthorized

access of critical data, then this enhanced security framework

will provide necessary safeguards.

International Journal of Computer Applications (0975 – 8887)

Volume 91 – No.8, April 2014

41

6. REFERENCES
[1] Rafael Fedler, Marcel Kulicke and Julian Sch¨utte 2013

IEEE 8th International Conference on Malicious and

Unwanted Software: “The Americas” (MALWARE)

[2] Android OS Security:Risks and Limitations A Practical

Evaluation Rafael Fedler, Christian Banse, Christoph

KrauSS, and Volker Fusenig 5/2012

[3] National Security Agency, “SELinux,” January 2009.

http://www.nsa.gov/research/selinux/.

[4] Ruben Jonathan Garcia Vargas “Security Controls for

Android”2012 IEEE Fourth International Conference on

Computational Aspects of Social Networks (CASoN)

215

[5] H. Jonsson, “Text Mining of Personal Communication,”

IEEE 2010.

[6] Shabtai A., Fledel Y., Glezer C., “Google Android: A

comprehensive Security Assessment,” IEEE Security and

Privacy, 2010.

[7] E. Konstantinou and S. Wolthusen. Metamorphic virus:

Analysis and detection. Technical report, Information

Security Group at Royal Holloway, University of

London, 2009.

[8] V. Svajcer, “Aftermath of the droid dream Android

market malware attack,” http://

nakedsecurity.sophos.com/2011/ 03/ 03/

droiddream-android-market-malware-attack- aftermath/

[9] L. Dignan, “Malware sneaks by google’s android

market gatekeepers again,”http://www.zdnet.com/blog/

security/malware-sneaks-bygoogles-android-market-

gatekeepers -again/ 8696 .

[10] “New droiddream variant found on android phones,”

http:// www.fsecure.com/ weblog/ archives/

00002170.html.

[11] W. Enck, M. Ontang and P. McDanial, “Understanding

Android Security,” IEEE Security & Privacy Magazine,

7(1), 10-17, 2009.

[12] Wook Shin, Sanghoon Kwak, Shinsaku

Kiyomoto,Kazuhide Fukushima, and Toshiaki

Tanaka,“A Small but Non-negligible Flaw in the

Android Permission Scheme”, 2010 IEEE International

Symposium on Policies for Distributed Systems and

Networks.

[13] A. Shabtai, et al. "Google Android: A Comprehensive

Security Assessment," IEEE Security and Privacy

Magazine.

[14] A. Shabtai, Y. Fledel, Y. Elovici, “Securing Android-

Powered Mobile Devices Using SELinux”, IEEE

Security and Privacy,

http://doi.ieeecomputersociety.org/10.1109/MSP.2009.14

4.

[15] http://mobithinking.com/mobile-marketing-

tools/latest-mobile-stats/e.

[16] Harunobu Agematsu, Junya Kani, Kohei Nasaka,

Hideaki Kawabata “A proposal to realize the provision of

secure Android applications” IEEE 2012 Sixth

International Conference on Innovative Mobile and

Internet Services in Ubiquitous Computing.

[17] App Store Review Guidelines - App Store Resource

Center:

http://developer.apple.com/jp/appstore/guidelines.html

[18] Hideaki Kawabata, Takamasa Isohara, Keisuke

Takemori, Ayumu Kubota:"Threat of Script abuse

Android Permissions and Static Analysis", IPSJ SIG

technical reports, 2011-CSEC-53-3, pp.1-6, 2011.5 (in

Japanese).

[19] W. Shin, S. Kwak, S. Kiyomoto, K. Fukushima, and T.

Tanaka, “A small but non-negligible flaw in the

android permission scheme,” Policies for Distributed

Systems and Networks, IEEE International Workshop,

pp. 107-110, 2010.

[20] W. Shin, S. Kiyomoto, K. Fukushima, and T. Tanaka, “A

formal model to analyze the permission authorization

and enforcement in the android framework,” Social

Computing / IEEE International Conference on Privacy,

Security, Risk and Trust, pp. 944– 951, 2010.

[21] W. Shin, S. Kiyomoto, K. Fukushima, and T. Tanaka,

“Towards formal analysis of the permission-based

security model for android,” In Proceedings of the 2009

Fifth International Conference on Wireless and Mobile

Communications, ICWMC ’09, Washington, D.C.,

U.S.A., pp. 87–92, 2009.

[22] Android Open Source Project. Android Security

Overview, October 2012.

http://source.android.com/tech/security/.

[23] AV-Test. Test Report: Anti-Malware solutions for

Android. Technical report, March 2012.

http://www.avtest.org/fileadmin/pdf/avtest 2012-02

android antimalware report english.pdf.

[24] D. Bilar. Opcodes as predictor for malware. International

Journal of Electronic Security and Digital Forensics,

1:156–168, 2007. Available at:

http://inderscience.metapress.com/content/N760240L168

32162.

[25] T. Bl¨asing, L. Batyuk, A.-D. Schmidt, S. Camtepe, and

S. Albayrak. An android application sandbox system for

suspicious software detection. In 5th International

Conference on Malicious and Unwanted Software

(MALWARE), pages 55–62, Oct. 2010.

[26] J. Burns. Exploratory Android surgery (talk slides). In

Black Hat Technical Security Conference USA, May

2009. Available at: https://www.blackhat.com/html/bh-

usa-09/bhusa-09-archives.html.

[27] M. Christodorescu and S. Jha. Static analysis of

executables to detect malicious patterns. In Proceedings

of the 12th USENIX Security Symposium, SSYM’03,

Berkeley, CA, USA, 2003. USENIX Association.

[28] W. Enck, M. Ongtang, and P. McDaniel. Understanding

android security. IEEE Security & Privacy, 7(1):50–57,

Jan.– Feb. 2009.

[29] R. Fedler, C. Banse, C. Krauß, and V. Fusenig. Android

OS security: Risks and limitations. Technical report,

Fraunhofer AISEC, May 2012.

[30] R. Fedler, J. Sch¨utte, and M. Kulicke. On the

effectiveness of malware protection on Android.

Technical report, Fraunhofer AISEC, April 2013.

[31] Fraunhofer AISEC. App-Ray. http://app-ray.de/.

IJCATM : www.ijcaonline.org

http://www.fsecure/
http://doi.ieeecomputersociety.org/10.1109/MSP.2009.144
http://doi.ieeecomputersociety.org/10.1109/MSP.2009.144
http://mobithinking.com/mobile-marketing-%20%20tools/latest-mobile-stats/e
http://mobithinking.com/mobile-marketing-%20%20tools/latest-mobile-stats/e
http://developer.apple.com/jp/appstore/guidelines.html

