
International Journal of Computer Applications (0975 8887)
Volume 91 - No. 16, April 2014

Real Time Generalized Log File Management and
Analysis using Pattern Matching and Dynamic

Clustering

Bhupendra Moharil
Student, Computer Engineering

MIT College of Engineering
University of Pune, India

Chaitanya Gokhale
Student, Computer Engineering

MIT College of Engineering
University of Pune, India

Vijayendra Ghadge
Student, Computer Engineering

MIT College of Engineering
University of Pune, India

Pranav Tambvekar
Student, Computer Engineering

MIT College of Engineering
University of Pune, India

Sumitra Pundlik
Assistant Professor, Computer Department

MIT College of Engineering
University of Pune, India

Gaurav Rai
Senior Software Engineer

GS Lab Pvt. Ltd.
Pune, India

ABSTRACT
The past decade saw an exponential rise in the amount of
information available on the World Wide Web. Almost every
business organization today uses web based technology to wield
its huge client base. Consequently, managing the large data and
mining pertinent content has become the need of the hour. This is
where the field of big data analytics sows its seeds. The linchpin for
this is the process of knowledge discovery. Analyzing server logs
and other data footprints, aggregated from clients, can facilitate the
building of a concrete knowledge base. Querying the knowledge
base can help supplement business and other managerial decisions.

The approach herein proposes a real time, generalized alternative
to log file management and analysis. It incorporates the
development of a sustainable platform which would enable
the analysts to understand the essence of the data available.

General Terms:
Design, Experimentation

Keywords:
Log file, Levenshtein distance, Real time, Pattern matching,
Dynamic clustering

1. INTRODUCTION
The main motivation for the project is the work done at Google
Flu Trends by Jeremy Ginsberg et. Al. [6]. A few years back there
was an outbreak of influenza like diseases. An exigency of finding
the places of origin was felt in order to control the spread of the
epidemics. However it was not feasible to visit each and every
medical facility to collect statistics.To overcome this, the ideology
of analyzing aggregated search data generated at the Google servers
was put forth.

It was found that the number of patients suffering from influenza
like diseases, visiting a medical facility, was directly proportional

to the frequency of certain search queries fired to the server.
Accordingly some keywords were identified and the source was
traced based on the location from where the queries were fired. On
similar lines, a log is another type of search data which can help
mine huge amount of useful information.

1.1 Contents of a log file
Basically a log is a footprint of any activity performed by the
user. Logs contain huge amount of information stored within
them. If a highly productive environment is running then a large
amount of logs would be produced per second. It is not feasible
to manually read line by line and hence there is a requirement
of a tool which can automate this process. Typically, a log line
may include fields like IP Address, Timestamp, zone, http method,
client request, protocol, status code, response size, execution time,
memory consumed, or custom fields [4]. An example of an access
log line is as shown in the Table 1

There are many other kinds of logs such as application logs, error
logs, server logs, system logs, proxy server logs, gateway logs,
database logs and other custom logs.

1.2 Requirement of real time platform
There are two types of data, one which has value at the given
instance only and other whose value remains forever. For example,
considering the scenario of a share market, if someone is able
to predict the market spike based on the current data (stock)
then it is beneficial. If the spike goes off before the prediction
then the analysis becomes worthless. As opposed to this, analyses
like top users, top product in demand, etcetera require historical
data. Mining the instantaneously valued data requires a real time
platform. In this paper, a method of dynamic pattern identification
for logically clustering log data, has been proposed. The method
is a real time and generalized solution to the process of log file
management and analysis. A methodology to foster faster querying

1



International Journal of Computer Applications (0975 8887)
Volume 91 - No. 16, April 2014

Table 1. Sample log line
Field Value

IP Address 192.168.2.20
Date 28/Mar/2014

Time with zone 10:27:10 -0300
Client request ”GET /cgi-bin/try/ HTTP/1.0”

Status code 200
Size in bytes 3395

on the data has been proposed. The paper covers the platform
required for the implementation.

2. LITERATURE SURVEY
Since the last decade a lot of work has been done on developing
business analytics solutions. Demiriz [1] has proposed webSPADE,
a parallel sequence algorithm to analyze web log data. Peng
Zhu et al. [13] have proposed a session identification algorithm
for web log mining, which uses timing thresholds and makes
dynamic adjustment to identify sessions. Zhixiang Chen et al. [19]
have proposed two algorithms for frequent traversal path patterns
from very large web logs. Both these algorithms employ suffix
tree constructions. Jayathilake [5] has proposed a framework for
multi-format log processing and a set of recurring procedures
for automation of log analysis. Meichun Hsu [3] has proposed a
system that supports multiple heterogeneous data store and query/
compute platforms (structured and unstructured), integrates real
time analysis over streaming data and brings parallel computation
closer to data. The platform presents a unified interface for
applications to create and execute analytics data flows over a
diverse collection of data engines. Karuna Joshi et al. [8] have
designed a system which uses warehouses to analyze web log. The
central idea behind all the above methodologies is a centralized
data store combined with use case specific implementations.
However, all of the methodologies introduce a lot of overhead when
considered for real time applications. Hence a technique which
reduces the overhead in processing of the logs has been proposed.

Along with the researches mentioned above, there are some log
analytics software available in the market. A comparative study of
these existing log analytics software was made based on some key
parameters and the observations were as shown in Table 2.
The parameter, ’Customization’, in Table 2 pertains to module
changes in the code. The platform proposed herein would enable
the user to replace modules in the code with custom modules
to have additional functionalities such as security (encryption)
implemented. The parameter, ’Real time’ refers to log handling as
and when the log is produced (however it includes network and
buffer latencies). The parameter ’Generalized’ refers to the multiple
type of log formats supported by the software. Considering the
limitations of the tools mentioned in Table 2, the following
objectives were identified for the platform proposed herein:

(1) Optimizing data analytics process
(2) Supplementing user with data analyses, survey and statistics

collection at real time
(3) Providing a generalized system for analytics
(4) User friendly and customizable application
(5) Supporting applications with real time decision making on

basis of live statistics

The following components were identified for log analysis process:

2.1 Log aggregation layer
The main requirement for the log analytics activity is a data
collection utility. Most of the existing systems use a Software as
a Service (SaaS) platform wherein the product is delivered as a
Service to the clients. Logs are collected from the clients using
either agent systems or by utilizing cloud storage facilities [15].

2.2 Orchestration and Execution layer
This phase deals with processing of the logs. For this, either batch
or event stream processing may be used. Details regarding the same
are mentioned in proposed methodology 3.

2.3 Log Stores
Most of the software store the data first and process later. But for
real time data it is essential that data is processed first and stored
later as real time data mostly resides in data pipelines (queues) and
cache. Since real time data is considered, it is beneficial to process
first and store later. Table 3 shows a comparative study of databases
considered.
The various perspectives to data storage [15] with respect to real
time data are as follows:

2.3.1 Perspective 1. SQL databases can be used to store data.
However there is a limit on the amount of data that can be stored.
Also maintaining the relational dependencies is an overhead. Hence
it is not preferred for big data analytics.

2.3.2 Perspective 2. Another approach is to use NoSQL database
to store data. Assuming one wants responses within a latency
bound, has more data than can fit on a single machine and
wants some reasonable guarantee or fault tolerance, there isn’t a
single NoSQL backend that would satisfy these requirements. The
alternative is to build a separate layer on the top of the data store for
batching data. Thus it is advisable to have a live buffer for storing
the temporary data for better availability.

2.3.3 Perspective 3. Directly index data using search
engines.Maintaining the replication and consistency between
the live buffer and NoSQL database as mentioned in perspective
2 is quite difficult and creates an extra overhead on the system.
Hence it is more efficient to index the data using a search engine.

2.4 Visualization
Visualization of the results may be done as required, by developing
User specific Interfaces for the platform.

3. PROPOSED METHODOLOGY
The proposed architecture as shown in Figure 1 has two main
components, the client side and the server platform.

3.1 Client Side
At the Client side, the logs would be collected and sent to the
Server side. The logs may either be tailed from plaintext files or
pulled from the target application. For providing this functionality
tools such as Fluentd, Flume and Scribe were analyzed. Flume may
provide better support or compatibility only if one intends to use the
Hadoop-family of products especially CDH (Cloudera Distribution
for Hadoop) because it is written in Java.

Meanwhile, Fluentd [2] is backend-storage agnostic, has less
memory footprint, and is easy to use and extend. Fluentd is

2



International Journal of Computer Applications (0975 8887)
Volume 91 - No. 16, April 2014

Table 2. Comparison of existing log analytics software
Parameter Loggly[10] Splunk [14] SumoLogic [11]

Open Source No No No
Whether Generalized Choose log type first Yes. Not restricted to logs alone. Not all log types supported unless notified

Real time Yes Yes Yes
Cluster analysis No. Index based. No. Index based Yes

Software as a service Yes No Yes
Data collection Cloud, agentless Cloud, agentless Sumo logic collectors
Customization Restricted Restricted Restricted

Table 3. Comparison of databases[12]
Parameter MongoDB Cassandra Oracle HBase ElasticSearch
Major Users Craigslist, Foursquare, Shutterfly Facebook, Twitter, Digg Acxiom, Allstate, Amazon, ATT Facebook Github, Mozilla
Storage Type Document Column Relational database Column Indexing
Key Points Retains SQL properties Cross of BigTable, Dynamo. Object relational data model Huge data store RESTful search
Language C++ Java C Java Java
Usage Voting, banking, logging E-Business Suite, PeopleSoft, SAP Applications Live messaging Logging
Data Storage Disk Disk Disk Hadoop Disk Storage

a log collector daemon for semi-structured JSON-based logs
implemented in Ruby. It deals with machine-readable logs. It is
simply a mechanism for receiving, buffering, and forwarding data
to another destination and hence is lightweight as compared to
Scribe. The lines of code in Scribe and Flume is also quite high
as compared with Fluentd[2]. The ruby plugin functionality in
Fluentd, also boosts the customizability. On the client side the
Fluentd daemon would tail the logs and forward them to the Server
side Fluentd daemon. The Fluentd tail plugin would pick up the
log lines and pass them through a regular expression. The regular
expression is as follows:

(?<log>((?<ip>((\d)+[.](\d)+[.](\d)+[.](\d)+)*)
(?<pre>(.)*)(?<times>([\s]|[:])(\d{2})[:]\(\d)+
[:](\d)+)(?<post>(.)*)))

The proposed platform would take in any type of log. To facilitate
this, the regular expression was generalized. The regular expression
contains optional fields such as IP address and timestamp. Data
before the timestamp is the ’pre’ part whereas data after the
timestamp is the ’post’ part. If these fields are not identified then
the entire log would be passed into the pre part. If only ip address
is recognized then rest of the part would be in pre part. If timestamp
is identified, data before it would be in the ’pre’ part and data after
the timestamp would be in the ’post’ part. The recognized fields
along with the entire raw log line are combined into a single JSON
(JavaScript Object Notation) object.

This JSON would be sent to the forward plugin. The forward plugin
would send the data to other Fluentd daemons through port 24224.
This completes the flow on the client side. Figure 2 shows the
complete client to server flow.

3.2 Server Side
On the Server side, the Fluentd daemon is responsible for
continuously listening on port 24224 for log lines sent from clients.
The received lines are then pushed into a message queue. For
the message queue, Apache Kafka and Kestrel were considered.
Kestrel gives better support with Hadoop family products. As
Hadoop products are not used, Apache Kafka [7] is used.
Apache Kafka runs over a Zookeeper cluster. The Zookeeper
cluster facilitates data distribution and offset storing. The log
lines forwarded from Fluentd daemon are distributed over five

Kafka partitions for better availability during parallel retrieval. For
distributed parallel processing, Storm [16] [9] and Hadoop [17]
were compared. Hadoop does batch processing. Hence, every time
the topology has to wait for a batch of data to arrive. On top of it,
the map-reduce jobs increase latency of the system. As opposed to
it Storm introduces the concept of event stream processing. There
are basically three component files in Storm viz. spout for picking
up data, bolt for actual processing and the topology for control. The
Storm topology runs over a Zookeeper cluster. Out of the machines
in the cluster, one is appointed as the Nimbus host and the others
are termed as Supervisors. The Nimbus host performs the work
of distributing task and code amongst the Supervisors. The Storm
topology is an ’always alive’ topology.

The Storm spouts would pick up data from the Kafka partitions,
in parallel, in a round-robin fashion. Each log line picked up from
the message buffer would generate an event for the topology. A
stream of such events is simultaneously picked up by the Storm
spouts and forwarded to the bolts. Each log line would pass through
three bolts in succession. The first bolt would be responsible for
de-serializing the JSON object and identifying the fields from the
line. The second bolt would then identify the cluster to which the
log line belongs. The advantage of clustering is to narrow down
the search. Logging produces ’big’ data. Almost thousands of log
lines are generated in a second. Instead of searching in thousands
of gigabytes of log data, it would be advisable to search in smaller
chunks of data. Using algorithms like K-Means Clustering creates
overhead as the clusters needs to be recalculated every time a new
line is entered. Hence, for identifying the cluster to which the
log line belongs, Levenshtein distance, a string similarity metric
is used. Levenshtein distance [18] basically gives the character
distance between two strings. Instead of plainly using the character
difference, the algorithm was extnded to give percentage character
difference to avoid length dependency and also for giving us the
threshold value to control the number of clusters. The process
of cluster identification is as shown in the Figure 3 The cleaned
log line would be matched with each pattern from the pattern
database(the knowledge base) until a matching pattern is found.
Based on the threshold value (by default 10, but can be changed as
needed) it would be identified whether the line belongs to the same
cluster or not. If no matching pattern is found, then the cleaned log
line itself is put up as a pattern and is assigned a new id. In this

3



International Journal of Computer Applications (0975 8887)
Volume 91 - No. 16, April 2014

Fig. 1. Architectural Overview

Fig. 2. Client to Server

Table 4. HBase versus ElasticSearch
Sr.No. Number of lines Time required Data loss Data store

1 1550 17.92 12 HBase
2 3100 28.92 16 HBase
3 1550 11.23 0 ElasticSearch
4 3100 20.14 0 ElasticSearch

The results were observed on a local topology. Data loss was due to the threads dying
before acknowledgement.

manner the knowledge base goes on building. Lesser the threshold,
more accurate the clusters formed. Hence it is advisable to keep
threshold value lesser than 35.As the number of clusters go on
increasing the performance of the algorithm might get degraded
since every incoming log line is to be compared with all the existing
patterns. As a solution to this the Levenshtein distance can be used
as a metric to club(group) the clusters in order to reduce them.
In this process the clusters with lesser inter-cluster distances are
combined together. In this way the performance of the algorithm
can be maintained or regained.The third bolt is responsible to store
the log line along with the cluster id into the data store. Out of the
databases in Table 3, consulting the database perspectives, HBase

and ElasticSearch were identified as suitable candidates. The data
was put into HBase as well as ElasticSearch. It was found that
indexing data using ElasticSearch was faster than HBase writes.
The same is shown in Table 4. Also ElasticSearch is provided with
many inbuilt HTTP API’s to foster faster search on the data. Hence
ElasticSearch was chosen as the data store and also as a search
engine.

The client may view and analyse his data from the User Interface
provided. The User Interface is an NGINX hosted website having
use cases like finding user navigation patterns, top users, location
based user identification by map plotting, total logs and clusters
in database and also ElasticSearch cluster overview. The user may
also fire all the ElasticSearch queries on the Interface.

4. ANALYSIS
The processing topology was run locally and the results observed
were as shown in the Table 5. The parameters considered for the
test cases were:

(1) Number of executors and tasks: In order to achieve parallelism,
Storm uses the concept of executors and tasks. The Nimbus

4



International Journal of Computer Applications (0975 8887)
Volume 91 - No. 16, April 2014

Fig. 3. Process of cluster identification

Table 5. If necessary, the tables can be extended both columns.
Sr. No. Bolt1 Bolt2 Bolt3 Workers Spouts Lines tailed Time(in sec)

Executors Tasks Executors Tasks Executors Tasks
1 32 1 16 1 32 1 1 5 1550 22.3
2 32 1 16 1 32 1 1 5 3100 33.7
3 32 4 16 4 32 4 1 5 1550 12.9
4 32 4 16 4 32 4 1 5 3100 14.5
5 16 1 8 1 16 1 1 5 1550 18.6
6 16 1 8 1 16 1 1 5 3100 32.5

All the results were observed on a Storm local topology

Table 6. Observations
Allowed
percentage
Levenshtein
distance (less
than or equal)

Processing time lines tailed Clusters
formed

75 6.42 1550 72
50 7.55 1550 225
25 8.26 1550 317
12 12.32 1550 553
6 18.38 1550 667

These results were found for Apache access logs.

host as described in the section , is responsible for code
distribution across the Supervisors. The Supervisors have
multiple parallel executors. Each executor is further assigned
tasks. The tasks are serially executed.

(2) Workers: Number of Worker threads.
(3) Spouts: The number of spouts is dependent on the number of

kafka partitions. Each spout is responsible for one partition.
(4) Lines tailed: The number of log lines handled in each test case.
(5) Time: Time required for the end to end flow when executed in

Storm’s local configuration.

The Table 6 compares the parameters, allowed percentage
Levenshtein distance, number of clusters formed, line and time.

It was observed that the number of clusters formed is inversely
proportional to the percentage similarity between the log lines. This
confirms the fact that lesser the percentage Levenshtein distance
more is the accuracy of clusters formed, that is, lesser clusters are
formed.

5. CONCLUSION
The normal process of log information retreival includes
store-process-store and then visualize, however, the proposed
platform does preocess-store and directly visualize, thereby
decreasing overall latency. Making use of the proposed platform,
real time data analytics can be made possible on large data sets, thus
facilitating prompt insights into the data. The platform can take in
any type of log files, which gives it a generic capability to analyze
different logs simultaneously. The platform can also be extended
as a basemodule to serve other applications for decision making
on the basis of real-time analytics. The clusters, which are created
on the fly depending on the patterns identified, help shortening the
search time. Thus the searching is done in a single cluster instead
of the whole data store. This tremendously reduces the lag between
request and response. As an added functionality the platform can
be extended to serve any type of data other than logs, if the data
matches the regular expression in Fluentd.

5



International Journal of Computer Applications (0975 8887)
Volume 91 - No. 16, April 2014

6. ACKNOWLEDGEMENT
This research work was undertaken as a part of the Bachelor of
Engineering, final year project, under the guidance of GS Lab Pvt.
Ltd. (www.gslab.com), Pune. The authors thank GS Lab Pvt. Ltd.
for their valuable guidance and support.

7. REFERENCES
[1] Demiriz A. webspade: a parallel sequence mining algorithm

to analyze web log. In Proceedings of the International
Conference on Data Mining, pages 755–758. IEEE
Proceedings 2002, 2003.

[2] Fluentd. Faq. http://docs.fluentd.org/articles.
[3] Meichun Hsu. Enabling real-time business intelligence. 6th

International Workshop, BIRTC. Published by Springer. ISBN
Print: 978-3-642-39871-1, ISBN Online: 978-3-642-39872-8,
pages 109–117, 2012.

[4] jafsoft. A web server log file sample explained, 2005.
http://www.jafsoft.com/searchengines/logsample.html.

[5] Jayathilake. Towards structured log analysis. IEEE
International Joint Conference on Computer Science
and software engineering, pages 259–264, 2012.

[6] Rajan S. Patel Jeremy Ginsberg, Matthew H. Mohebbi.
Detecting influenza epidemics using search engine data.
Nature, 457, 2009.

[7] Apache Kafka. homepage. http://kafka.apache.org/.
[8] Yelena Yesha Karuna Joshi, Anupam Joshi. On using a

warehouse to analyze web logs. Distributed and Parallel
Databases, pages 161–180, 2003.

[9] G. E. D. S. Jonathan Leibiusky. Getting started with storm.
O’Reilly Media.

[10] Loggly. How loggly works.
http://www.loggly.com/product/how-loggly-works/.

[11] Sumo Logic. Meeting the challenge of big data log
management: Sumo logic’s real-time forensics and push
analytics. Sumo Logic white paper.

[12] NoSQL. List of nosql databases, 2011.
http://nosql-database.org/.

[13] Ming-Sheng Zhao Peng Zhu. Session identification algorithm
for weg log mining. IEEE International Conference on
Management and Service Science(MASS), pages 1–4, 2010.

[14] Splunk. Home page. http://www.splunk.com/.
[15] Stackexchange. Perspectives on real time data.

http://programmers.stackexchange.com/questions.
[16] Storm. home page. http://storm-project.net.
[17] Tom Whiter. Hadoop : The definitive guide, 3rd edition.

O’Reilly Media.
[18] Wikipedia. Levenshtein distance.

http://en.wikipedia.org/wiki/Levenshteindistance.
[19] Chunyue Weng Zhixiang Chen, Fowler R.H. Linear and

sublinear time algorithms for mining frequent traversal
path patterns from very large web logs. In Proceedings
of the Seventh International Conference, IEEE Database
Engineering and Applications Symposium, pages 117–122,
2003.

6


	Introduction
	Contents of a log file
	Requirement of real time platform

	Literature Survey
	Log aggregation layer
	Orchestration and Execution layer
	Log Stores
	Perspective 1
	Perspective 2
	Perspective 3

	Visualization

	Proposed Methodology
	Client Side
	Server Side

	Analysis
	Conclusion
	Acknowledgement
	References

