
International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 9, March 2014

26

Improved Single Keyword Pattern Matching Algorithm

for Intrusion Detection System

K. Prabha,
Ph.D Research Scholar,

Erode Arts and Science College,
Erode, Tamil Nadu, India

S.Sukumaran, Ph.D

Associate Professor of Computer Science,
Erode Arts and Science College,

Erode, Tamil Nadu, India

ABSTRACT
With the spreading of the internet and online procedures

requesting a secure channel, it has become an inevitable

requirement to provide the network security. It is very clear

that firewalls are not enough to secure a network completely

because the attacks committed from outside of the network are

stopped whereas inside attacks are not. This is the situation

where intrusions detection systems (IDSs) are in charge. IDSs

are used in order to stop attacks, recover from them with the

minimum loss or analyze the security problems.

String matching algorithms are essential for IDS that filter

packets and flows based on their payload. This work describes

the concept of single keyword pattern matching algorithms. A

new improved single keyword pattern matching algorithm is

proposed. The new method reduces character comparisons,

faster and more reliable in network security applications. The

experimental results show that the new algorithm is highly

efficient. Its search time is cut down significantly compared

with other popular existing algorithms and its memory

occupation stays at a low level. Moreover, conclusion on

results is made and direction for future works is presented.

Keywords
Network Security, Pattern matching, Intrusion Detection

1. INTRODUCTION
Security attacks through internet have proliferated in recent

years. Hence, information security is an issue of very serious

global concern of the present time. The need for network

security and in particular the need for Intrusion Detection

Systems (IDS) have been brought out. IDSs, as originally

introduced by Anderson [3] in 1980 and later formalized by

Denning [1] in 1987, have received increasing attention in the

recent years.

IDS are widely used and heavily depended upon. The

continued growth in both network traffic and intrusion

signature databases makes the performance of these systems

increasingly challenging and important. Intrusions refer to the

network attacks against vulnerable services, data-driven

attacks on applications, host-based attacks like privilege

escalation, unauthorized logins and access to sensitive files, or

malware like viruses, worms and trojan horses. Intrusion

detection means detecting unauthorized use of a system or

attacks on a system or network.

IDS are implemented in software or hardware in order to

detect these activities. IDSs collect information from a

computer or a computer network in order to detect attacks and

misuses of the system. Three types of data are used by IDSs.

These are network traffic data, system level test data and

system status files [2].

The heart of almost every modern IDS has a string matching

algorithm. The IDS uses string matching to compare the

payload of the network packet and/or flow against the pattern

entries of intrusion detection rules [1, 2].

String matching is an important area in the wider domain of

text processing. These algorithms are basic components used

in implementations of practical softwares existing under most

operating systems. Moreover, they emphasize programming

methods that serve as paradigms in other fields of computer

science. They also play an important role in theoretical

computer science by providing challenging problems[4].

String matching generally consists of finding a substring

(called a pattern) within another string (called the text).These

string matching algorithms are used to inspect the content of

packets and identify the attacks signature in IDS[9]. String

matching consists of finding one, or more generally, of all the

occurrences of a search string in an input string. In IDS

applications, the pattern is the search string, while the payload

is the input string. If more than one search string

simultaneously matches against the input string, this is called

multiple pattern matching. Otherwise, it is called single

pattern matching. In this work, we considered only the single

keyword pattern matching algorithms.

This paper presents the information about IDS pattern

matching algorithms. An improved single keyword pattern

matching algorithm is proposed to reduce the number of

attempts and character comparison. The main aim for this

work is to improve the efficiency of IDS detection engine. In

the rest of the paper, we presented string matching algorithms

for IDS (Section II), the related works and the proposed

method (Section III), the results of implementation (Section

IV) and the Conclusion (Section V).

2. SINGLE KEYWORD PATTERN

ALGORITHMS FOR IDS
The Boyer-Moore algorithm and its variants are widely used

in the string matching. The Horspool algorithm performs the

comparison in a simple way, which works for most of the

practical cases. The Brute Force algorithm requires no

preprocessing of the pattern. In the Karp-Rabin Algorithm has

the main idea is that instead of using comparisons it involves

mathematical computations which more specifically extends

to the notion of hashing[15].

2.1 Boyer-Moore algorithm (BM)
The Boyer-Moore algorithm is one of the exact string

matching algorithms that used in single pattern matching. The

algorithm uses two tables or functions, which is used to move

the sliding window to the right. The first table is called “bad

character shift”, while the second table called “good suffix

shift”. The algorithm is faster when it is working with small

pattern size, but it is slower when it is working with large

pattern size[15]. The BM algorithm is given below:

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 9, March 2014

27

Algorithm BoyerMooreMatch(T, P, S)

L = occFunction ()

i = m - 1

j = m - 1

while i > n - 1

{

 if T[i] = P[j]

 if j = 0

 return i //match at i

 else

 i = i - 1

 j = j - 1

 else //character-jump

 l = L[T[i]]

 i = i + m – min(j, 1 + l)

 j = m - 1

 }

 return -1 //no match

void occFunction()

{

 char a;

 int j;

 for (a = 0; a < alphabetsize; a++)

 occ[a] =- 1;

 for (j = 0; j < m; j++)

 {

 a = p[j];

 occ[a] = j;

 }

}
The algorithm preprocesses the pattern and creates two tables,

which are known as Boyer-Moore bad character (bmBc) and

Boyer-Moore good-suffix (bmGs) tables. For each character

in the alphabet set, a bad character table stores the shift value

based on the occurrence of the character in the pattern. On the

other hand, a good-suffix table stores the matching shift value

for each character in the pattern. The maximum of the shift

value between the bmBc (character in the text due to which a

mismatch occurred) dependent expression and from the bmGs

table for a matching suffix is considered after each attempt,

during the searching phase. This algorithm forms the basis for

several pattern matching algorithms.

2.2 Horspool Algorithm (HP)
Horspool algorithm is based on Boyer Moore algorithm. Snort

IDS uses a modified version of the algorithm called Boyer-

Moore-Horspool algorithm to maintain memory usage and

speed up during searching phase. Unlike Boyer-Moore

algorithm, which uses two tables; bad character shift and good

suffix shift, the Horspool algorithm uses only one table (bad

character shift) [14]. Hence, the algorithm is more efficient in

practical situations where the alphabet size is large and the

length of the pattern is small.

2.3 Brute Force Algorithm (BF)
The Brute Force algorithm requires no preprocessing of the

pattern. The comparison can be done in any order either from

left to right or from right to left. If all the characters match,

then it is said to be a match. If not, the algorithm shifts the

pattern by exactly one position to the right [17]. The expected

number of character comparisons in Brute Force algorithm is

2n. The algorithm is given below:

Algorithm brute (text, pattern)

{

 n = length(text)

 m = length(pattern)

 for i=0 to (n-m)

 {

 j = 0

 while((j<m) and

 (text(i+j) = pattern(j))

 j++

 if j = m

 return i // match at i

 }

 return –l // no match

}

2.4 Karp-Rabin Algorithm (KR)
The Karp-Rabin Algorithm was created by Michael Rabin and

Richard Karp. They used a completely different approach than

the single keyword methods[13]. The main idea is that instead

of using comparisons it involves mathematical computations

which more specifically extends to the notion of hashing. The

application of hashing (converting each string into a numeric

value) has always been a useful approach when it comes down

to string matching. If both words have different hash values

then we conclude they are different. But if their hash values

are the same we cannot conclude they are the same string and

will have to perform further comparisons.

Karp-Rabin-Matcher(T,P,d,q)

n = length(T)

m = length(P)

h = dm-1 mod q

p = 0

t0 = 0
for i = 1 to m //preprocessing

{

 p = (d*p + P[i]) mod q

 t0 = (d*t0 + T[i]) mod q

 }

 for s = 0 to n-m //matching

{

 if p = ts

 if P[1..m] = T[s+1..s+m]

 print “Pattern occurs with shift” s

 if s < n-m

 ts+1 = (d*(ts-T[s+1]*h) + T[s+m+1]) mod q

}

3. PROPOSED METHOD
The improved single keyword pattern matching algorithm

which is formulated based on the two algorithms Horspool

and Karp-Rabin algorithm. Karp-Rabin algorithm is based on

hashing approach but not the comparison of characters, which

is consider as the advantage of this algorithm. But its

weakness is the enormous time needed when long patterns are

present [17]. On the other hand, the Horspool algorithm is

easy and works in any order. In most situations that it applied

on and has a high performance compare to other algorithms. It

is easy to implement and has less memory space so, it can be

implement in any case that need the exact string matching

algorithm for small pattern and large pattern size [14].

3.1 Improved single keyword pattern

matching algorithm (ISPMA)
The two phases of the proposed algorithm are (i)

preprocessing phase, (ii) searching phase.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 9, March 2014

28

Step1 : In the first phase, the ISPMA performs the same

preprocessing phase as in the existing two algorithms. It

prepares the hash function used in KR algorithm and the bmBc

table used in HP algorithm for the pattern.

Step2 : The process of computing hash functions for the

patterns and text window are exactly the same as the process

of creating them in the existing KR algorithm. The bmBc

table is the same as it was in the existing HP algorithm.

In the searching phase, the ISPMA performs the comparison

between the pattern and the text by utilizing the advantages of

the KR and HP.

Step 3: After the preprocessing phase has finished, the

comparison start between the text and pattern by comparing

the numerical value of pattern hash and window text hash.

Step 4 : Whether, if the two hash value are not identical

then the ISPMA perform the shifting.

Step 5: Next Shift to the right based on the values of right

most character for the window text in the bmBc table. This

will speed up the algorithm during the comparison process

and it reduced the number of character comparison by using

the hash function.

For example, Take the pattern (PQRPRPRP)

After preprocessing phase,

Fig3.1 Preprocessing Phase

For the previous pattern (PQRPRPRP) and the text

(PQRSQPQRPRPRPSRSRQRPS). The searching phase for

the ISPMA is depicted in below Figure.

Fig3.2 Searching Phase

Here the Hash (x) = 17597 and Hash (y) = 17819 so the hash

value are not equals. The ISPMA shift the value of character

R in the bmBc table which is 1.

The operation of comparison continues for the next shift in

window text as shown in below Figure.

Fig3.3 Searching Phase for next window test

Here the Hash (x) = 17597 and Hash (y) = 17533 so the hash

value are not equals. The ISPMA shift the value of character P

in the bmBc table which is 2. Similarly, the process of

ISPMA continues until all characters in the text are being

compared and whether the mismatching or matching is found.

4. RESULTS
The proposed approach is implemented using MATLAB. The

evaluation of the proposed method is performed based on the

factors Efficiency, Runtime, Space and Accuracy.

The result of the experiments are presented below:

Table 4.1 Efficiency Comparison

Algorithm

Character

Comparison

Number of

Attempts

BM 15 10

KR 12 8

HP 10 8

ISPMA 8 6

Fig 4.1 Efficiency Comparison

The result shows that the ISPMA reduces the number of

character comparison to 8 and reduce the number of attempts

to 6. This is because of hashing approach of Karp- Rabin

algorithm to perform the character comparison and depends

on shift table of Horspool algorithm to perform the movement

of pattern.

4.1 Time performance
The running-time performance, also referred to as time

complexity, is measured in number of machine steps, and in

this case we are primarily concerned with character or byte

comparisons. To present the results of the running time of

algorithms, we vary the input size, where the input is the

English words. The number of patterns to be matched remains

the same. The running time (in milliseconds) for the

algorithms are recorded in the following table:

Table 4.2 Runtime Comparison

Input Size Running Time (in milliseconds)

BM KR HP ISPMA

20000 15 15 17 13

60000 40 45 46 38

100000 68 73 79 65

140000 102 102 108 101

180000 119 132 139 115

200000 133 144 159 123

0

5

10

15

Character
Comparison

Number of
Attempts

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 9, March 2014

29

Fig 4.2 Runtime Comparison

4.2 Space performance
The amount of memory consumed while the algorithm runs, is

considered only in addition to the necessary space to store the

keyword and input. The keyword and the keyword set must

always be stored. The space performances of proposed

algorithm and the three algorithms were compared using one

pattern. The results are shown in Fig4.3. The results show

that ISPMA size is smaller than that of the other algorithms,

for the same pattern.

Table 4.3 Space Comparison

Algorithm

Pattern Length

(Byte)

Memory

Space(MB)

BM 20 180

KR 20 160

HP 20 140

ISPMA 20 100

Fig 4.3 Space Comparison

4.3 Accuracy Performance
The number of patterns are vary, the accuracy for the four

algorithms are shown in Figure 4.4. Horspool and Boyer-

Moore have the minimum accuracy because the shifted values

are affected by increasing signature length. The difference

between them is very small. Karp-Rabin and improved single

keyword pattern matching algorithms were not affected by

the increased signature length because their shifted values are

always one byte.

Table 4.4 Accuracy Comparison

Number

of

patterns

Accuracy (%)

BM KR HP ISPMA

50 92 95 95 99.5

100 91.8 94.5 94.5 99

150 91 94.3 94.3 98.5

200 90.6 94 93 98.2

250 90.3 93.7 92.5 98

Fig 4.4 Accuracy Comparison

5. CONCLUSION
This work identifies the number of promising algorithms and

provides an overview of recent developments in the single

keyword pattern matching for IDS. Boyer-Moore Algorithm

uses two tables and matching starts with right to left, but in

Horspool uses only one table and the matching is faster than

the Boyer-Moore. The Brute force algorithm requires no

preprocessing of the pattern. Karp-Rabin algorithm is based

on hashing approach. The proposed ISPMA algorithm is

compared with the exiting algorithms and the result shows

that the algorithm is faster and more reliable in network

security applications. The results of algorithm show an

improvement in average comparing, faster than the original

algorithms, less character comparison and performs less

number of attempts compared to the exiting algorithms. In

future work, we will enhance the method by moving toward

the parallel computing to reduce the workload of system and

consequently improve the speed and accuracy of the detection

of malicious activities.

6. REFERENCES
[1] Apostolico and M. Crochemore. String pattern matching

for a deluge survival kit. Handbook of massive data sets,

2002.

[2] B. Kim, S. Yoon and J. Oh, “Multi-hash based Pattern

Matching Mechanism for High-Performance Intrusion

Detection,” International Journal of Computers. Vol. No.

3. Issue1, 2009.

[3] Bace R. An introduction to intrusion detection and

assessment for system and network security

management. ICSA Intrusion Detection Systems

Consortium Technical Report, 1999.

[4] Christian Charras, Thierry Lecroq, “Handbook of Exact

String Matching Algorithms”, King’s College

Publications, 2004, ISBN :0954300645.

[5] Coit C J, Staniford S, McAlerney J, “Towards faster

string matching for intrusion detection or exceeding the

speed of Snort”, Proceedings of the DARPA Information

Survivability Conference and Exposition II

(DISCEX’01). Los Alamitos, CA, USA: IEEE Comput.

Soc., 2001.

[6] Denning, Dorothy E.: Information Warfare and Security.

Addison Wesley Longman, Inc., Reading, 1999.

[7] Fisk M, Varghese G, “An analysis of fast string matching

applied to content-based forwarding and intrusion

detection”, Technical Report CS2001-0670. San Diego:

University of California, 2002.

0

50

100

150

200

2
0

0
0

0

6
0

0
0

0

1
0

0
0

0
0

1
4

0
0

0
0

1
8

0
0

0
0

2
0

0
0

0
0

BM

KR

HP

ISPMA

Input Size

R
u
n
n
i
n
g

t
i
m
e

0
50

100
150
200

B
M

K
R

H
P

IS
P

M
A

Pattern
Length(Byte)

Memory
Space(MB)

0

20

40

60

80

100

50 100 150 200 250

BM

KR

HP

ISPMA

Number of patterns

A
c
c
u
r
a
c
y
%

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 9, March 2014

30

[8] Martin Roesch, “Snort-Lightweight Intrusion Detection

for Networks”, Stanford Telecommunications, Inc, 13th

LISA conference, 1999.

[9] Meier, Michael; Holz, Thomas: Intrusion Detection

Systems List and Bibliography.

http://wwwrnks.informatik.tucottbus.de/en/security/ids.ht

ml, 2003.

[10] M. Fisk, and G. Varghese, “An analysis of fast string

matching applied to content-based forwarding and

intrusion detection”, Technical Report CS2001-0670

(updated version), University of California - San Diego,

2002.

[11] N. Tuck, T. Sherwood, B. Calder, and G. Varghese,

“Deterministic memory-efficient string matching

algorithms for intrusion detection”, Proc. IEEE Infocom,

vol. 4, March 2004.

[12] RRehman RU, Intrusion detection systems with snort.

Upper Saddle River, New Jersey, Publishing as Prentice

Hall PTR, 2003.

[13] R. M. Karp and M. O. Rabin. “Efficient randomized

pattern-matching algorithms”, IBM Journal of Research

and Development, Vol.31, no.2, 1987.

[14] R.N.Horspool,“Practical fast searching in strings”,

Software-Practice and Experience, Vol. 10, no. 6, 1980

[15] R. S. Boyer and J. S. Moore, “A fast string searching

algorithm”, Communications of the ACM, Vol.20, no.10,

1977.

[16] S. Dharmapurikar, J.W. Lockwood, “Fast and Scalable

Pattern Matching for Network Intrusion Detection

Systems”, IEEE Journal on Selected Areas in

Communications, vol. 24, 2006.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.

Stein. Introduction to Algorithms, Second Edition. The

MIT Press and McGraw-Hill Book Company, 2002.

[18] W. Yang, B-X. Fang, B. Liu, and H-L. Zhang, “Intrusion

detection system for high-speed network,” Computer

Communications. Vol 27, 2004.

[19] W. Lee, J. D. Cabrera, A. Thomas, N. Balwalli, S. Saluja,

and Y. Zhang, “Performance adaptation in real-time

intrusion detection systems,” in RAID, 2002.

[20] YU Jianming, XUE Yibo, LI Jun, “Memory Efficient

String Matching Algorithm for Network Intrusion

Management System”, Tsinghua Science and

Technology, ISSN 1007-0214, October 2007.

7. ABOUT AUTHORS
K.Prabha received B.Sc Computer Science and M.Sc

Computer Science Degree from Bharathiar University,

Coimbatore and M.Phil in Periyar University, Salem. She

pursuing Ph.D degree in Computer Science at Bharathiar

University. She has 7 years of teaching experience. She is

working as Assistant Professor of Computer Science in Erode

Arts and Science College, Erode, Tamilnadu. Her research

interests include Network Security and Data Mining.

Dr. S. Sukumaran graduated in 1985 with a degree in

Science. He obtained his Master Degree in Science and

M.Phil in Computer Science from the Bharathiar University.

He received the Ph.D degree in Computer Science from the

Bharathiar University. He has 25 years of teaching experience

starting from Lecturer to Associate Professor. At present he is

working as Associate Professor of Computer Science in Erode

Arts and Science College, Erode, Tamilnadu. He has guided

for more than 40 M.Phil research Scholars in various fields

and guided one Ph.D Scholar. Currently he is Guiding 5

M.Phil Scholars and 8 Ph.D Scholars. He is member of Board

studies of various Autonomous Colleges and Universities. He

published around 15 research papers in national and

international journals and conferences. His current research

interests include Image processing, Network Security and

Data Mining.

IJCATM : www.ijcaonline.org

