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ABSTRACT 

This article presents a fully functional GPU-based 

implementation of Scale Invariant Feature Transform (SIFT) 

algorithm. SIFT is a popular image feature extraction 

algorithm. Although it is a powerful algorithm for image 

matching but it is also computationally very expensive. This 

makes it difficult to use especially in real time applications. 

We purpose to expedite SIFT through GPU-based 

implementation. There has been some related works on this 

issue since SIFT was introduced. Our focus is solely on 

describing GPU-based implementation. We will discuss our 

implementation in detail. Our implementation is simpler and 

more efficient than previous works. Part of this paper‟s 

purpose is to discuss challenges and strategies related to 

implementing SIFT like image processing algorithms on 

GPU. In addition, we are going to present a full comparison 

between serial implementations of SIFT and our GPU-based 

implementation, namely siftCU, both in accuracy and time 

consumption. 
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1. INTRODUCTION 
Researchers, studying image processing, face many different 

difficulties so they can establish an adequate work. One of the 

most important and common of these problems is providing 

computing power. Researchers usually need high amount of 

computing power to implement and test their designed 

systems. Furthermore obtaining sufficient hardware to provide 

acceptable computing power never been cheap. Although 

researcher try to optimize their proposed algorithms, most of 

the time, they end up spending considerable amount of time 

and money to test their proposed system. To alleviate effects 

of these problems, it is highly recommended to all researchers 

to consider using GPU-based programming in their 

implementations. In this paper we are going to describe 

detailed GPU-based implementation of SIFT algorithm. This 

is a good example of GPU-based programming. 

Title of this paper mentions affordable computing; 

affordability of two resources, namely time and money, is our 

main concern in this paper. Graphical processing unit (GPU) 

is processing unit of a graphic card. Historically GPUs had 

been used only in basic computer graphic tasks. The 

traditional form of use for GPUs changed when Nvidia 

Company introduced CUDA (Compute Unified Device 

Architecture) programming framework at the end of 2007. 

CUDA is a framework for general-purpose programming on 

GPUs. Not only it is very efficient and effective but also it is 

very easy to use. In the last few years, some other schemes 

also have been introduced for GPU-based programming. 

Because of different architecture comparing to CPUs, GPUs 

have greater potential for performing stream processing. 

Stream processing is a computer-programming paradigm. 

Simply put, it means emulating parallel processing through 

SIMD (single instruction multiple data). GPU‟s performance 

greatly exceeds CPU‟s performance when comparing two 

GPU and CPU that are on same price range. Image processing 

algorithms are mostly parallel in nature. This is exactly the 

reason why it is an effective paradigm to use GPU-based 

programming for implementing image-processing algorithms. 

SIFT is a feature extraction algorithm. The features extracted 

by SIFT are invariant to image scale and rotation, and are 

shown to provide robust matching across a substantial range 

of affine distortion, change in 3D viewpoint, addition of noise, 

and change in illumination. The features are highly 

distinctive, in the sense that a single feature can be correctly 

matched with high probability against a large database of 

features from many images [1]. SIFT is a very popular 

algorithm for image matching. It has been used in object 

recognition, dynamic object tracking, image retrieval and 

many other fields. There are at least three reasons why SIFT is 

a very good example for promoting GPU-based programming: 

First, SIFT is highly used algorithm; furthermore, it is 

computationally expensive; lastly, it is very complicated. Our 

concentration will be demonstrating challenges to implement 

SIFT in different steps. Researchers can use similar 

approaches to those described here for implementing their 

own algorithm. We use CUDA framework, which is a well-

documented and highly supported schema for GPU-based 

programming. 

Rest of the paper is arranged as follow: first, we are going to 

review related works in section Related Works. Then the next 

section describes SIFT algorithm. Section GPU programming 

discusses GPGPU and more specifically CUDA programming 

framework briefly. Our GPU-based implementation of SIFT 

(siftCU) is discussed in section siftCU. Results for accuracy 

and speed up compression between SIFTpp and siftCU are 

presented at section comparison and results. The next section 

concludes the paper. 
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2. RELATED WORKS 
There has been attempts to implement SIFT on GPU since 

2006. Although results reported by these works are 

satisfactory but most of them did not just focused on this 

matter and beside from GPU-based implementation, those 

works also discussed other issues. Sinh et al. presented “GPU-

SIFT” in early 2006 [2]. This was before CUDA or any other 

popular GPU-based programming framework release. In their 

work, they used more traditional GPU-based programming 

interface; openGL/Cg. Using a Nvidia Geforce 7900GTX, 

they reported a 10X speedup over a CPU implementation. 

Heymann and his colleges presented the next work. Like the 

first one, they also used traditional GPU-programming [3]. 

Heymann and his colleges reported they reached 20 

frames/sec processing speed without specifying their 

hardware configuration. After these works, researchers started 

using new introduced GPU-based programming framework: 

CUDA. In 2009, Warn et al. used CUDA for running SIFT on 

NVIDA‟s GPUs [4]. In their implementation, only parts of the 

algorithm that related to production of difference of Gaussian 

(DOG) space run on GPU. For DOG space production part of 

the SIFT, They reported 13X speed up for their 

implementation running on a NVIDA FX 5800 GPU. They 

also claimed overall SIFT running time for GPU-based 

implementation had only 1.9X speed up over CPU-based 

implementation. In 2011, Huang and his associates used a 

CUDA-based SIFT for registration of SAR images [5]. In 

addition to SIFT, they have also implemented Synthetic 

Aperture Radar (SAR) image features registration with 

CUDA. They have test their implementation on two image set 

with a powerful GPU namely C2050. Huang and his 

associates, had reported that CUDA-based implementation of 

entire process including both SIFT feature extraction and 

feature registration had a 19.6X speed up over CPU-based 

implementation. Yamazaki et al. have presented an improved 

SIFT by changing DOG filter to bilateral filter [6]. According 

to their experiment results, they claimed that this change 

improved SIFT‟s features matching precision by a factor of 3 

but with an increase in return time by factor of 8. For making 

their algorithm usable, they had implemented it on GPU and 

speed it up by a factor of almost 7 making its time 

performance comparable by serial CPU-based original SIFT. 

Recently, Yang and Chen used GPU-based SIFT, 

implemented on CUDA, for moving foreground detection in 

dynamic background [7]. Using Nvidia Geforce 9800GT, 

which is a low end GPU, they still managed to gain a 1.3X 

speed up. 

3. SIFT ALGORITHM 
Scale invariant feature transform (SIFT) is an image feature 

extraction algorithm. Lowe introduced SIFT in his paper at 

2004 [1]. It has gain great popularity among image processing 

researchers for using in different form of image matching and 

object recognition. The popularity of SIFT is due the fact that 

the features extracted by this algorithm are invariant to many 

variables including scale and rotation. As described by Lowe, 

SIFT consist of four major stage [1]: 

1. Scale-space extrema detection 

2. Keypoint localization 

3. Orientation assignment 

4. Keypoint description 

Next, we briefly describe these stages. 

3.1 Scale-space extrema detection 
The first stage of the algorithm detects location and scale of 

candidates that can be repeatedly assigned under differing 

views of the same object. This can be done by searching for 

stable keypoints over all scales, using a function of scale 

known as scale space. According to Lowe the scale space of 

an image I(x, y), is produced from the convolution of a 

variable-scale Gaussian, G(x, y, σ). Lowe proposed to 

efficiently detect stable keypoints; we can use scale-space 

extrema in the difference-of-Gaussian function convolved 

with image, D(x,y,σ) [1]. Figure 1 shows how this process 

works. Scale space comprises both Gaussian scale space and 

spatial space domain. In each octave where every image has 

the same spatial size, to produce each scale, initial image is 

repeatedly convolved with a variable Gaussian mask that has 

an incremental sigma. Difference rate of each scale, k, can be 

calculated from number of scales per octave namely, S, and it 

is: k = 2^1/S. 

3.2 Keypoint Localization 
Every extrema found in first step of the algorithm is a 

keypoint candidate. Nevertheless, before accepting any 

candidate, a detailed fit must performed to the nearby data for 

location, scale, and ratio of principal curvatures. This process 

can determine two measures: one for rejecting points that 

have low contrast (which makes them sensitive to noise), and 

one for rejecting points that poorly localized along edges. 

First measure is determined by a Taylor expansion of the 

scale-space function, D(x, y, σ), the functions value at 

extremum, 𝐷 𝑥  , should be used to reject points. 
 

3.3 Orientation assignment 
Third step in SIFT algorithm is to assign orientation to each 

keypoint. After assigning a consistent orientation to each 

Figure 1: DOG images construction Process. Left: 

Scale space of Gaussian. Right: DOG images 

construction 

Figure 2: Keypoint descriptor construction 
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keypoint according to properties of local image, the keypoint 

descriptor will be computed relative to this orientation. This 

process makes keypoints descriptor invariance to image 

rotation. Orientation is computed from a smoothed image. 

Gaussian smoothed image, L, with closest scale to the scale of 

the keypoint is selected; so that all computations are 

performed in a scale-invariant manner [1]. 

3.4 Keypoint descriptor 

Last step in SIFT algorithm is to create descriptors for 

keypoints which were found in previous steps. You can see 

the feature vector computing process in Figure 2. It begins 

with, sampling gradient magnitudes and orientations inside an 

area around the location of the keypoint. The coordinates of 

the feature vector and the gradient orientations are rotated 

based on the keypoint orientation, so descriptors are invariant 

to changes in orientation. A single feature vector‟s grid is 

presented on the right side of Figure 2. The feature vector is a 

vector containing the values of all the orientation histogram 

entries; you can see this vector construction at the bottom of 

Figure 2. Lowe originally used 4×4×8 = 128 element feature 

vector for each keypoint[1]. 

4. GPU PROGRAMMING 

4.1 GPGPU 
GPGPU stands for General-Purpose computation on Graphics 

Processing Units, also known as GPU Computing [8]. 

Graphics Processing Unit (GPU) is processing unit of a 

graphic card. Traditionally developers used these processing 

units exclusively for basic computer graphic application. 

When their great capability for stream processing were 

discovered; developers started to use them for verity of 

applications. At early years, programming on GPUs were hard 

and complicated. In the last six years or so this has been 

changed due to introduction of programming frameworks like 

CUDA and openCL. These frame works make GPU-based 

programming easier and more accessible for everyone. 

The multicore CPU is composed of a handful of complex 

cores with large caches. The cores are optimized for single-

threaded performance and can handle up to two hardware 

threads per core using hyper-threading. In contrast, a GPU is 

composed of hundreds of simpler cores that can handle 

thousands of concurrent hardware threads. GPUs are designed 

to maximize floating-point throughput [9]. Figure 3 depicts 

architectural difference between CPU and GPU. 

Harris first coined out the term GPGPU in 2002 when he 

recognized an early trend of using GPUs for non-graphics 

applications [8]. Nevertheless, researchers did not realize its 

true potential until 2007 when Nvidia Corporation released 

CUDA programming framework for easy and efficient 

programming on its GPUs using C++ programming language. 

4.2 CUDA 
Compute Unified Device Architecture (CUDA) is a 

programming framework for writing programs to run on 

GPUs [11]. The CUDA programs are typically comprise of 

two parts: „Host Code‟ and „Device Code‟. The host code part 

of CUDA codes can be any C++ standard code (or other C++ 

library code). This part of CUDA program will be compiled 

with a standard C++ compiler available on the host machine 

and run on CPU. The second part of CUDA programs is the 

part that will run on GPU and it is consist of some kernels. 

Kernels are similar to normal functions but run on GPU 

instead of CPU. 

The CUDA execution flow is built upon the idea of launching 

a kernel with a grid comprising of blocks. A single block 

comprises of a collection of threads. Threads within the same 

block can synchronize and collaborate by means of fast-

shared memory. The grid and block dimensions can be one, 

two, or three dimensional, and they determine the number of 

threads that will be used. Each thread has a unique identifier 

within its block, and each block has a unique global identifier. 

These are combined to create a unique global identifier per 

thread [9]. 

There are three type of memory available for programmers in 

CUDA. In a decreasing order for access speed: registers, 

shared memory, and global memory. Registers are fastest 

memory available on GPU. They are local for each thread. 

Threads inside a block can share a fast onboard memory 

called shared memory. If accessed properly, Shared memory 

could be as fast as registers. Finally, there is a large but slow 

memory accessible from all running threads called global 

memory.  

5. SIFTCU 
Our implementation of SIFT in CUDA has three main stages. 

Nevertheless since SIFT operates on grayscale images, there 

is a preprocessing stage to convert color images to 256 level 

grayscale images. To do this we approximated human‟s vision 

perception of color. Our implementation codes and the 

pictures used for analyzing are freely available here [12]. We 

try to execute as much of code as possible on device when 

writing programmers for GPU. There are three reasons for 

this: First, transferring data between host memory, namely 

RAM, and device memory is time consuming so abundant 

data transfer can impair performance [13]; secondly, we want 

to harness GPU‟s high performance computation power as 

much as possible; lastly, we do not want to occupy CPU so it 

can be used for other services. You can see general execution 

flow of our implementation inside the Host (CPU and RAM 

memory) and the Device (GPU and device memory) in figure 

4. Except for calculating Gaussian filters, we only have kernel 

calls in host code and all calculation take place in device. 

Next, we will discuss each major stage of implementation in 

detail, but first we will present some basic important point 

about siftCU and CUDA. 

5.1 Important Considerations 
There are some important recommendations about CUDA 

programming framework: 

 Like original C++ programming, it is much optimal to 

access consecutive elements in rows than accessing 

consecutive elements in columns when working with 

two-dimensional arrays. 

Figure 3: Left: CPU architecture. Right: GPU 

architecture 
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 Each thread block can share small amount of very fast 

access memory called Shared Memory. We should try 

our best to utilize this facility as much as possible. 

 CUDA has optimal memory access for amount of data 

that are factor of 2, 4, 8, 16, 32 or 64 [12]. When 

working with two or higher dimensional arrays, to 

optimize memory access, width of arrays should be 

multiply of biggest number in listed numbers. If original 

width does not satisfy this condition then we add padding 

data to make it so. 

After converting images to 256 level grayscale, we map pixel 

values to floating point range [0,1]. This way, we could have 

good precision when creating DOG images. We then move 

image to device memory. We store all images including 

original image, GSS images, and DOG images in a way so it 

confirms third suggestion about CUDA programming. 

5.2 GSS Construction 
In first step, we need to construct Gaussian scale space.  

We should apply Gaussian filter to input image recursively at 

the right spatial space with right scale (sigma). There are two 

options for this: applying a single 2-dimensional Gaussian 

filter, or applying two 1-dimensional Gaussian filter, one 

vertically and one horizontally. Computationally specking 

second option is more efficient than former [14]. You can see 

filter operation process in figure 5. 

As you can see in figure 5, to construct a GSS image, we first 

apply Gaussian filter on rows of pervious scale (Left image) 

while storing it in a transpose manner (Middle image). Then 

apply „same filter‟ on rows again to obtain next GSS image 

(Right image). The reason for storing medial results in a 

transpose form is to optimize memory access. In addition, this 

way we get to use the same kernel for both horizontal and 

vertical filter. This contrast [5] approach which uses two 

distinct kernels for this process.  

In most cases, the convenient approach to use shared memory 

for a 2-dimintional array is to load a squared area. 

Nevertheless, programmers should always use shared memory 

in a manner that best suits performance of their code. That is 

why in our code, each block loads specified number of rows 

from sample image to shared memory. After that, each thread 

applies Gaussian filter to small number of pixels. Number of 

loaded rows depends on image‟s width and amount of shared 

memory dedicated to one block of threads. We have chosen to 

dedicate 3200 floating point (3200*4 Byte) of shared memory 

for each block. This number obtained experimentally. It is 

optimize for all CUDA devices except for version 3.5, which 

have higher amount of shared memory. For example if image 

width is 256 then 12 rows, (floor (3200/256)), will be loaded 

to shared memory. 

Beside from rows, we also load Gaussian filters into shared 

memory. In total S+3 distinguished filters are needed. These 

filters are precomputed in host. Considering, it is not 

computationally expensive, it is better not to compute them 

inside device. We will end up repeatedly calculating them for 

each block if we compute them inside device code.  

To further optimizing our code, we only directly compute all 

scales for the first octave. After that, first three scale of 

subsequent octaves will be computed by down sampling three 

top scales of previous octave. The siftCU‟s execution flow in 

figure 4 demonstrates this process. Lowe suggested this 

practice, only for the first scale of each octave. Nevertheless, 

it is obvious that this process can also work for second and 

third scale of each octave. 

 

Figure 5: To construct a GSS image, we first apply 

Gaussian filter on rows of pervious scale (Left image) 

while storing it in a transpose manner (Middle image), 

then apply same filter on rows to obtain next GSS 

image (Right image) 

Figure 4: siftCU execution flow 
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5.3 Extrema Detection and Keypoint 

Localization 
In order to optimize memory access by using data 

localization, we operate this stage independently for each 

octave. First, we compute DOG images for an entire octave, 

then search for extrema in each scale of that octave. 

After construction of DOG images, a kernel will check 

whether a pixel value is extrema or not. The kernel stores 

pixel location and scale if it is an extrema. Then another 

kernel, running one thread per each detected extrema, extracts 

keypoints from them. The kernel checks extrema with contrast 

threshold (equation 6) and edge response threshold (equation 

10). If it is suitable, we choose it as keypoint. 

There is an important fact about GPU-based programming 

that we should always keep in mind. GPU‟s computation 

power is distributed among several small processing units 

unlike CPU that have small number of physical processing 

units. Therefore, it is recommended that programmers divide 

their algorithm into smaller parts. In other word: 

 Each kernel code, a single thread job, should be as small 

as possible, as long as, smaller part does not cause 

massive data transfer. 

Let us demonstrate this fact effect by an example. We 

implemented extrema detection and keypoint localization in 

two ways: two separated kernels, and a single kernel. When 

we test our implementation for speed up the first approach, 

namely separated kernels, caused entire second stage perform 

40% faster than second approach. 

When detecting extrema, at very least, we process every pixel 

of an entire scale in parallel. This could be the case even for 

an entire octave or all octaves depending on device 

capabilities, picture size. This parallelism is also exist in 

keypoint localization. Considering it, we need a mechanism to 

avoid race condition. Race conditions means simultaneous 

access of shared data by at least two different process or 

thread. This could lead to an anomaly in shared data‟s final 

value. CUDA has some atomic functions that we could use 

them to implement semaphore like lock variable for our 

purposes. Before using a lock variable, it is better to decrease 

access parallelism without hurting computing parallelism. The 

code stores extrema array in a way so virtually it has separate 

parts for every scale. Virtually means, there is one array but 

we keep a fix list of scales starting index in the array. This 

approach isolates access parallelism in scale level. Now when 

kernel wants to store a detected extrema, we use atomicAdd 

function on a counter variable to do this. This counter is 

shared among an entire scale. The partial code bellow 

demonstrates this process: 

if(stat > 0) // is an Extremum? 

{ 

    int in = atomicAdd( counter ,1); 

    extrema[in].iy = y; extrema[in].ix = x; 

    extrema[in].o = o;   extrema[in].is = s; 

} 

Using synchronization functions like “atomicAdd” can impair 

overall performance [13]. In order to decrease scale of 

synchronization, which results in less performance 

impairment, we use different part of an array for each scale of 

an octave. We cannot completely avoid using this function 

since there is no other option for avoiding race condition.  

In this stage, shared memory could not be utilized because of 

data dependency. We investigated some approaches to exploit 

shared memory. However, all of them produced very 

complicated code with lots of exceptions. Exceptions mean 

branch inside code. Too many branches will have great 

negative impact on performance. In the CUDA programming 

executing same identical instruction sets, boosts overall 

performance. Identical instruction sets is only possible in 

branch free code. In the cases like this stage, it is better not to 

insist on using shared memory where it can lead to 

performance decline.  

5.4 ORIENTATION ASSIGNMENT & 

KEYPOINT DECRIPTORS 
In this stage, we process each octave independently like 

previous stage. First, a kernel calculates magnitude and 

orientation of image gradient for an entire scale. Each thread 

processes one pixel‟s data. Then one thread per available 

keypoint will be created and run orientation assignment 

kernel. This kernel assigns at least one orientation for each 

keypoint. As we discussed in the orientation assignment 

subsection, when describing sift algorithm, a single keypoint 

locations could be assigned more than one orientation. When 

a thread assigns more than one orientation to a single 

keypoint, it creates a new keypoint for every extra orientation. 

Newly created keypoints have the same location and scale as 

the original keypoint. The only difference between them is 

their orientation. After calculating orientations of an entire 

octave‟s keypoints, next, we call keypoint descriptor kernel. 

Here, each thread computes descriptor for one keypoint. 

Although the entire process of computing descriptor for one 

keypoint is a huge job. Nevertheless, we choose to assign this 

job just to a single thread. That is because, due to high data 

dependency, its segmentation can decrease performance. 

Besides, we process keypoints of an entire octave 

simultaneously. Since higher parallelization can result in 

higher performance, we were able to achieve adequate speed 

up over CPU-based implementation. 

6. COMPERASION AND RESULTS 
In this section, we are going to test our implementation for 

time consumption and accuracy. The siftCU will be compared 

with SIFTpp in both speed up and accuracy. SIFTpp is a well-

known open source implementation of SIFT algorithm in C++ 

[15]. It is a serial implementation and considered to be 

optimized and reliable. Our implementation is inspired by 

SIFTpp. For accuracy check, in addition to SIFTpp, siftCU 

feature matching results are also compared with Lowe‟s 

executable sift implementation. Before presenting comparison 

results, this section analyze siftCU for memory usage and 

computation break down of each stage. 

6.1 Memory usage of SIFTCU 
Most of siftCU‟s memory usage includes storing Gaussian 

scale space in main memory. GSS size is deterministic and it 

depends on input image size: 

𝐺𝑆𝑆 𝑚𝑒𝑚𝑜𝑟𝑦 𝑢𝑠𝑎𝑔𝑒

= 4 ∗  𝑆 + 3 ∗  
𝑊 ∗ 𝐻

22𝑖

𝑂−𝑜𝑚𝑖𝑛

𝑖=𝑜𝑚𝑖𝑛

 (1) 

In equation 1, S is number of scales per octave which 

typically is 3, O is number of octaves, W and H are the input 
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image width and height, the constant coefficient, 4, is size of 

single precision floating point in typical systems. Beside from 

GSS, a big temporary space for storing some variables, used 

throughout the program, is also needed. We allocate 

temporary memory once at the beginning and use it 

throughout the program. That is because, memory allocation 

is a time consuming operation in CUDA framework. 

Therefore, we should avoid it as much as we can.  

6.2 Stges Time Consumption Breakdown  
 There are three main stages in our implementation. First 

stage, GSS calculation is a very time consuming process. 

Unlike the other two stage, GSS calculation only depends on 

input image size with a direct linear relation. Therefore, as the 

size of input image grows, this stage time consumption grows 

too; this can be seen in table 1. Compared to first and third 

stage, second stage is less inordinate. Unfortunately, because 

of massive data dependency we were not able to speed up this 

stage as much as other stages. 

Last stage, keypoint orientation and descriptor, usually is the 

most time consuming stage. This stage time consumption 

mostly depends on number of extracted features, which in turn 

depends on both image‟s content and size. Figure 6 shows 

time consumption breakdown of stages for test image 5 in 

table 1.  

6.3 System Set Up  
Our test environment setup is as follow:  

Host configuration: 

 Intel Core i7-2600 @ 3.40GHz 

 4 GB DDR3 RAM 

Device configuration: 

 Nvidia GeForce GT 440 

 1 GB DDR3 Memory 

The processor that we used for testing is one of the most 

powerful processors for PC computer available in the market. 

This processor currently has price not less than 350$. On the 

other hand, the GPU is a low end GPU and it can be bought 

for not more than 70$. Part of our objective were to make sift 

execution affordable. By affordability, we mean both 

affordability of execution time and financial source spend on 

providing appropriate hardware for execution. To test whether 

our code were able to reach this objective or not, we chose 

this combination: a cheap affordable GPU versus a powerful 

but expensive CPU. 

Table 1: Time consumption of siftCU compared to 

SIFTpp. All time scales are in milliseconds 

 

6.4  Speed Up Test 

You can see test results for speed up in table 1. Results have 

been broke down for three main stages. Since there is lower 

data dependency in first stage and also effective shared 

memory utilization, we were able to achieve a very good 

speed up. On the contrary, in second stage, GPU-based 

implementation could not gain much over CPU-based 

implementation since there are lots of data dependency. Like 

second stage, there is high data dependency in third stage; we 

were not able to gain speed up as much as first stage in this 

stage.  Figure7 shows overall time consumption of SIFTpp 

and siftCU for five images in table 1. As expected, siftCU‟s 

speedup over SIFTpp grows as picture size and number of 

extracted keypoints grow. Although image 4 is actually 

smaller than image 5 but it takes longer to process. That is 

because image 4 has much more keypoints compared to image 

5. 

Subject Stage SIFTpp siftCU 
Speed 

up 

Subject 1 

(386*768) 

1 285 57 5.00 

2 24 13 1.85 

3 481 390 1.23 

Total 790 460 1.72 

Subject 2 

(549*800) 

1 437 96 4.55 

2 38 18 2.11 

3 907 436 2.08 

Total 1382 550 2.51 

Subject 3 

(678*1024) 

1 681 128 5.32 

2 56 27 2.07 

3 1512 641 2.36 

Total 2249 796 2.83 

Subject 4 

(1400*1000) 

1 1369 248 5.52 

2 151 55 2.75 

3 5305 1415 3.75 

Total 6825 1718 3.97 

Subject 5 

(1600*1200) 

1 1908 357 5.34 

2 162 73 2.22 

3 4122 1147 3.59 

Total 6192 1577 3.93 

Figure 2: Stages time consumption breakdown 

Figure 1: siftCU & SIFTpp overall execution time 
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6.5  Precision Test 

 For the sake of completeness, we compared our 

implementation with both SIFTpp and Lowe‟s his own 

implementation (which is only available as executable file). 

The keypoint matching is based on a simple but effective 

matching algorithm described by Lowe [1]. When you want to 

see whether a keypoint has a match inside bunch of other 

keypoints, the algorithm is as follow:  

 Find first and second closest descriptor to sample 

keypoint descriptor. The distance factor is Euclidean 

distance. 

 If first distance is smaller than six-tenth of second 

distance then first distance is a match otherwise sample 

does not have a match. 

You can see precision comparison results in table 2. The 

results from all three implementation for each set are not 

identical. This can be attributed to small differences in the 

value of some variables and thresholds like size of sampling 

area around keypoint for orientation assignment or contrast 

threshold. Nevertheless, as it is obvious, our implementation 

has not impaired precision of matching. We demonstrated 

keypoint matching between test sets in figure 8. 

7. CONCLUSION 
In this paper, a GPU-based implementation of sift feature 

extraction algorithm was described in detail. We used CUDA, 

which is a C++ based framework for GPU programming. 

Other researchers who need to use SIFT algorithm in part of 

their work can easily utilize our implementation. We have 

discussed some useful strategies and have given some 

important recommendations for implementing parallel 

algorithms in GPU. Using these strategies and 

recommendations is not limited to implementing SIFT. We 

compared siftCU with SIFTpp in speed up. Part of our 

objective were to make sift execution affordable. By 

affordability, we mean both affordability of execution time 

and financial source spend on providing appropriate hardware 

for execution. To test whether our code were able to reach this 

objective or not, SIFTpp was executed on a powerful but 

expensive CPU, namely Intel Core i7-2600. On the other 

hand, siftCU was executed on a cheap low end GPU, namely 

Nvidia Geforce 440 GT. Results showed that our 

implementation could gain 4x speed up over SIFTpp. This 

means if we utilize all 4 processing cores of Core i7-2600 

using a multi-core implementation, in best case scenario for 

multi-core implementation, our implementation would match 

up with that implementation in speed up. The results are 

satisfactory considering the CPU, we used in test set up worth 

more than five times the GPU that was used. Our 

implementation could gain more than 30x speed up if we were 

to use a high end GPU like Nvidia GTX 670. Nvidia GTX 

670 is as expensive as Intel Core i7-2600. It has 14 times 

more core than 440 GT, twice the memory, and more than 6 

times memory bandwidth. We also showed that siftCU, our 

implementation, could be as precise as any other 

implementation of sift. Figure 8 shows descriptor matching 

results for precision test images in table 2. 
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Table 2: Feature matching results for siftDemo (Lowe’s demo), SIFTpp and siftCU 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Feature matching for image sets in table 2: Left) set 1; Right) set 3. Images are ordered as Follow in each set: Top 

left) Images without matching; Top right) siftCU; Bottom left) siftDemo; Bottom right) SITFpp 

 

 
 

siftDemo  SIFTpp siftCU 

Images 

size 
Keypoints 

Total 

match 

Incorrect 

match 
Keypoints 

Total 

match 

Incorrect 

match 
Keypoints 

Total 

match 

Incorrect 

match 

Set 1 
1200*1600 3575 

216 2 
5455 

115 1 
4926 

182 1 
386*768 1446 1315 1217 

Set 2 
1200*1600 3575 

23 6 
5455 

12 5 
4926 

24 5 
600*371 1255 1785 1566 

Set 3 
1200*1600 3575 

233 1 
5455 

140 3 
4926 

266 1 
549*800 2718 3199 2514 

Set 4 
1600*1200 7632 

793 6 
14061 

1085 9 
11515 

876 7 
678*1024 2272 4645 4191 
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