
International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

30

Towards Affordable Computing: SiftCU a Simple but

Elegant GPU-based Implementation of SIFT

Mahdi S. Mohammadi

Electrical and Computer Engineering Department
Yazd University

Yazd, Iran

Mehdi Rezaeian
Electrical and Computer Engineering Department

Yazd University
Yazd, Iran

ABSTRACT

This article presents a fully functional GPU-based

implementation of Scale Invariant Feature Transform (SIFT)

algorithm. SIFT is a popular image feature extraction

algorithm. Although it is a powerful algorithm for image

matching but it is also computationally very expensive. This

makes it difficult to use especially in real time applications.

We purpose to expedite SIFT through GPU-based

implementation. There has been some related works on this

issue since SIFT was introduced. Our focus is solely on

describing GPU-based implementation. We will discuss our

implementation in detail. Our implementation is simpler and

more efficient than previous works. Part of this paper‟s

purpose is to discuss challenges and strategies related to

implementing SIFT like image processing algorithms on

GPU. In addition, we are going to present a full comparison

between serial implementations of SIFT and our GPU-based

implementation, namely siftCU, both in accuracy and time

consumption.

General Terms

Image Processing, Parallel Computing

Keywords

CUDA, GPGPU, GPU programming, Image Retrieval, SIFT

1. INTRODUCTION
Researchers, studying image processing, face many different

difficulties so they can establish an adequate work. One of the

most important and common of these problems is providing

computing power. Researchers usually need high amount of

computing power to implement and test their designed

systems. Furthermore obtaining sufficient hardware to provide

acceptable computing power never been cheap. Although

researcher try to optimize their proposed algorithms, most of

the time, they end up spending considerable amount of time

and money to test their proposed system. To alleviate effects

of these problems, it is highly recommended to all researchers

to consider using GPU-based programming in their

implementations. In this paper we are going to describe

detailed GPU-based implementation of SIFT algorithm. This

is a good example of GPU-based programming.

Title of this paper mentions affordable computing;

affordability of two resources, namely time and money, is our

main concern in this paper. Graphical processing unit (GPU)

is processing unit of a graphic card. Historically GPUs had

been used only in basic computer graphic tasks. The

traditional form of use for GPUs changed when Nvidia

Company introduced CUDA (Compute Unified Device

Architecture) programming framework at the end of 2007.

CUDA is a framework for general-purpose programming on

GPUs. Not only it is very efficient and effective but also it is

very easy to use. In the last few years, some other schemes

also have been introduced for GPU-based programming.

Because of different architecture comparing to CPUs, GPUs

have greater potential for performing stream processing.

Stream processing is a computer-programming paradigm.

Simply put, it means emulating parallel processing through

SIMD (single instruction multiple data). GPU‟s performance

greatly exceeds CPU‟s performance when comparing two

GPU and CPU that are on same price range. Image processing

algorithms are mostly parallel in nature. This is exactly the

reason why it is an effective paradigm to use GPU-based

programming for implementing image-processing algorithms.

SIFT is a feature extraction algorithm. The features extracted

by SIFT are invariant to image scale and rotation, and are

shown to provide robust matching across a substantial range

of affine distortion, change in 3D viewpoint, addition of noise,

and change in illumination. The features are highly

distinctive, in the sense that a single feature can be correctly

matched with high probability against a large database of

features from many images [1]. SIFT is a very popular

algorithm for image matching. It has been used in object

recognition, dynamic object tracking, image retrieval and

many other fields. There are at least three reasons why SIFT is

a very good example for promoting GPU-based programming:

First, SIFT is highly used algorithm; furthermore, it is

computationally expensive; lastly, it is very complicated. Our

concentration will be demonstrating challenges to implement

SIFT in different steps. Researchers can use similar

approaches to those described here for implementing their

own algorithm. We use CUDA framework, which is a well-

documented and highly supported schema for GPU-based

programming.

Rest of the paper is arranged as follow: first, we are going to

review related works in section Related Works. Then the next

section describes SIFT algorithm. Section GPU programming

discusses GPGPU and more specifically CUDA programming

framework briefly. Our GPU-based implementation of SIFT

(siftCU) is discussed in section siftCU. Results for accuracy

and speed up compression between SIFTpp and siftCU are

presented at section comparison and results. The next section

concludes the paper.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

31

2. RELATED WORKS
There has been attempts to implement SIFT on GPU since

2006. Although results reported by these works are

satisfactory but most of them did not just focused on this

matter and beside from GPU-based implementation, those

works also discussed other issues. Sinh et al. presented “GPU-

SIFT” in early 2006 [2]. This was before CUDA or any other

popular GPU-based programming framework release. In their

work, they used more traditional GPU-based programming

interface; openGL/Cg. Using a Nvidia Geforce 7900GTX,

they reported a 10X speedup over a CPU implementation.

Heymann and his colleges presented the next work. Like the

first one, they also used traditional GPU-programming [3].

Heymann and his colleges reported they reached 20

frames/sec processing speed without specifying their

hardware configuration. After these works, researchers started

using new introduced GPU-based programming framework:

CUDA. In 2009, Warn et al. used CUDA for running SIFT on

NVIDA‟s GPUs [4]. In their implementation, only parts of the

algorithm that related to production of difference of Gaussian

(DOG) space run on GPU. For DOG space production part of

the SIFT, They reported 13X speed up for their

implementation running on a NVIDA FX 5800 GPU. They

also claimed overall SIFT running time for GPU-based

implementation had only 1.9X speed up over CPU-based

implementation. In 2011, Huang and his associates used a

CUDA-based SIFT for registration of SAR images [5]. In

addition to SIFT, they have also implemented Synthetic

Aperture Radar (SAR) image features registration with

CUDA. They have test their implementation on two image set

with a powerful GPU namely C2050. Huang and his

associates, had reported that CUDA-based implementation of

entire process including both SIFT feature extraction and

feature registration had a 19.6X speed up over CPU-based

implementation. Yamazaki et al. have presented an improved

SIFT by changing DOG filter to bilateral filter [6]. According

to their experiment results, they claimed that this change

improved SIFT‟s features matching precision by a factor of 3

but with an increase in return time by factor of 8. For making

their algorithm usable, they had implemented it on GPU and

speed it up by a factor of almost 7 making its time

performance comparable by serial CPU-based original SIFT.

Recently, Yang and Chen used GPU-based SIFT,

implemented on CUDA, for moving foreground detection in

dynamic background [7]. Using Nvidia Geforce 9800GT,

which is a low end GPU, they still managed to gain a 1.3X

speed up.

3. SIFT ALGORITHM
Scale invariant feature transform (SIFT) is an image feature

extraction algorithm. Lowe introduced SIFT in his paper at

2004 [1]. It has gain great popularity among image processing

researchers for using in different form of image matching and

object recognition. The popularity of SIFT is due the fact that

the features extracted by this algorithm are invariant to many

variables including scale and rotation. As described by Lowe,

SIFT consist of four major stage [1]:

1. Scale-space extrema detection

2. Keypoint localization

3. Orientation assignment

4. Keypoint description

Next, we briefly describe these stages.

3.1 Scale-space extrema detection
The first stage of the algorithm detects location and scale of

candidates that can be repeatedly assigned under differing

views of the same object. This can be done by searching for

stable keypoints over all scales, using a function of scale

known as scale space. According to Lowe the scale space of

an image I(x, y), is produced from the convolution of a

variable-scale Gaussian, G(x, y, σ). Lowe proposed to

efficiently detect stable keypoints; we can use scale-space

extrema in the difference-of-Gaussian function convolved

with image, D(x,y,σ) [1]. Figure 1 shows how this process

works. Scale space comprises both Gaussian scale space and

spatial space domain. In each octave where every image has

the same spatial size, to produce each scale, initial image is

repeatedly convolved with a variable Gaussian mask that has

an incremental sigma. Difference rate of each scale, k, can be

calculated from number of scales per octave namely, S, and it

is: k = 2^1/S.

3.2 Keypoint Localization
Every extrema found in first step of the algorithm is a

keypoint candidate. Nevertheless, before accepting any

candidate, a detailed fit must performed to the nearby data for

location, scale, and ratio of principal curvatures. This process

can determine two measures: one for rejecting points that

have low contrast (which makes them sensitive to noise), and

one for rejecting points that poorly localized along edges.

First measure is determined by a Taylor expansion of the

scale-space function, D(x, y, σ), the functions value at

extremum, 𝐷 𝑥 , should be used to reject points.

3.3 Orientation assignment
Third step in SIFT algorithm is to assign orientation to each

keypoint. After assigning a consistent orientation to each

Figure 1: DOG images construction Process. Left:

Scale space of Gaussian. Right: DOG images

construction

Figure 2: Keypoint descriptor construction

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

32

keypoint according to properties of local image, the keypoint

descriptor will be computed relative to this orientation. This

process makes keypoints descriptor invariance to image

rotation. Orientation is computed from a smoothed image.

Gaussian smoothed image, L, with closest scale to the scale of

the keypoint is selected; so that all computations are

performed in a scale-invariant manner [1].

3.4 Keypoint descriptor

Last step in SIFT algorithm is to create descriptors for

keypoints which were found in previous steps. You can see

the feature vector computing process in Figure 2. It begins

with, sampling gradient magnitudes and orientations inside an

area around the location of the keypoint. The coordinates of

the feature vector and the gradient orientations are rotated

based on the keypoint orientation, so descriptors are invariant

to changes in orientation. A single feature vector‟s grid is

presented on the right side of Figure 2. The feature vector is a

vector containing the values of all the orientation histogram

entries; you can see this vector construction at the bottom of

Figure 2. Lowe originally used 4×4×8 = 128 element feature

vector for each keypoint[1].

4. GPU PROGRAMMING

4.1 GPGPU
GPGPU stands for General-Purpose computation on Graphics

Processing Units, also known as GPU Computing [8].

Graphics Processing Unit (GPU) is processing unit of a

graphic card. Traditionally developers used these processing

units exclusively for basic computer graphic application.

When their great capability for stream processing were

discovered; developers started to use them for verity of

applications. At early years, programming on GPUs were hard

and complicated. In the last six years or so this has been

changed due to introduction of programming frameworks like

CUDA and openCL. These frame works make GPU-based

programming easier and more accessible for everyone.

The multicore CPU is composed of a handful of complex

cores with large caches. The cores are optimized for single-

threaded performance and can handle up to two hardware

threads per core using hyper-threading. In contrast, a GPU is

composed of hundreds of simpler cores that can handle

thousands of concurrent hardware threads. GPUs are designed

to maximize floating-point throughput [9]. Figure 3 depicts

architectural difference between CPU and GPU.

Harris first coined out the term GPGPU in 2002 when he

recognized an early trend of using GPUs for non-graphics

applications [8]. Nevertheless, researchers did not realize its

true potential until 2007 when Nvidia Corporation released

CUDA programming framework for easy and efficient

programming on its GPUs using C++ programming language.

4.2 CUDA
Compute Unified Device Architecture (CUDA) is a

programming framework for writing programs to run on

GPUs [11]. The CUDA programs are typically comprise of

two parts: „Host Code‟ and „Device Code‟. The host code part

of CUDA codes can be any C++ standard code (or other C++

library code). This part of CUDA program will be compiled

with a standard C++ compiler available on the host machine

and run on CPU. The second part of CUDA programs is the

part that will run on GPU and it is consist of some kernels.

Kernels are similar to normal functions but run on GPU

instead of CPU.

The CUDA execution flow is built upon the idea of launching

a kernel with a grid comprising of blocks. A single block

comprises of a collection of threads. Threads within the same

block can synchronize and collaborate by means of fast-

shared memory. The grid and block dimensions can be one,

two, or three dimensional, and they determine the number of

threads that will be used. Each thread has a unique identifier

within its block, and each block has a unique global identifier.

These are combined to create a unique global identifier per

thread [9].

There are three type of memory available for programmers in

CUDA. In a decreasing order for access speed: registers,

shared memory, and global memory. Registers are fastest

memory available on GPU. They are local for each thread.

Threads inside a block can share a fast onboard memory

called shared memory. If accessed properly, Shared memory

could be as fast as registers. Finally, there is a large but slow

memory accessible from all running threads called global

memory.

5. SIFTCU
Our implementation of SIFT in CUDA has three main stages.

Nevertheless since SIFT operates on grayscale images, there

is a preprocessing stage to convert color images to 256 level

grayscale images. To do this we approximated human‟s vision

perception of color. Our implementation codes and the

pictures used for analyzing are freely available here [12]. We

try to execute as much of code as possible on device when

writing programmers for GPU. There are three reasons for

this: First, transferring data between host memory, namely

RAM, and device memory is time consuming so abundant

data transfer can impair performance [13]; secondly, we want

to harness GPU‟s high performance computation power as

much as possible; lastly, we do not want to occupy CPU so it

can be used for other services. You can see general execution

flow of our implementation inside the Host (CPU and RAM

memory) and the Device (GPU and device memory) in figure

4. Except for calculating Gaussian filters, we only have kernel

calls in host code and all calculation take place in device.

Next, we will discuss each major stage of implementation in

detail, but first we will present some basic important point

about siftCU and CUDA.

5.1 Important Considerations
There are some important recommendations about CUDA

programming framework:

 Like original C++ programming, it is much optimal to

access consecutive elements in rows than accessing

consecutive elements in columns when working with

two-dimensional arrays.

Figure 3: Left: CPU architecture. Right: GPU

architecture

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

33

 Each thread block can share small amount of very fast

access memory called Shared Memory. We should try

our best to utilize this facility as much as possible.

 CUDA has optimal memory access for amount of data

that are factor of 2, 4, 8, 16, 32 or 64 [12]. When

working with two or higher dimensional arrays, to

optimize memory access, width of arrays should be

multiply of biggest number in listed numbers. If original

width does not satisfy this condition then we add padding

data to make it so.

After converting images to 256 level grayscale, we map pixel

values to floating point range [0,1]. This way, we could have

good precision when creating DOG images. We then move

image to device memory. We store all images including

original image, GSS images, and DOG images in a way so it

confirms third suggestion about CUDA programming.

5.2 GSS Construction
In first step, we need to construct Gaussian scale space.

We should apply Gaussian filter to input image recursively at

the right spatial space with right scale (sigma). There are two

options for this: applying a single 2-dimensional Gaussian

filter, or applying two 1-dimensional Gaussian filter, one

vertically and one horizontally. Computationally specking

second option is more efficient than former [14]. You can see

filter operation process in figure 5.

As you can see in figure 5, to construct a GSS image, we first

apply Gaussian filter on rows of pervious scale (Left image)

while storing it in a transpose manner (Middle image). Then

apply „same filter‟ on rows again to obtain next GSS image

(Right image). The reason for storing medial results in a

transpose form is to optimize memory access. In addition, this

way we get to use the same kernel for both horizontal and

vertical filter. This contrast [5] approach which uses two

distinct kernels for this process.

In most cases, the convenient approach to use shared memory

for a 2-dimintional array is to load a squared area.

Nevertheless, programmers should always use shared memory

in a manner that best suits performance of their code. That is

why in our code, each block loads specified number of rows

from sample image to shared memory. After that, each thread

applies Gaussian filter to small number of pixels. Number of

loaded rows depends on image‟s width and amount of shared

memory dedicated to one block of threads. We have chosen to

dedicate 3200 floating point (3200*4 Byte) of shared memory

for each block. This number obtained experimentally. It is

optimize for all CUDA devices except for version 3.5, which

have higher amount of shared memory. For example if image

width is 256 then 12 rows, (floor (3200/256)), will be loaded

to shared memory.

Beside from rows, we also load Gaussian filters into shared

memory. In total S+3 distinguished filters are needed. These

filters are precomputed in host. Considering, it is not

computationally expensive, it is better not to compute them

inside device. We will end up repeatedly calculating them for

each block if we compute them inside device code.

To further optimizing our code, we only directly compute all

scales for the first octave. After that, first three scale of

subsequent octaves will be computed by down sampling three

top scales of previous octave. The siftCU‟s execution flow in

figure 4 demonstrates this process. Lowe suggested this

practice, only for the first scale of each octave. Nevertheless,

it is obvious that this process can also work for second and

third scale of each octave.

Figure 5: To construct a GSS image, we first apply

Gaussian filter on rows of pervious scale (Left image)

while storing it in a transpose manner (Middle image),

then apply same filter on rows to obtain next GSS

image (Right image)

Figure 4: siftCU execution flow

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

34

5.3 Extrema Detection and Keypoint

Localization
In order to optimize memory access by using data

localization, we operate this stage independently for each

octave. First, we compute DOG images for an entire octave,

then search for extrema in each scale of that octave.

After construction of DOG images, a kernel will check

whether a pixel value is extrema or not. The kernel stores

pixel location and scale if it is an extrema. Then another

kernel, running one thread per each detected extrema, extracts

keypoints from them. The kernel checks extrema with contrast

threshold (equation 6) and edge response threshold (equation

10). If it is suitable, we choose it as keypoint.

There is an important fact about GPU-based programming

that we should always keep in mind. GPU‟s computation

power is distributed among several small processing units

unlike CPU that have small number of physical processing

units. Therefore, it is recommended that programmers divide

their algorithm into smaller parts. In other word:

 Each kernel code, a single thread job, should be as small

as possible, as long as, smaller part does not cause

massive data transfer.

Let us demonstrate this fact effect by an example. We

implemented extrema detection and keypoint localization in

two ways: two separated kernels, and a single kernel. When

we test our implementation for speed up the first approach,

namely separated kernels, caused entire second stage perform

40% faster than second approach.

When detecting extrema, at very least, we process every pixel

of an entire scale in parallel. This could be the case even for

an entire octave or all octaves depending on device

capabilities, picture size. This parallelism is also exist in

keypoint localization. Considering it, we need a mechanism to

avoid race condition. Race conditions means simultaneous

access of shared data by at least two different process or

thread. This could lead to an anomaly in shared data‟s final

value. CUDA has some atomic functions that we could use

them to implement semaphore like lock variable for our

purposes. Before using a lock variable, it is better to decrease

access parallelism without hurting computing parallelism. The

code stores extrema array in a way so virtually it has separate

parts for every scale. Virtually means, there is one array but

we keep a fix list of scales starting index in the array. This

approach isolates access parallelism in scale level. Now when

kernel wants to store a detected extrema, we use atomicAdd

function on a counter variable to do this. This counter is

shared among an entire scale. The partial code bellow

demonstrates this process:

if(stat > 0) // is an Extremum?

{

 int in = atomicAdd(counter ,1);

 extrema[in].iy = y; extrema[in].ix = x;

 extrema[in].o = o; extrema[in].is = s;

}

Using synchronization functions like “atomicAdd” can impair

overall performance [13]. In order to decrease scale of

synchronization, which results in less performance

impairment, we use different part of an array for each scale of

an octave. We cannot completely avoid using this function

since there is no other option for avoiding race condition.

In this stage, shared memory could not be utilized because of

data dependency. We investigated some approaches to exploit

shared memory. However, all of them produced very

complicated code with lots of exceptions. Exceptions mean

branch inside code. Too many branches will have great

negative impact on performance. In the CUDA programming

executing same identical instruction sets, boosts overall

performance. Identical instruction sets is only possible in

branch free code. In the cases like this stage, it is better not to

insist on using shared memory where it can lead to

performance decline.

5.4 ORIENTATION ASSIGNMENT &

KEYPOINT DECRIPTORS
In this stage, we process each octave independently like

previous stage. First, a kernel calculates magnitude and

orientation of image gradient for an entire scale. Each thread

processes one pixel‟s data. Then one thread per available

keypoint will be created and run orientation assignment

kernel. This kernel assigns at least one orientation for each

keypoint. As we discussed in the orientation assignment

subsection, when describing sift algorithm, a single keypoint

locations could be assigned more than one orientation. When

a thread assigns more than one orientation to a single

keypoint, it creates a new keypoint for every extra orientation.

Newly created keypoints have the same location and scale as

the original keypoint. The only difference between them is

their orientation. After calculating orientations of an entire

octave‟s keypoints, next, we call keypoint descriptor kernel.

Here, each thread computes descriptor for one keypoint.

Although the entire process of computing descriptor for one

keypoint is a huge job. Nevertheless, we choose to assign this

job just to a single thread. That is because, due to high data

dependency, its segmentation can decrease performance.

Besides, we process keypoints of an entire octave

simultaneously. Since higher parallelization can result in

higher performance, we were able to achieve adequate speed

up over CPU-based implementation.

6. COMPERASION AND RESULTS
In this section, we are going to test our implementation for

time consumption and accuracy. The siftCU will be compared

with SIFTpp in both speed up and accuracy. SIFTpp is a well-

known open source implementation of SIFT algorithm in C++

[15]. It is a serial implementation and considered to be

optimized and reliable. Our implementation is inspired by

SIFTpp. For accuracy check, in addition to SIFTpp, siftCU

feature matching results are also compared with Lowe‟s

executable sift implementation. Before presenting comparison

results, this section analyze siftCU for memory usage and

computation break down of each stage.

6.1 Memory usage of SIFTCU
Most of siftCU‟s memory usage includes storing Gaussian

scale space in main memory. GSS size is deterministic and it

depends on input image size:

𝐺𝑆𝑆 𝑚𝑒𝑚𝑜𝑟𝑦 𝑢𝑠𝑎𝑔𝑒

= 4 ∗ 𝑆 + 3 ∗
𝑊 ∗ 𝐻

22𝑖

𝑂−𝑜𝑚𝑖𝑛

𝑖=𝑜𝑚𝑖𝑛

 (1)

In equation 1, S is number of scales per octave which

typically is 3, O is number of octaves, W and H are the input

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

35

image width and height, the constant coefficient, 4, is size of

single precision floating point in typical systems. Beside from

GSS, a big temporary space for storing some variables, used

throughout the program, is also needed. We allocate

temporary memory once at the beginning and use it

throughout the program. That is because, memory allocation

is a time consuming operation in CUDA framework.

Therefore, we should avoid it as much as we can.

6.2 Stges Time Consumption Breakdown
 There are three main stages in our implementation. First

stage, GSS calculation is a very time consuming process.

Unlike the other two stage, GSS calculation only depends on

input image size with a direct linear relation. Therefore, as the

size of input image grows, this stage time consumption grows

too; this can be seen in table 1. Compared to first and third

stage, second stage is less inordinate. Unfortunately, because

of massive data dependency we were not able to speed up this

stage as much as other stages.

Last stage, keypoint orientation and descriptor, usually is the

most time consuming stage. This stage time consumption

mostly depends on number of extracted features, which in turn

depends on both image‟s content and size. Figure 6 shows

time consumption breakdown of stages for test image 5 in

table 1.

6.3 System Set Up
Our test environment setup is as follow:

Host configuration:

 Intel Core i7-2600 @ 3.40GHz

 4 GB DDR3 RAM

Device configuration:

 Nvidia GeForce GT 440

 1 GB DDR3 Memory

The processor that we used for testing is one of the most

powerful processors for PC computer available in the market.

This processor currently has price not less than 350$. On the

other hand, the GPU is a low end GPU and it can be bought

for not more than 70$. Part of our objective were to make sift

execution affordable. By affordability, we mean both

affordability of execution time and financial source spend on

providing appropriate hardware for execution. To test whether

our code were able to reach this objective or not, we chose

this combination: a cheap affordable GPU versus a powerful

but expensive CPU.

Table 1: Time consumption of siftCU compared to

SIFTpp. All time scales are in milliseconds

6.4 Speed Up Test

You can see test results for speed up in table 1. Results have

been broke down for three main stages. Since there is lower

data dependency in first stage and also effective shared

memory utilization, we were able to achieve a very good

speed up. On the contrary, in second stage, GPU-based

implementation could not gain much over CPU-based

implementation since there are lots of data dependency. Like

second stage, there is high data dependency in third stage; we

were not able to gain speed up as much as first stage in this

stage. Figure7 shows overall time consumption of SIFTpp

and siftCU for five images in table 1. As expected, siftCU‟s

speedup over SIFTpp grows as picture size and number of

extracted keypoints grow. Although image 4 is actually

smaller than image 5 but it takes longer to process. That is

because image 4 has much more keypoints compared to image

5.

Subject Stage SIFTpp siftCU
Speed

up

Subject 1

(386*768)

1 285 57 5.00

2 24 13 1.85

3 481 390 1.23

Total 790 460 1.72

Subject 2

(549*800)

1 437 96 4.55

2 38 18 2.11

3 907 436 2.08

Total 1382 550 2.51

Subject 3

(678*1024)

1 681 128 5.32

2 56 27 2.07

3 1512 641 2.36

Total 2249 796 2.83

Subject 4

(1400*1000)

1 1369 248 5.52

2 151 55 2.75

3 5305 1415 3.75

Total 6825 1718 3.97

Subject 5

(1600*1200)

1 1908 357 5.34

2 162 73 2.22

3 4122 1147 3.59

Total 6192 1577 3.93

Figure 2: Stages time consumption breakdown

Figure 1: siftCU & SIFTpp overall execution time

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

36

6.5 Precision Test

 For the sake of completeness, we compared our

implementation with both SIFTpp and Lowe‟s his own

implementation (which is only available as executable file).

The keypoint matching is based on a simple but effective

matching algorithm described by Lowe [1]. When you want to

see whether a keypoint has a match inside bunch of other

keypoints, the algorithm is as follow:

 Find first and second closest descriptor to sample

keypoint descriptor. The distance factor is Euclidean

distance.

 If first distance is smaller than six-tenth of second

distance then first distance is a match otherwise sample

does not have a match.

You can see precision comparison results in table 2. The

results from all three implementation for each set are not

identical. This can be attributed to small differences in the

value of some variables and thresholds like size of sampling

area around keypoint for orientation assignment or contrast

threshold. Nevertheless, as it is obvious, our implementation

has not impaired precision of matching. We demonstrated

keypoint matching between test sets in figure 8.

7. CONCLUSION
In this paper, a GPU-based implementation of sift feature

extraction algorithm was described in detail. We used CUDA,

which is a C++ based framework for GPU programming.

Other researchers who need to use SIFT algorithm in part of

their work can easily utilize our implementation. We have

discussed some useful strategies and have given some

important recommendations for implementing parallel

algorithms in GPU. Using these strategies and

recommendations is not limited to implementing SIFT. We

compared siftCU with SIFTpp in speed up. Part of our

objective were to make sift execution affordable. By

affordability, we mean both affordability of execution time

and financial source spend on providing appropriate hardware

for execution. To test whether our code were able to reach this

objective or not, SIFTpp was executed on a powerful but

expensive CPU, namely Intel Core i7-2600. On the other

hand, siftCU was executed on a cheap low end GPU, namely

Nvidia Geforce 440 GT. Results showed that our

implementation could gain 4x speed up over SIFTpp. This

means if we utilize all 4 processing cores of Core i7-2600

using a multi-core implementation, in best case scenario for

multi-core implementation, our implementation would match

up with that implementation in speed up. The results are

satisfactory considering the CPU, we used in test set up worth

more than five times the GPU that was used. Our

implementation could gain more than 30x speed up if we were

to use a high end GPU like Nvidia GTX 670. Nvidia GTX

670 is as expensive as Intel Core i7-2600. It has 14 times

more core than 440 GT, twice the memory, and more than 6

times memory bandwidth. We also showed that siftCU, our

implementation, could be as precise as any other

implementation of sift. Figure 8 shows descriptor matching

results for precision test images in table 2.

8. ACKNOWLEDGEMENT
The authors would like to thank Yazd University‟s computing

& computer center for providing them with proper facilities

used in this research.

9. REFERENCES

[1] D. G. Lowe, "Distinctive Image Features from Scale-

Invariant Keypoints," Journal of Computer Vision, vol.

60, no. 2, pp. 91-110, 2004.

[2] S. N. Sinha, J.-M. Frahm, M. Pollefeys and Y. Genc,

"GPU-based Video Feature Tracking and Matching," in

Workshop on Edge Computing Using New Commodity

Architectures, Chapel Hill, North Carolina, 2006.

[3] S. Heymann, K. Muller, A. Smolic, B. Froehlich and T.

Wiegand, "SIFT Implementation and Optimization for

General-Purpose GPU," in International Conference in

Central Europe on Computer Graphics, Visualization and

Computer Vision (WSCG), Plzen, Czech Republic, 2007.

[4] S. Warn, W. Emeneker, J. Cothren and A. Apon,

"Accelerating SIFT on Parallel Architectures," in IEEE

International Conference on Cluster Computing and

Workshops, 2009. CLUSTER '09., New Orleans, LA,

2009.

[5] Y. Huang, J. Liu, M. Tu, S. Li and J. Deng, "Research on

CUDA-based SIFT Registration of SAR Image," in

Fourth International Symposium on Parallel

Architectures, Algorithms and Programming (PAAP),

Tianjin, 2011.

[6] T. Yamazaki, T. Fujikawa and J. Katto, "Improving the

performance of SIFT using Bilateral Filter and its

application to generic object recognition," in 2012 IEEE

International Conference on Acoustics, Speech and

Signal Processing (ICASSP), Kyoto, 2012.

[7] Y. YANG and W. CHEN, "Parallel Algorithm for

Moving Foreground Detection in Dynamic Background,"

in Fifth International Symposium on Computational

Intelligence and Design, Hangzhou, 2012.

[8] M. Harris, "GPGPU," 2013. [Online]. Available:

http://www.gpgpu.org.

[9] T. R. H. M. L. S. André R. Brodtkorba, "Graphics

processing unit (GPU) programming strategies and

trends in GPU computing," Jurnal of Parallel and

Distributed Computing, vol. 73, no. 1, pp. 4-13, 2013.

[10] "openCL Home," KHRONOS GROUP, 2013. [Online].

Available: http://www.khronos.org/opencl/.

[11] "CUDA Home," Nvidia, 2013. [Online]. Available:

http://www.nvidia.com/object/cuda_home_new.html.

[12] M. S. Mohammadi, "Personal Page," [Online]. Available:

http://ce.yazd.ac.ir/rezaeian/Mahdi_SM/.

[13] NVIDIA, "CUDA C Best Practices Guide," NVIDIA,

2013.

[14] R. Szeliski, Computer Vision: Algorithms and

Applications, Springer, 2011.

[15] A. Vedaldi, "siftpp," 2006. [Online]. Available:

http://www.vlfeat.org/~vedaldi/code/siftpp.html.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

37

Table 2: Feature matching results for siftDemo (Lowe’s demo), SIFTpp and siftCU

Figure 3: Feature matching for image sets in table 2: Left) set 1; Right) set 3. Images are ordered as Follow in each set: Top

left) Images without matching; Top right) siftCU; Bottom left) siftDemo; Bottom right) SITFpp

siftDemo SIFTpp siftCU

Images

size
Keypoints

Total

match

Incorrect

match
Keypoints

Total

match

Incorrect

match
Keypoints

Total

match

Incorrect

match

Set 1
1200*1600 3575

216 2
5455

115 1
4926

182 1
386*768 1446 1315 1217

Set 2
1200*1600 3575

23 6
5455

12 5
4926

24 5
600*371 1255 1785 1566

Set 3
1200*1600 3575

233 1
5455

140 3
4926

266 1
549*800 2718 3199 2514

Set 4
1600*1200 7632

793 6
14061

1085 9
11515

876 7
678*1024 2272 4645 4191

IJCATM : www.ijcaonline.org

