
International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

18

Teaching Parallel Programming for Time-Efficient

Computer Applications

A. Asaduzzaman
EECS Department

Wichita State University
Wichita, Kansas

R. Asmatulu
Mech. Eng. Department
Wichita State University

Wichita, Kansas

M. Rahman
School of Comp. Sci. & Eng.

Georgia Institute of Technology
Atlanta, Georgia

ABSTRACT

Academic research and engineering challenge both require

high performance computing (HPC), which can be achieved

through parallel programming. The existing curricula of most

universities do not properly address the major transition from

single-core to multicore systems and sequential to parallel

programming. They focus on applying application program

interface (API) libraries and open multiprocessing (OpenMP),

message passing interface (MPI), and compute unified device

architecture (CUDA)/GPU techniques. This approach misses

the goal of developing students’ long-term ability to solve

real-life problems by ‘thinking in parallel’. In this article, a

novel approach is proposed to teach parallel computing that

will prepare computer application developers for present and

future computation challenges. Using multicore/manycore

architecture and popular challenging problems from areas like

computer science, proposed approach teaches how to analyze

and develop efficient solutions for the problems. As

preliminary work, some multithreaded parallel programs are

introduced to computer science and engineering students.

Based on the feedbacks from information technology (IT)

professionals and Student Outcomes Assessment Reports,

proposed approach has potential to provide adequate

knowledge so that students can fulfill the growing industry

demands for HPC. Based on the Steady State Heat Equation

experiment, CUDA/GPU parallel programming may achieve

up to 241x speed up factor while simulating heat transfer on a

5000x5000 thin surface.

General Terms

Concurrent Processing; GPU Computing; Graphics and

Imaging; Principle of Concurrency;

Keywords

CUDA/GPU technology; multicore architecture; OpenMP;

Open MPI; parallel programming;

1. INTRODUCTION
Current and future processors are expected to have multiple

cores in their CPUs. (Only exception may be some small

embedded processors for specialized devices.) Moreover,

attached GPU cards with large numbers of cores have become

very attractive for high performance computing and can

provide orders of magnitude speedup over using the CPU

alone [1, 2]. To address this space, Intel has rolled out its

Many Integrated Core (MIC) architecture [3]. Systems with a

small number of cores such as present multicore processors

can use a shared memory model whereas as the number of

cores increase, hierarchical user-managed memory and

distributed memory models can be expected. Undergraduate

programming has yet to address this major transition from

single core processors to multicore and many-core processors

properly. Training students in this technology is critical to the

future of exploiting new computer systems [4]. Today, with

all the advances in hardware technology, the educators find

themselves with multicore computer as servers, desktops,

personal computers, and even handheld devices in the

laboratories while still teaching undergraduate students how

to design system software, algorithms and programming

languages for sequential environment [5]. The current practice

is to introduce parallel programming at graduate-level (only at

some high-ranked universities), starting with parallel libraries

– OpenMP and thread APIs for shared memory systems [6],

MPI for message-passing distributed memory systems [7], and

CUDA/C for high performance GPU computing [1]. Usually,

a course will begin with learning a library, typically MPI

applied to a simple parallel applications such as matrix

multiplication or sorting, then move onto thread-based tools

such as OpenMP, and finally onto programming GPUs with

multithreaded CUDA/C [7-11]. The focus is on learning

programming libraries applied to a few simple parallel

applications. This approach does not fulfill the goal of

developing more long-term abilities to reason about parallel

solutions and solve larger problems for multiprocessor

systems. However, the demands for parallel programmers in

the industries are increasing. Based on an insidePHC report,

from November 2009 to July 2011 CUDA jobs increased

22%, OpenMP jobs increased 85%, and MPI jobs increased

33% [12]. Therefore, an approach to teach parallel

programming is needed that focuses on higher-level

programming strategies for computational problems and

especially on ease of programmability [13].

The rest of the paper is organized as follows: Section 2

presents the proposed approach to develop/update pedagogy

for teaching parallel programming. Learning materials are

discussed in Section 3. Section 4 summarizes the course

overview. In Section 5, some preliminary work is discussed as

examples of CUDA/GPU assisted multithreaded parallel

programming model. Finally, this work is concluded in

Section 6.

2. PROPOSED APPROACH

2.1 Major Steps
This proposal includes right-to-the-industry-needs activities to

prepare students for future computational engineering

challenges. Major steps to develop a new pedagogy or update

an existing pedagogy are shown in Figure 1. The proposed

approach has four major steps: Analysis, development,

implementation, and assessment.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

19

Fig 1: Top line: pedagogy development and integration with existing course(s). Bottom line: hands-on-activities based on real-

world IT needs using multicore parallel programming.

First, industry needs and current courses are probed to

determine if a new course is needed or existing courses should

be updated. Then, pedagogy is developed and implemented

(accordingly). Finally, students’ outcomes are assessed.

Feedbacks from students and industry-professionals are

considered to improve the existing pedagogy.

It is envisioned that in order to fulfill the growing IT industry

needs, multicore parallel programming will be made available

to all undergraduate/graduate engineering students by

updating and restructuring existing courses (rather than

introducing new courses) [14, 15]. However, this paper

provides a complete documentation to prepare a new course

or update existing course(s).

2.2 Involving High School and College

Educators
It is often noticed that the students have fear about science,

technology, engineering, and mathematics (STEM) courses.

One reason may be that the STEM education, especially the

new technology, is not effectively transformed to the students

during their high-school and/or lower-level college/university

years. This causes serious problems for educators to teach and

students to learn upper-level undergraduate and graduate level

courses. Therefore, it is important to involve local high

school, college, and university teachers to discuss and address

how to improve STEM education and students’ learning. Each

workshop should help review the current progress and

determine the future adjustments.

3. LEARNING MATERIALS
The importance of developing a successful strategy to teach

parallel computing and programming has been raised many

times over and over. Peter Pacheco designed and offered a

sophomore-level undergraduate/graduate parallel computing

course in the Department of Computer Science and

Mathematics at the University of San Francisco for the first

time in 2004. One of the major goals of the course was to

provide the students with hands-on experience and encourage

them to start to think in parallel. His recommendation was

“don’t expect the students to discover how to write parallel

programs: give them a lot of guidance.” Given that the goal of

the course is to help students to “think in parallel”, the

environment should be provided within which students solve

problems with parallelism as default.

Programming multicore computers with shared memory

programming languages will be focused as well as on

message passing programming environments for this course.

The foundations for thinking in parallel can be better built

within the scope of shared memory. The MPI programming

and design developed for message passing distributed

platforms adds an additional level of complexity and

challenge to problem, data, and program partitioning that can

be further explored as an advanced level. This experience was

shared by Adams, Nevison, and Schaller who designed three

different parallel computing courses at three different

colleges, Calvin, Colgate, and RIT [16].

In many cases, the best parallel solution will perform poorly

on a sequential machine. The parallel solution performs better

only when it is executed in parallel on a parallel computer

with enough number of processors. Learning about the trade-

offs between parallelism and memory usage, inherently

sequential access data structures versus data structures that

allow for parallel access, and allowing more operations to be

performed in a parallel version compared to the sequential

version solving the same problem can be done most

effectively when students observe these factors in a hands-on

laboratory environment.

4. COURSE OVERVIEW

4.1 Grading Policy
There should be about 10 homework, 4 quizzes, 2 exams, and

1 team-project. Types and points distribution for various

activities are shown in Table 1. Some additional information

like day/time is also suggested in the table.

Table 1. Grading Policy: activities and points

Activity (No.) Point Description

Homework (10) 10% Take home assignment

Quiz (4) 20% Classroom, closed-book

Mid-Term (1) 25% Classroom, closed-book

Final (1) 25% Classroom, closed-book

T
ea

m
-P

ro
je

ct
 Survey/

Proposal
5% Project proposal per group

Demo/

Presentation
6%

Poster/PPT slides

presentation per group

Final

Report
9% 15+ pages per group

4.2 Course Outline
It is expected that students in this class have introductory

knowledge on computer architecture and programming in

C/C++. A high-level course outline of the proposed semester

long senior-level course is presented next.

4.2.1 Module 1: Background and Motivation
This module will introduce the parallel computing by means

of evolution of parallelism, concurrency, and multicore

computer architectures with specific examples to demonstrate

each concept.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

20

4.2.2 Module 2: Observing Parallelism
This module introduces the data dependence relationships and

their impact on the ability to perform parallel operations using

dataflow graphs. Performance analysis for these computations

will be presented using size, depth, speedup and efficiency of

algorithms. Graph theory will be introduced and applied to

several example computations.

4.2.3 Module 3: Getting Started
To express algorithms, a set of pseudo code conventions for

expressing sequential and basic parallel operations such as

process creation and termination (fork/join) and storage

classes (shared/private variables) will be presented. An

example parallel pseudo code such as matrix multiplication

will illustrate the parallel operations. Pthread in C/C++ will be

used to illustrate multithreaded programming.

4.2.4 Module 4: Programming Shared Memory

Multicore Computers
In this module, OpenMP is presented within the context of

solving some numerical algorithms. The key to this section is

to start programming and present the examples in the context

of global parallelism (think in parallel) [17]. Lectures will

cover the basic operations on dense matrices such as matrix

multiplication to introduce storage layout and various parallel

loops.

4.2.5 Module 5: Trivial Parallelism
In this module, a set of interesting but easy to parallelize

problems like image processing will be introduced. These

problems require the simplest parallel solution whose

computation can obviously be divided into a number of

completely independent parts, each of which can be executed

by a separate processor/core. This module introduces Open

MPI for shared and distributed memory parallel programming.

4.2.6 Module 6: Massive Parallelism
Graph algorithms will be solved using CUDA/GPU based

parallel programming technique. Many massive and/or

complex problems (Prim's minimum spanning tree algorithm)

can be expressed in terms of graphs, and can be solved using

standard graph algorithms. Students will learn how to

decompose a graph into sub-graphs with the goal of

optimizing load balance and minimizing synchronization

overhead. GPU-shared-memory programming will also be

covered in this module.

4.2.7 Module 7 (optional; if time allows): Sorting

Algorithms
A number of different types of parallel sorting schemes have

been developed for a variety of parallel computer

architectures [18-20]. The lectures of this topic present several

parallel sorting algorithms such as merge sort, quicksort,

bucket sort, and bitonic sort.

4.2.8 Team Project Ideas
Any problem that can be solved by writing computer

programs and/or developing computer simulations but takes

significant amount of time will be considered as a nice project

topic for this course. Several typical applications from

different domains are selected that can be parallelized for

possible team projects. Students are welcome to propose their

own project ideas for approval. Some team-project examples

are described below:

Lightning Strike Protection on Nanocomposites: The lack

of lightning strike protection (LSP) for the nanocomposite

materials limits their use in many applications including

aircrafts. As a result, there is a continuous interest in

understanding the heterogeneous thermoelectric behavior of

mixtures with carbon fibers/nanotubes of these materials.

Currently available methodologies, including computer

simulation, to assess the thermoelectric behavior of composite

materials are extremely time consuming, expensive, and

ineffectual. A fast and effective simulation model can be

developed using CUDA/GPU technology to analyze LSP on

nanocomposite aircrafts.

Processing Large Images: Processing large images is

computing intensive and time consuming. Applying various

image filters through the GPU parallel programming should

improve the overall performance while processing larger

images without compromising the existing resources. Other

parallel programming techniques like OpenMP and Open MPI

can also be used.

Deterministic Primality Test: Prime numbers play an

important role in maintaining the secret spy codes. Computer

hackers try to steal information or break into private

transactions. Computer security authorities use extremely

large prime numbers when they devise cryptographs for

protecting vital information that is transmitted between

computers [21]. The primality test on GPU is expected to be

faster than on CPU for large numbers, such as those used in

public key cryptography. Using parallel solutions (like

OpenMP, Open MPI, and CUDA/GPU) not only should save

time, but also should reduce power consumption.

Improve Decryption in a Partially Homomorphic

Encryption Schemes: In cryptography, public key algorithms

are widely known to be slower than symmetric key

alternatives for their basis in modular arithmetic. The modular

arithmetic in RSA (for R. Rivest, A. Shamir and L. Adleman;

1977) [21] and Diffie Hellman is computationally heavy when

compared to symmetric algorithms relying on simple

operations like shifting of bits and XOR. Parallel techniques

(like OpenMP, Open MPI, and CUDA/GPU) can be used to

make a more efficient and faster implementation of public key

algorithms.

5. PRELIMINARY WORK
Three pieces of work, Steady-State Heat Equation for thermal

conductivity, Laplace’s Equation for electric charge

distribution, and Convolution for image processing, are

discussed to illustrate the potential of multithreaded parallel

programming using CUDA/GPU technology. However, at

first the computing systems used in this study are introduced.

5.1 Computing Platform

5.1.1 Software Used

Linux Debian 7.0 operating system and GNU Compiler

Collection (GCC) version 4.6.3 are used. CUDA is configured

following the instructions provided in NVIDIA Developer

Zone (URL: https://developer.nvidia.com/cuda-downloads).

NVIDIA developed the parallel computing platform and

programming model CUDA to program GPUs [21, 22].

CUDA provides access to the virtual instruction set and

memory of CUDA GPUs. CUDA makes GPUs accessible for

computation like CPUs. GPUs have a parallel throughput

architecture that emphasizes executing many concurrent

threads slowly, rather than executing a single thread very

quickly. This approach of solving general-purpose problems

on GPUs is known as GPU. The CUDA platform is accessible

to software developers through CUDA-accelerated libraries,

compiler directives (such as OpenACC), and extensions to

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

21

industry-standard programming languages, including C, C++,

and Fortran.

5.1.2 Hardware Used

The simulation models in a CUDA server, CPU with general-

purpose GPU (GPGPU) card, are run. Important parameters of

the CPU and the GPU are listed in Table 1.

Table 2. Important System Parameters

CPU GPGPU

 Processor: Intel Xeon
E5506

 Cores: 2 x Quad-Core

 Clock Speed: 2.13 GHz

 RAM: 8GB DDR3

 Max. Memory Bandwidth:
19.2 GB/sec

 OS: Linux (Debian)

 Type: NVIDIA Tesla
C2075

 Cores: 14 x 32 Cores

 RAM: 6GB GDDR5

 RAM Speed: 1.5 GHz

 RAM Bandwidth: 144
GB/sec

 OS: Not applicable

5.2 Solving Steady State Heat Equation
First, a CUDA accelerated parallel programming technique is

presented to solve steady state heat equation [23, 24]. Let’s

consider the heat flow in a one-dimensional uniform bar. If

two nearby points on the rod, separately by a small distance d

are at temperatures t1 on the left and t2 on the right, then the

heat flow from left to right between these points is

proportional to the temperature difference and inversely

proportional to the distance as shown in Equation 1.

Amount of heat per unit time = k(t1 – t2)/d (1) ………… (1)

Where, the constant of proportionality k is the thermal

conductivity and it depends only on the materials that make

up the rod. Now, the discrete approach of heat conduction on

a 2D surface is explained. Consider a physical region (width

w * height h) that is covered with a grid of m * n nodes (see

Figure 2). An m * n array A is used to record the temperature

of each node. The correspondence between array indices and

locations in the region is suggested by giving the indices of

the four corners:

 [0][n-1] h=y=n-1 [m-1][n-1]

 |--------------------------------|

x=0 | | w=x=m-1

 |--------------------------------|

 [0][0] y=0 [m-1][0]

Fig 2: A physical region with boundary conditions

The steady state solution to the discrete heat equation satisfies

the following condition (see Equation 2) at an interior grid

point:

A [x, y] = (1/4) * (A [x-1, y] + A [x+1, y] + A [x, y+1] + A

[x, y-1]) …………………………………………………… (2)

Where, [x, y] is the index of the grid point, [x-1, y] is the

index of its immediate neighbor to the "left/west", and so on.

Given an approximate solution of the steady state heat

equation, a “better” solution is given by replacing each

interior point by the average of its 4 neighbors – i.e., by using

the condition as an assignment statement (see Equation 3):

A [x, y] <= (1/4) * (a [x-1, y] + A [x+1, y] + A [x, y+1] + A

[x, y-1]) …………………………………………………… (3)

If this process is repeated often enough, the difference

between successive estimates of the solution will go to zero

(or close to zero). In the main loop, after calculating each new

A[x, y] value, it is checked if the value is in the acceptable

range or not. This approach is used in the experiments.

However, using parallel programming like CUDA/C, the

sequential loop into parallel equivalent threads is converted

and run them concurrently on the GPU cores. The main loop

in CUDA/C is shown in Figure 3.

Fig 3: Steady State Heat Equation (main loop in C)

To implement the steady state heat equation (as shown in

Equation 3) on a 2D surface, it is consider that an n * n very

thin metal surface has N * N nodes; where N = 100, 500,

1000, 2500, or 5000. Initially, all the boundary nodes (where

x=0, y=0, x=n-1, or y=n-1) are given a value of 0.00 (these

values do not change). Also initially, any one node (x, y),

where 1 ≤ x ≤ n-1 and 1 ≤ y ≤ n-1, is assumed to have a very

high value (1000000 in the experiment). Then the new values

for all nodes are calculated. These iterations are repeated until

the new value of a node becomes less than a predefined small

value, often called ‘error tolerance’ (0.0001 in the

experiment). Experimental results (CPU time and GPU time)

are shown in Table 2. First thing to notice is that both the

CPU time and the GPU time increase significantly as the

problem size increases. At the beginning, for smaller problem

size, CPU time is actually less than the GPU time. However,

as the problem size keeps getting bigger, the GPU time keeps

getter better (i.e., smaller). It is also observed that the shared

memory CUDA implementation outperforms the regular

CUDA implementation.

Table 2. Grading Policy: activities and points

Problem Size

NxN

CPU

Time

(Sec)

GPU Time (Sec)

No Shared

Memory

Shared

Memory

100 x 100 2.47 3.86 3.88

500 x 500 421.35 7.60 6.08

1000 x 1000 1572.87 19.17 11.63

2500 x 2500 6592.91 66.72 34.36

5000 x 5000 12071.26 116.71 50.02

The speedup due to CUDA/GPU implementation over CPU

implementation is calculated, as shown in Figure 4. For small

problems (100 x 100 in the experiment), the speedup is less

than 1.0. However, the speedup increases as the problem size

increases. It should be noted that the speedup of CUDA

without shared memory is always smaller than that of CUDA

with shared memory. It should also be noted that after the

problem size exceeds a limit (2500x2500 in this experiment),

/* The new estimate W is the average of north, south, east,
and west neighbors */

diff = 0.0;
for (i = 1; i < M - 1; i++) {
for (j = 1; j < N - 1; j++) {

w[i][j] = (u[i-1][j] + u[i+1][j] + u[i][j-1] + u[i][j+1]) / 4.0;
/* determine if more iteration will be repeated or not */

if (diff < fabs (w[i][j] - u[i][j])) {
diff = fabs (w[i][j] - u[i][j]);

}}
}/* end for...i */

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

22

although the speedup of CUDA without shared memory is

negligible, the speedup of CUDA with shared memory is

significant. For problem size 5000x5000 in the experiment,

CUDA with shared memory implementation helps reduce

processing time from 12071 seconds to 117 seconds (i.e., a

speed up factor of 241). It is projected that speed up factor can

be increased linerly as the problem size increases by using

GPU shared memory.

Fig 4: Speedup of discrete heat equation using

CUDA/GPU based parallel programming

5.3 Solving Laplace’s Equation
In many cases like lightning strikes on a composite material,

when the charge distribution is not known, the Poisson's

Equation can be used to solve electrostatic problems. Using

the Laplacian operator on the electric potential function over a

region of the space where the charge density is not zero, the

Poisson's Equation is shown below in Equation 4:

If the charge density is zero all over the region, the Poison's

Equation becomes Laplace's equation (see Equation 5). It

should be noted that the Laplace's equation is a special case of

the steady state heat equation when heat does not vary with

time.

Composite mixtures used in electromagnetic meta-material

applications often consist of periodic arrangement of unit

elements whose sizes are much smaller than the operating

wavelength. Therefore, Laplace's equation can be simplified

applying the quasi-static assumptions as shown in Equation 6,

where ε and φ are the medium permittivity and the electric

potential, respectively [25].

For very uniform material, electric potential φ can be

considered the same in all directions. Now based on the finite-

difference approximations, Equation 6 can be rewritten as

Equation 7 (a 3D problem that can be solved using the

discrete approach).

(φi+1,j,k – φi,j,k)/dx + (φi,j+1,k – φi,j,k)/dy + (φi,j,k+1 –

φi,j,k)/dz + (φi,j,k – φi-1,j,k)/dx + (φi,j,k – φi,j-1,k)/dy +

(φi,j,k – φi,j,k-1)/dz = 0 ………………………………… (7)

Where, dx, dy, and dz are the spatial grid size, the φi,j,k is the

electric potential defined at lattice point (i, j, k) and εx
i.j.k,

εy
i.j.k, and εz

i.j.k are the effective x-, y-, and z- direction

permittivity defined at edges of the element cell (i, j, k).

The CUDA/C implementation of the 3D charge distribution

for GPU is shown in Figure 5. Here, the right values of i and j

for each thread is calculated accordingly.

Fig 5: Electric Charge Distribution Equation (main loop in

CUDA/C without shared memory)

Finally, the shared memory CUDA/C implementation of the

3D heat transfer for GPU is shown in Figure 6. Here, in

addition to calculating the right values of i and j for each

thread, the shared variables As and Bs are also created.

Fig 6: Electric Charge Distribution Equation (main loop in

CUDA/C with shared memory)

The speedup due to CUDA/GPU implementation over CPU

implementation for Laplace’s equation is shown in Figure 7.

Like steady state heat equation, for small problems, the

speedup is less than 1.0 and the speedup increases as the

problem size increases. Again, the speedup of CUDA without

shared memory is always smaller than that of CUDA with

shared memory. Also noted that after the problem size

exceeds a limit, the speedup of CUDA without shared

/* CUDA/GPU implementation of the charge distribution
equation without shared memory */

__global__ void Charge_Dist_GPU(float *A, float *B, int N) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

int k, index, index1, index2, index3, index4, index5, index6;
for (k=1;k<N-1;k++) {

index = k*N*N + j*N + i;
index1=k*N*N + j*N + i+1; index2=k*N*N + j*N + i-1;

index3=k*N*N + (j+1)*N + i; index4=k*N*N + (j-1)*N + i;
index5=(k+1)*N*N + j*N + i; index6=(k-1)*N*N + j*N + i;

if (i>0 && j>0 && k>0 && i<(N-1) && j<(N-1) && k<(N-1)) {
B[index] = (X[index1]*A[index1] + X[index2]*A[index2] +

Y[index3]*A[index3] + Y[index4]*A[index4] +
[index5]*A[index5] + Z[index6]*A[index6]) / 6.0;

}
}/* end Charge_Dist _GPU */

……………………… (4)

……………………… (5)

…………………………………………… (6)

/* CUDA/GPU implementation of the charge distribution
equation with shared memory */

__global__ void Charge_Dist_GPU_SM(float *A, float *B, int N)
{

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

int is = threadIdx.x ; int js = threadIdx.y;
__shared__ float As[THRDIM][THRDIM];

int ks, index, index1, index2, index3, index4, index5, index6;
As[threadIdx.x][threadIdx.y] = A[index];

__syncthreads();
for (ks=1;ks<N-1;ks++) {

index = ks*N*N + js*N + is;
index1 = ks*N*N + js*N + is+1;
index2 = ks*N*N + js*N + is-1;

index3 = ks*N*N + (js+1)*N + is;
index4 = ks*N*N + (js-1)*N + is;
index5 = (ks+1)*N*N + js*N + is;
index6 = (ks-1)*N*N + js*N + is;

if (is>0 && js>0 && ks>0 && is<(N-1) && js<(N-1) && ks<(N-1))
{

B[index] = (X[index1]*A[index1] + X[index2]*A[index2] +
Y[index3]*A[index3] + Y[index4]*A[index4] +

Z[index5]*A[index5] + Z[index6]*A[index6]) / 6.0;
}

}/* end Charge_Dist_GPU_SM */

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

23

memory does not increase, but the speedup of CUDA with

shared memory increases significantly.

Fig 7: Speedup of Laplace’s equation using CUDA/GPU

5.4 Separable Convolution Filter
Separable convolution is a technique for fast convolution [26].

It is commonly used in computer vision, image processing,

signal processing, etc. Convolution is a mathematical

operation on two functions (say, ‘f’ and ‘g’) that produces a

third function (say, ‘c’). Function ‘c’ is typically viewed as a

modified version of one of the original functions (say, ‘f’)

giving the area overlap between the two functions (as

illustrated in Figure 8). In this experiment, CUDA/GPGPU

assisted separable convolution filter implementation is

introduced.

5.4.1 Separable Filters
A separable filter is a special type of filter that can be

expressed as the composition of two 1-D (one dimensional)

filters, one on the rows on the image, and one on the columns.

For a width n and height m filter kernel, a two-dimensional

convolution filter normally requires n*m multiplications for

each output pixel. A separable filter can be divided into two

consecutive one-dimensional convolution operations on the

data, and therefore requires only (n + m) multiplications for

each output pixel.

Fig 8: Separable convolution filter – applying function c(t) to some data is the same as applying f(t) followed by g(t)

For example, the 3x3 filter shown below is a separable Sobel

[26] edge detection filter. Because applying

-1 0 1 1

 -2 0 2 to the data is the same as applying 2 followed

 -1 0 1 1

by -1 0 1 .

Separable filters offer more flexibility in the implementation

and, in addition, reduction of the arithmetic complexity and

bandwidth usage of the computation for each data point.

5.4.2 A Simple CUDA Implementation
According to this approach, (i) a block of the image is loaded

into a shared memory array, (ii) a point-wise multiplication of

a filter-size portion of the block is done, and (iii) the sum is

written into the output image in device memory. Each thread

block processes one block in the image. Each thread generates

a single output pixel. An illustration of this is shown in Figure

9. To filter the image block, an apron of pixels is required. An

apron of pixels is around the image block within a thread

block of the width of the kernel radius. The apron of one

block overlaps with adjacent blocks and requires special

attention (like the threads loading the apron pixels will be idle

during the filter computation) to implement properly. Five

major steps involved in this approach are: (i) Random input

data values are used in the experiment. (ii) Gaussian

convolution kernel is calculated and copied to CUDA constant

array. As the Gaussian is a symmetric function, the row and

column filters are identical. (iii) CUDA computation grid is

configured for requested image and filter parameters. (iv)

Row and column filters are applied onto the input data. (v)

The resulting image is copied back to the CPU and checked

for correctness.

Experimental results suggest that significant performance

improvement can be achieved due to shared memory

CUDA/GPU implementation of separable convolution filters.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

24

Fig 9: Simple implementation of a separable convolution filter using GPU/CUDA technology

6. CONCLUSION
Parallel computing and multicore computers are today’s

actuality. Concurrent/parallel processing has the potential to

speed up the execution of very complex and large problems.

The growing demands for high performance computing can be

fulfilled by developing effective parallel programs suitable for

multicore/manycore systems. Recent reports show growing

demands in parallel programming jobs. Therefore, universities

are expected to prepare the new graduates with proper

knowledge and skills with parallel thinking. Present computer

science and engineering curricula more or less teach the

parallel programming APIs like OpenMP, MPI, and CUDA,

but do not develop ‘think in parallel’ skills by addressing the

transition from single-core to multicore architecture and

sequential to parallel programming.

This paper introduces an effective approach to equip the

students with fundamental knowledge and analytic skills to

understand large complex problems and develop parallel

computing solutions to meet current and future requirements

for developing computer applications. As an experiment,

multithreaded parallel programming is introduced to

undergraduate/graduate level science and engineering students

through an existing course. Multicore architecture and

multithreaded programming are covered; how to dissect a

problem and develop parallel programming for multicore

CPU and manycore GPU systems using CUDA/C are taught.

In the laboratory, CUDA/GPU assisted parallel programs are

developed to solve (i) the Steady State Heat Equation for

different 2D thin surfaces, (ii) the Laplace’s Equation for

electric charge distribution, and (iii) the Convolution for

image processing. Experimental results from Steady State

Heat Equation show that up to 241x speedup can be achieved

for an error tolerance of 0.0001. It is worthy to mention that

the parallel solution has potential to save energy consumption

by reducing the execution time.

The feedbacks and advices from the director of Wichita State

University (WSU) high performance computing center

(HiPeCC) and the CEO of M2SYS Technology are greatly

appreciated. The Student Outcomes Assessment Reports are

also reviewed for this course. It is concluded that the proposed

approach has potential to provide adequate knowledge and

training so that students should be able to develop parallel

programs for complex problems.

7. ACKNOWLEDGMENTS
Mr. John Matrow, Director of WSU HiPeCC, is sincerely

acknowledged for his effort to review students’ projects and

provide valuable advices. The students are also acknowledged

for their effort to provide constructive feedbacks.

8. REFERENCES
[1] NVIDIA. 2014. Nvidia: CUDA. http://www.nvidia.com/

object/cuda_home_new.html (accessed on Feb 1, 2014).

[2] Udacity. 2014. Introduction to Parallel Programming.

https://www.udacity.com/course/cs344 (accessed on Feb

1, 2014).

[3] Intel Developer Zone. 2014. Intel Many Integrated Core

Architecture (Intel MIC Architecture). http://software.

intel.com/en-us/forums/intel-many-integrated-core

(accessed on Feb 1, 2014).

[4] Marowka, A. 2008. Think Parallel: Teaching Parallel

Programming Today. IEEE Distributed Systems Online,

Vol. 9, No. 8.

[5] Mellor-Crummey, J., Gropp, W., and Herlihy, M. 2010.

Teaching parallel programming: a roundtable discussion.

XRDS: Crossroads, The ACM Magazine for Students -

The Changing Face of Programming, Vol. 17, No. 1, pp.

28-30.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

25

[6] OpenMP. 2014. The OpenMP API specification for

parallel programming. http://openmp.org/wp/ (accessed

on Feb 1, 2014).

[7] Multicore Programming Education. 2009. Workshop on

Directions in Multicore Programming Education.

Washington DC.

[8] Multicore LA. 2011. Open Source Software, Multicore

and Parallel Computing Miniconference. http://

multicorelca.wordpress.com (accessed on Feb 1, 2014).

[9] Zhu, Y. 2008. Supercomputing Undergraduate Program

in Maine (SuperMe). NSF RUE Award 0754951.

[10] Zhang, W. 2011. Collaborative Proposal: Problem-Based

Learning of Multithreaded Programming. NSF CCLI

Award1063644.

[11] Brown, R. 2010. A strategy for injecting parallel

computing education throughout the computer science

curriculum. NSF CCLI Award 0942190.

[12] insidePHC. 2014. Trends Show Huge Growth in Parallel

Programming Job Market. http://insidehpc.com/

2011/07/16/trends-show-huge-growth-in-parallel-

programming-job-market/ (accessed on Feb 1, 2014).

[13] Asaduzzaman, A., Asmatulu, R., and Pendse, R. 2013.

Thinking in Parallel: Multicore Parallel Programming for

STEM Education. American Society for Engineering

Education (ASEE’13) Midwest Section Annual

Conference, Salina, Kansas.

[14] Open MPI. 2014. Open MPI: High Performance

Computing. http://www.open-mpi.org/ (accessed on Feb

1, 2014).

[15] Ernst, D.J., et al. 2008. Concurrent CS: Preparing

Students for a Multicore World. ITiCSE’08, 2008.

[16] Adams, J., Nevison, C. and Schaller, N.C. 2000. Parallel

computing to start the millennium. Proceedings of the

thirty-first SIGCSE technical symposium on Computer

science education, ACM publication, Vol. 32 Issue 1, pp.

65-69.

[17] Alaghband, G. and Jordan, H.F. 1994. Overview of the

force scientific parallel language. Journal Scientific

Programming, Vol. 3, No. 1.

[18] Amato, N.M., Iyer, R., Sundaresan, S., and Wu, Y. 1996.

A Comparison of Parallel Sorting Algorithms on

Different Architectures. Technical Report 98-029,

Department of Computer Science, Texas A&M

University.

[19] Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plaxton,

C.G., Smith, S.J., and Zagha, M. 1991. A comparison of

sorting algorithms for the Connection Machine CM-2.

Annual ACM symposium on parallel algorithms and

architectures, pp. 3–16.

[20] Li, H. and Sevcik, K.C. 1994. Parallel sorting by over

partitioning. Proceedings of the sixth annual ACM

symposium on parallel algorithms and architectures

(SPAA'94), pp. 46–56.

[21] Rivest, R.L., Shamir, A., and Adleman, L.M. 1977. RSA

algorithm. U.S. Patent 4,405,829.

[22] CUDA. 2014. http://en.wikipedia.org/wiki/CUDA

(accessed on Feb 1, 2014).

[23] The 2D/3D heat equation. 2014. www.maths.bris.ac.uk/

~marp/apde2/week3notes.pdf (accessed on Feb 1, 2014).

[24] Asaduzzaman, A., Yip, C.M., Kumar, S., and Asmatulu,

R. 2013. Fast, Effective, and Adaptable Computer

Modelling and Simulation of Lightning Strike Protection

on Composite Materials. IEEE SoutheastCon Conference

2013, Jacksonville, Florida.

[25] Lightning Strike Protection for Carbon Fiber Aircraft.

2914. White paper, Dexmet Corporation. URL:

http://www.dexmet.com/1_pdf/LSP%20for%20Carbon

%20Fiber%20Aircraft.pdf (accessed on Feb 1, 2014).

[26] An Introduction to Edge Detection: The Sobel Edge

Detector. 2014. Generation5. http://www.generation5.

org/content/2002/im01.asp (accessed on Feb 1, 2014).

IJCATM : www.ijcaonline.org

