
International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

1

Design of a Reliability Model under Different Fault based

Parameters

Yukti Mehta
Student, M.Tech
ITM University

Gurgaon-122001

Aman Jatain

Assistant Professor, CSE & IT Department
ITM University

Gurgaon-122001

ABSTRACT

Software fault analysis is on major vector adopted by different

researchers to analyze the software reliability. But most of the

author taken the fault individually as the fault criticality or the

fault count. But in this presented work we have considered all

aspects of software faults i.e. fault count, fault criticality, fault

frequency, associatively between faults. In this work a three

level structure is been defined to perform the fault based

analysis. At first level, individual fault and fault criticality is

analyzed where as in second level fault-module associatively

and fault-fault associatively is discussed. At third level, the

complexity of the module will be identified. Finally, all

factors will be combined to identify the overall complexity

and severity of the module and the system. As the work is

based on all aspects of faults as well as metric based

complexity, so that high level reliability and accuracy is

expected from the system.

Keywords
Software Fault Criticality; Fault-Fault Associatively; Fault-

Module Associatively

1. INTRODUCTION
Software development process is not only about to deliver

software but also to deliver a quality product. There are

number of different aspects that represent the software quality

according to the view point of different stakeholders. But the

main consideration is given to the end user for which the

software product is developed. The reliability vector is the

foremost requirement for end user to accept the product as a

quality product. Software reliability itself is not the single

characteristics; it is itself a vast term defined under different

parameters. The key terms associated with the software

reliability is the software fault. Software fault itself is a wide

term defined under different aspects. It can be as small as a

warning or it can be as critical as a software failure. There are

number of number of existing models that work under the

software fault analysis [1] [2]. Some of the factors considered

by different reliability models under fault consideration are

shown in figure 1.

The fault criticality is defined as the type of fault considered

by for a software project. Fault criticality can be categorized

as a bug, error or the failure. The bug is the fault type that

occurs in a software system but there is no such sequence or

the rule about the generation of the bug again and again. Bug

is not occurred frequently that can occur because of some

external reference such as memory requirement, platform

error, dependency issue etc. The error is the software fault that

occurs frequently in a software module. As the module will be

executed, the fault in that software module disturbs the

execution flow by breaking the execution process or some

process drop. The most critical fault type is the software

failure, as the failure occur, the complete system stop working

and the software crash can occur. This kind of fault is more

destructive [3] [4].

Figure 1. Software Reliability Constraints

Another consideration associated with software fault analysis

is the fault frequency. The frequency defines the number of

times the fault occurs in a particular time interval. Fault

frequency is also the parameter to decide the fault criticality.

A fault or error becomes the failure, if the frequency of the

software fault increases. Another associated feature of

software fault is the fault position analysis. When the fault

occur in the execution process, in such case the position of

fault occurrence also matter. If the fault position is in the

beginning, the fault criticality is less whereas if the fault

occurs in the later stages, the criticality of the fault is higher

[6] [7].

Fault Module analysis is another vector that defines the fault

criticality. The faulty module is having the higher importance

while deciding the software reliability. Software Impact

Analysis is another vector that basically defines the

consequences when a software fault occurs in a software

system. If the fault gives an error message but process

normally, it can be ignored and less critical but if the error

gives the system restart or the data loss it is more critical.

Durability is another vector defined with fault analysis.

Durability is about to identify the existence time of the error

in a software system. Higher the time, the error stays in the

system, more critical the error will be. The last consideration

is about to identify the fault derivation analysis. It means is

Software Reliability

Software Fault Parameters

Fault Criticality

Analysis

Fault Frequency

Analysis

Fault Position

Analysis

Fault Impact

Analysis

Fault Durability

Analysis

Fault Derivation

Analysis

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

2

the fault itself generating some other faults over the system or

not. If it generates more faults, the software fault is most

critical to that [8] [9].

From this study, we identified all the fault related vectors that

affect the software reliability. The main consideration for the

fault based reliability estimation is the quantity the software

fault in the software system or in a particular software

module. The fault estimation function is shown in figure 2.

1.1 Fault Function
The failures in a software system can be defined and

determined by using different function. Some of these

functions include the failure intensity function, failure rate

function, failure intensity function etc. These functions

basically provide the quantitative values to represent the

software module or software fault or software fault criticality

[10] [11]. The cumulative failure function basically represents

the expected cumulative failure at particular instance of time.

It is also known as mean-value function. Another function to

estimate the software fault is the failure intensity function.

This function is based on the cumulative failure function. It

estimate the software criticality based on the variation

analysis on cumulative failure function. Another function for

failure analysis is the failure rate analysis function. It is the

probabilistic function that identifies the number of failure in

specific time interval. The number of failures between two

time slots is represented by failure intensity function [12]

[13].

Figure 2. Failure Estimation Functions

Another effective failure estimation function is mean time to

failure (MTTF). It gives the estimation of next time instance

when the failure can occur over the system. Similar to this,

Mean Time to Repair (MTTR) is the function that estimates

the time instance of system repair if the failure over the

system is identified. Based on these two vectors, the

probabilistic estimation can be done to identify the system

availability once the repairing of fault is done. The availability

is represented as

MTTF Availability = MTTF / MTTF + MTTR

In this work, a failure estimation based work is been defined

to analyze the software reliability. In section I, the

introduction software fault and all fault related vectors are

discussed. In section II, the work performed by different

authors is discussed. In section III, the proposed work is

defined along with algorithmic specification. In section IV,

the results obtained from the work are discussed. In section V,

the conclusion derived from the work is discussed.

1.2 Comparison on Different Reliability

Models
There are number of reliability that works on different

parameters and different methodologies to perform the

software analysis. In this section, the comparison is been

defined between three main reliability models. These models

are Software Metrics Model, Fault Based Model and Musa

Model. The comparative analysis under different parameters

is shown in table 1

Table 1. Comparison on Reliability Models

Parameters Software

Metrics

Model

Fault Based

Model

Musa Model

Known As Software

Evaluation

Model

Weibull

Failure

Model

Execution

Time Model

Description It contains a

set of process

and product

Metrics for

Software

Estimation

Perform

analysis on

software

fault, fault

frequency

and failure

analysis

It performs

the execution

time analysis

and interval

time analysis

between

failures

Example SLOC,

Reusability

Analysis,

Portability

Analysis

Lifetime

Analysis,

Fault Count

Analysis,

Failure

Analysis

Elapsed Time

analysis

between

software

failure and

the actual

calendar time

2. EXISTING WORK
Lot of work is already done by different authors to perform

the risk analysis and the software quality analysis. Some of

the work done by earlier authors, under different reliability

vectors and on different reliability models, is discussed in this

section.

Liguo Huang has defined a risk assurance based work for a

text mining oriented software system. Author has defined the

methodology to establish the methods and aim under the risk

analysis and the risk associations. Author identifies the

frequency analysis under different vectors for historical

projects. Author also performed the analysis on e-service

projects and presented the risk associated approaches so that

the effective software development will be done in real

applications [1]. Mary Sumner has defined an enterprise wide

information management system under different risk factors.

These management projects are analyzed on different data

management software like SAP, Oracle etc. Author also

performed the history based analysis so that the effective

software analysis will be derived [2]. Andreas Schmietendorf

presented a process model so that the performance analysis on

the engineering tasks will be performed. It also includes the

investigation and evaluation so that the software development

and performance model is defined in this work. Author

defined the task oriented analysis model under the quantitative

framework in which the identification of requirement and the

resources is been performed under the risk analysis and the

performance information analysis [3].

Failure

Intensity

Function

Failure

Rate

Analysis

Cumulative

Failure

Function
Mean

Time to

Failure

Fault

Estimation

Functions

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

3

In Year 2005, Guillaume Langelier has defined a visualization

approach for the quality estimation on large software projects.

Author defined the complex software project analysis under

the development and maintenance approaches so that risk will

be minimized. Author has defined the work in an effective

opportunistic risk analysis approach so that the software

reliability over the system will be achieved. Author defined

the for open source programs. The presented framework to the

system is been defined under quality modelling so that the

large scale software system will be defined [4]. Another work

on risk management was proposed by Mira Kajko-Mattsson.

Author defined the software risk management responsibilities

and to represent the software risk management

responsibilities. It also includes the software risk analysis

approaches at different phases of software system [5]. In Year

2006, Ossi Taipale has defined an observation based approach

to improve the software system. Software defined a qualitative

as the complex practice so that knowledge based process

study will be performed. The work also includes the testing

cost analysis and its relation with software quality. It includes

the survey on testing on the organization units that are

interviewed by the author. Author defined a study on the

research method so that the theme based interviews were

performed [6].

In Year 2012, Michael Grace has defined the risk ranking for

a software system so that the estimation of software system

will be done under the accuracy and the scalability analysis.

Author defined the work for android based applications.

Author defined a sampled risk analysis under the security

vector. The work was testing on real time environment for

trusted and untrusted applications [7]. In Year 2010, Adailton

Mag alhaes Lima defined under a simulation environment so

that the project analysis for the data and other risk factors will

be analyzed. Author defined the probabilistic analysis for the

project management and the risk assessment. The

development process along include the decision making so

that improvement software management will be done [8].

3. RESEARCH METHODOLOGY
In this present work, a statistical parametric analysis approach

is been presented to perform the software risk estimation. The

presented approach is defined under three fault based vectors.

In the first stage, the fault analysis over the software system is

identified and analyzed. In this analysis state, the

prioritization of the software fault is done. The fault

identification is actually the fault association respective to the

modules is identified. The complete software system is dived

in terms of software modules and each module is defined

along with integrated software faults. After the fault

identification, the software fault prioritization is done shown

on figure 3. The prioritization can be of based on fault

frequency or based or on fault criticality.

Figure 3. Software Fault Analysis

Once the fault priorities are identified, the next work is to find

the association between software faults. The association

between the software faults is called software fault

dependency.

The independent faults are comparative less effective than

dependent faults. The fuzzy rule is suggested here to perform

the cost estimation on each software fault and the fuzzy

operators are applied to identify the association between these

faults. Based on this, the criticality of each software module

will be identified individually. The cost estimation process is

shown in figure 4.

Figure 4. Module Cost Estimation

At the final stage, the estimation of the software cost will be

done by performing an aggregative cost analysis. While

estimating the aggregative cost, at first the weight age is

assigned to different software modules. Based on this weight

age assignment, and fault individual module cost estimation,

the impact of the module will be identified. The aggregation

on these vectors will be performed to identify the overall

software cost or the software cost criticality.

Figure 5. Software Cost Estimation

The presented work is shown in three different stages and

each stage is defined as a smaller process model. The process

models collectively forms the fault analysis and the cost

analysis. The fuzzy based provide the effective results from

the system.

4. RESULTS
The presented work is implemented in Matlab environment.

The work is performed on a software system that is divided in

N modules logically. Each software module is having the

Software Module

Definition

Identification of Fault in

Each Module

Fault Prioritization

Fuzzy based Cost

Representation

Fuzzy Operator

Specification for Fault

Association

Module Cost Estimation

Weight age Assigned to

Individual Module

Module

Fault based cost

Estimation

Fuzzy Based

Software Cost Estimation

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 7, March 2014

4

importance based on the distance from the goal state. With

each software module, software faults will be identified. The

estimation of the fault vector in each software module is done

under the defined model.

The results obtained from the proposed aggregative fuzzy

based system are shown as under. The analysis is here been

done under the module based fault criticality analysis. Here

figure 6 is showing the results obtained at high criticality

level. Identification of modules under different criticality

levels.

Here figure 6 is showing the criticality analysis of different

modules. Here, the criticality of each module is represented

between 0 and 1. The closer the criticality value to 1 is more

faults critical the module will be. As shown in the figure

module 3 is most critical module and modules 1, 4 and 7 are

least critical.

5. CONCLUSION
The presented work is about to perform a software reliability

estimation under fault analysis. In this work, two levels fuzzy

logic is defined to perform the criticality analysis as well as

cost analysis. The first level is implemented on individual

modules and second level is implemented on aggregative cost.

The obtained results show the clear module of criticality under

fault vector.

Figure 6. Module Criticality Analysis

6. ACKNOLEDGMENTS
This research is supported by the Department of Computer

Science and Information Technology at ITM University.

7. REFERENCES
[1] LiGuo Huang, "Text Mining in Supporting Software

Systems Risk Assurance," ASE’10, September 20-24,

2010, Antwerp, Belgium. ACM 978-1-4503-0116-

9/10/09.

[2] Mary Sumner, "Risk Factors in Enterprise Wide

Information Management Systems Projects," SIGCPR

2000 Evanston Illinois USA 1 -58113-212-x/00/04.

[3] Andreas Schmietendorf, "Process models for the

software development and performance engineering

tasks," WOSP '02, July 24-26, 2002 Rome, Italy ACM

ISBN 1-1-58113-563-7 02/07.

[4] Guillaume Langelier, "Visualization based Analysis of

Quality for Large scale Software Systems," ASE’05,

November 7–11, 2005, Long Beach, California, USA.

ACM1-58113-993-4/05/0011.

[5] Mira Kajko-Mattsson, "Laying out the Scope of

Developers’ Risk Management Responsibilities," ICIS

2009, November 24-26, 2009 Seoul, Korea ACM 978-1-

60558-710-3/09/11.

[6] Ossi Taipale, "Improving Software Testing by Observing

Practice," ISESE'06, September 21–22,2006,Riode

Janeiro, Brazil. ACM 1-59593-218-6/06/0009.

[7] Michael Grace, "RiskRanker: Scalable and Accurate

Zero-day Android Malware Detection," MobiSys’12,

June 25–29, 2012, Low Wood Bay, Lake District, UK.

ACM 978-1-4503-1301-8/12/06.

[8] Adailton Mag alhaes Lima, "Risk Assessment on

Distributed Software Projects," ICSE '10, May 2-8, 2010,

Cape Town, South Africa ACM 978-1-60558-719-

6/10/05.

[9] Margaret-Anne Storey, "The Impact of Social Media on

Software Engineering Practices and Tools," FoSER

2010, November 7–8, 2010, Santa Fe, New Mexico,

USA. ACM 978-1-4503-0427-6/10/11 .

[10] Peter Hearty, "Automated Population of Causal Models

for Improved Software Risk Assessment," ASE’05,

November 7–11, 2005, Long Beach, California, USA.

ACM 1-58113-993-4/05/0011.

[11] C. R. Rene Robin, "Development of Educational

Ontology for Software Risk Analysis," ICCCS’11,

February 12–14, 2011, Rourkela, Odisha, India. ACM

978-1-4503-0464-1/11/02.

[12] Lucas Layman, "A Case Study of Measuring Process

Risk for Early Insights into Software Safety," ICSE’11,

May 21–28, 2011, Waikiki, Honolulu, HI, USA ACM

978-1-4503-0445-0/11/05.

[13] C R Rene Robin, "An Ontology Based Linguistic

Infrastructure to Represent Software Risk Identification

Knowledge," ICWET’11, February 25–26, 2011,

Mumbai, Maharashtra, India. ACM 978-1-4503-0449-

8/11/02.

IJCATM : www.ijcaonline.org

