
International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 5, March 2014

1

Elite Plus – Component based Software Process Model

Lata Nautiyal

Research Scholar
Gurukul Kangri University, Haridwar, India

Assistant Professor
Graphic Era University, Dehradun, India

Neena Gupta, Ph.D
Assistant Professor

Kanya Gurukul Campus, Dehradun,
Gurukul Kangri University, Haridwar, India

ABSTRACT

The advancement in the technology has made the user more

dependent on information technology, for these information

technologies the software serve as the platform. However the

rapid growth shown by IT industry also faces challenges of

fast growing demand of heavy and complex software systems.

In order to fulfill the needs of the end user or to overcome this

challenge, software community is moving towards the

component based software engineering (CBSE). One of the

imperative motivation behind adopting CBSE as software

development paradigm is the quick installation of

sophisticated and trustworthy software systems with

enormous savings, lesser engineering effort, cost, and time.

CBSE provides the mechanical facilities that facilitate the

easy assemblage and advancement of the software systems out

of autonomously developed pieces of the software.

The aim of this paper is to present a precise study of the

available CBSE lifecycle, and it also proposes a novel CBSE

model.

General Terms

Software Process Model

Keywords

Component Based Development (CBD), Software

Development Life Cycle, Elite Plus Model, COTS,

Dependency among components

1. INTRODUCTION
Component-Based Development (CBD) is currently well

established in the IT industry. A component is an

encapsulated unit of functionality with a well-defined line that

allows it to hook up to other components, and be

autonomously deployed. The Component-based applications

are distinct from the assembling components.

The Component-Based Software Engineering (CBSE) has

become apparent [1] in the starting of 1990’s. Initially, the

applications developed by CBSE were limited to PCs whereas

the use of COTS (Commercial Off-The-Shelf Components)

software has encourages CBSE for the development of

business applications [2].

The major benefits associated with component-based

technologies include: development of condensed system,

quick installation, reduced cost, enhanced quality, and

condensed system evolution and less maintenance cost. The

increase in time has given rise to the development of standard

component-based specifications and the importance of CBD

has grown rapidly in the embedded system trade.

A component is said to be a self-contained bit of software if it

has an open interface, delivers clear functionality and

moreover gives plug-and-pay services. Therefore it can be

stated that component-based software development promotes

the reusability and gives improved software quality. Thus

Component-based software development can lead to new

ideas for the construction of large and complex software

systems.

2. REVIEW OF LITERATURE
The different kind of CBSD models can be seen in the

industry as well as in the academia. We referred to some of

them; in this section some of them are discussed that are as

follow:

The term CBSE has actually come into the existence after

COM+ [3] from Microsoft, Enterprise JavaBeans [4] from

SUN, and IBM Component Broker [5] and CORBA [6].

CBSE have made way among the conventional software

technologies [7]. Additionally, incremental delivery of

software attributes or platforms that comprise a software

product line is expected to be at the forefront in the upcoming

years, therefore component-based software engineering has

implications for how software engineers attain, assemble

and sustain software systems [8]. Thus, we should see drastic

changes in designers’ primary roles and required skills for

software development in the upcoming time.

A Software Life Cycle Model is an expressive and

illustrative depiction of all different stages of the software

process. Software development life cycle (SDLC) model

depicts the phases of the software development cycle [9].

The Twin Peaks model [10] also suggest for a parallel,

continual development of requirements and architecture all

through development. It presents a partial and easy way to

develop the software.

In X Model, the mechanisms are started by requisite

engineering and requirement measurement. The main

characteristic of this software life cycle model is

reusability in which software is developed by building

reusable components and software development from

reusable and testable components. In software

development, it uses two main ways, develop software

component for reuse and software development with or

without modification in reusable component. [11]

The Y Software Life Cycle Model represents software

reusability during CBSD. The Y Shape of the model

contemplates iteration and overlapping. Although the main

phases may overlap each other and iteration is allowed, the

designed phases of this model are: domain engineering, frame

working, assembly, archiving, system analysis, design,

implementation, testing, deployment and maintenance.

[12].

Knot Model highlighting on reusability, considering risk

analysis and feedback in each and every segment. This model

may be best matched for intermediate or larger complex

system’s development. It is based on three states of the

component [13].

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 5, March 2014

2

The Elite Life Cycle Model (ELCM) is an promising software

lifecycle model for the expansion of new product using

component based technology. This model describes a general

process of Software development with the help of in built

components. [14].

New Era with new Innovation in Software Development [15]

gives the concept of selection, prioritization and

customization to develop, modify and selection of

components.

The V model adopted the traditional software development

approach for building a system from reusable software

components [16]. It consists of several steps and provides the

details information at the design phases. The main emphasis

of V-Development is component development lifecycle.

Component development lifecycle was considered as different

process. The selection phase gets input from the separate

system that usually finds and evaluates the suitable

components to be composed into the system. The V Model is

an adaptation of the rigid traditional waterfall model for

modular system development with little flexibility.

Two V models have conjoined, one for component life cycle

and one for system lifecycle in the W lifecycle model

Component based development process comprise of a

component life cycle and a system life cycle, and it is the base

of W lifecycle model [17]. The W model fulfils all the

requirements of component based development. The W Model

accommodates a V model for both component and system life

cycles.

3. PROPOSED MODEL – Elite Plus
Some of the popular State of art has been discussed in our

literature review section. From the literature review we came

to the conclusion that all CBSD lifecycle have some

drawbacks and there is a need of a new lifecycle for

component based software development. Figure 1.1 shows

details of our proposed improved CBSD Model. Reusing of

existing components is an important concern of the

Component Based Software Development. These reusable

components can be previously done system requirement,

architecture, testing and implementation. The core phases of

our improved CBSD model are

A. Prerequisite:

B. Risk analysis:

C. Engineering:

D. Test – Integration - Test:

E. Version:

F. Customer evaluation:

G. Deliver:

Each phase (figure 1) will be a deliverable “versions” of the

software. (Ex: a Microsoft Word delivers basic file

management editing, in the first increment; more sophisticated

editing, document production capabilities in the 2nd version;

spelling and grammar checking in the 3rd version.

When this model is applied, the 1st version is often a core

product. The core product is used by the customer.

As a result of use and / or evaluation, a plan is developed for

the next version. The plan addresses the amendment of the

core product to better meet the requirements of the customer

and the delivery of supplementary features and functionality.

The process is continual following the delivery of each

version, in anticipation of the complete product is produced.

If the customer demands delivery by a date that is not viable

to meet, suggest delivering one or more version by that date

and the rest of the software afterward.

3.1 Prerequisite
The prerequisite phase involves moving out enough

business/application/system modeling to describe a

consequential build scope. A build delivers a well-defined set

of business functionalities that end-users can use to do real

work. The most complicated tasks are to identifying the real

difficulty of the existing system. Without clear thoughtful of

the problem in the system, any further work prepared will lead

to depletion of effort at a later stage.

The capacity of a build is not an arbitrary selection, but rather

a logical selection that satisfies particular development

objectives. This phase defines the user requirements, or what

the user expects from the system. This phase as well sets the

project restrictions, which define what parts of the system, can

be changed by the project and what parts are to stay without

any transform. This also includes a coarse idea of the resource

necessities for the project as well as the predictable start and

achievement dates for each phase and the number of persons

expected to be occupied in every phase.

In this model requirements are gathered or elicited on the

basis of their availability. We can begin the development of

software considering the available/explored requirements and

can consider or add new requirements in the next version of

the software. It may be possible that customer cannot explore

all the requirements in the beginning and may reveal new

requirements after getting some initial working versions of the

software. In this model we have considered the properties of

incremental approach.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 5, March 2014

3

Fig 1: Elite Plus – The Proposed Model

This phase will cover up:

 Analyzing the problems and problem area.

 Prioritize the difficulty (domain).

 Gathering/Exploring available requirements.

 Prioritization of requirements on the basis of

customers demand.

 Frame working of proper system goals according

the problem main concern.

 Determining the boundaries of the project.

 Project initialization on the basis of available

requirements.

3.2 Risk analysis
Any unforeseen event which makes the software over budget

and over run can be defined as a Risk.

We have included Risk Analysis in our model to provide

reliability as well as long term maintainability. All the risks

are identified and resolved in this phase. This activity should

be included in every new and incremented version of the

software.

Risk Analysis is done not only for newly developed

components, but it must consider COTS components. It

defines the reliability and maintainability of individual

components. Input to this phase is the basic architecture

drawn from the Requirement phase. After the risk assessment

we can go for engineering phase. If there is enough risk

involved in development either we can ask some third party to

develop that component or we can postpone the development

till its mitigation.

The main objective of the Risk Analysis process is to:

Focus concentration on minimizing threats in order to

accomplish the project objectives by:

 Fulfilling a high-level evaluation of project risk

with all project stakeholders.

 Make available a organized approach for detail risk

analysis and appraisal by:

 Identifying and assessing risks.

 Determining effective risk reduction actions.

 Tracking and reporting improvement in reducing

risk.

Prerequisite

Risk Analysis

Engineering

Test

Integration

Customer evaluation

Deliver

Version I

Prerequisite

Risk Analysis

Engineering

Test

Integration

Customer evaluation

Deliver

Version N

Prerequisite

Risk Analysis

Engineering

Test

Integration

Customer evaluation

Deliver

Version II

Prerequisite

Risk Analysis

Engineering

Test

Integration

Customer evaluation

Deliver

Version Final

Elite Plus - Component Based Software Process Model

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 5, March 2014

4

3.3.2 Risk Management Process Methodology
The risk management process methodology involves four

basic steps:

1. Spot the risks - Comprehend the classic problems that

might adversely affect the project.

2. Measure the risks - Rank the risks in order of

significance based on likelihood of occurrence, impact of

occurrence, and degree of risk conviction.

3. Plan the risk response – Evaluate risk assessment

alternatives and amend the project management plan and

project agenda to adjust for the risk.

4. Monitor the risks – All through the project, carry on to

revisit the risk profile, re-evaluate main risks, and update

the risk profile with action taken.

3.3 Engineering
The most constructive phase of the component based

development is engineering. This phase presents real

challenge to the software engineers. The basic architecture of

the software is developed. Architecture defines the basis of

integration of components. On the bedrock of architecture we

then engineer our components. Engineering phase can be

divided into two sub-phases:

3.3.1 Architecture Engineering
Architecture provides blueprint for the selection and

integration of components. Architecture engineering

emphasizes on dividing the software problem in smaller,

function oriented units and then providing these units to

identify suitable components. It defines the:

 Nature of Communicating interfaces for user as well as

for components.

 Nature and number of Internal and External input sources

like entities, events, scenarios, etc.

 Nature and number of Internal and External Output

consumers like entities, events, scenarios, database, etc.

 Functions and characteristics provided by the proposed

software (i.e., on the basis of Functional and Non

Functional requirements).

3.3.2 Component Engineering
The output of Architecture Engineering phase provides the

input to the Component Engineering. On the basis of modular

units identified, we can engineer components. It includes:

3.3.2.1 Traditional methods of CBSE engineering
1. Off the shelf components – Once a build range is

established, we need to make a decision which of the

requisite components can be used (e.g., already exist in

the organization or can be bought off-the-shelf) and

which ones necessitate to be developed.

2. Modify Existing Components (if required) –
Developing a novel module from the scrape is always

avoided in component based development. It may

extremely be possible that some obtainable components

may require some minor or major modifications to

accommodate with other components.

3. Engineering of New individual Component –
Developing a new component should forever begin with

defining the component interface. This represents a

permanent agreement between the component and other

components. Once the interface is distinct and the intent

of each method is recognized, the component can be

designed and implemented.

4. Outsourcing of Risky Component – At times it is not

practicable to reuse COTS components or the

development of new components since some risk factor

may be involved, or we need some portion of a

component for very short span of time. In such cases

some third party components may be outsourced.

3.3.2.1 Engineering of Components from

Repository
During the component engineering, we can identify

components in accordance with the problems suitability. We

can define components in a hierarchical structure. According

to its dependency on other components, a component may be:

Sovereign

1. Independent

2. Single level Dependency

3. Multi level Dependency

4. Multiple Dependencies

1. Independent

Fig 2: Independent Components

2. Single level Dependency

Fig 3: Single level dependency among components

Independent

Component

Expected
Output

Desired

Input

No changes required

Component 1

Component 2

Single Level

Dependency

Changes in Component1

to make Compatible with

Component 2

Changes in Component2

to make Compatible with

Component 1

Component 1 is dependent on Component 2 for the

desired functionality, so changes in both are necessary.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 5, March 2014

5

3. Multi level Dependency

4. Multiple Dependencies

Fig 4: Multi level dependency among components

Fig 5: Multiple dependencies among components

3.4 Test – Integrate- Test
Testing is done with the intent of finding errors present or

likely to present in individual components or in integrated

system. Off the shelf components are pre-tested, so we have to

look their compatibility with other components in the context

of proposed software. Bendable components may introduce

new bugs after making some changes in their code. Since

changes are necessary to make them usable in proposed

solution context (see figure 6). They need Unit testing as well

as regression testing to eliminate errors. We need Unit testing

and Regression testing for newly developed components. We

suggest different testing techniques for these components, as:

Fig 6: Testing and Integration Process

1. Unit Testing of Off-the-shelf components: Black Box

testing to test the behavior of the individual component.

If it provides desired result, it may be reused.

2. Unit Testing of Modifiable Components: Testing to

test the behavior of the individual component. If it

provides desired result, it may be reused, and if certain

changes are necessary to make it compatible in problems

context, White box testing is done to certify the structure

of the modified cod.

3. Unit Testing of New Components: New components

are developed from the scratch in accordance with the

user requirement. So behavior and the structure both

need testing.

4. Unit Testing of Outsourced Components: Black Box

testing is done to check the behavior of the outsourced

component.

After the testing of individual components, they are integrated

to achieve the desired software. Their integration will be

supported by the architecture of the software designed in the

Engineering phase. When two or components are integrated,

some changes must be done to make compatibility among

them. Regression testing is the procedure of retesting the

personalized parts of the component and ensuring that no new

errors have been introduced into previously tested component

code. The benefit of using regression testing is that we can

reuse the test suite that was used to test the original version of

the component and the software. Re-running of all test cases

in the test suite is not required. This will reduce the effort of

testing and the overall cost of testing. We can minimize the

number of test cases by applying minimizing techniques.

Changes in Component1

to make Compatible with

Component 2

Component 1 is dependent on Component 2 for the desired

functionality, and the Component 2 is dependent on Component 3,

so changes in all three are necessary.

Multi

Level

Dependency

Changes in Component2

to make Compatible

with Component 1 and

Component 3

Component 1

Component 2

Component 2

Changes in

Component3 to make

Compatible with

Component 2

Component 1

Component 3

Component 2

Multiple

Dependencies

Changes in Component2 to

make Compatible with

Component 3

Changes in Component1 to make

Compatible with Component 3

Changes in Component3 to make

Compatible with Component 1 and

Component 2

Test-Integrate-Test

Tested Components

+

Design Architecture

Architecture

Based Integration

Regression

Testing

Next

Phase

Unit Testing

Component 1

(Unit Testing)

Component N

(Unit Testing)

Component 2

(Unit Testing)

Component 3

(Unit Testing)

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 5, March 2014

6

3.5 Version
The version can serve as the “first system”. Together

customers and developers be fond of the prototyping

paradigm as users get a feel for the actual system, and

developers get to build Software immediately. Yet version can

be challenging:

The developer makes implementation compromises in order

to get a version functioning rapidly. An inappropriate

operating system or programming language used simply

because it’s available and known. After a point in time, the

developer possibly will become contented with these choices

and forget all the reasons why they were inappropriate.

The key is to describe the rules of the game at the beginning.

The customer and the developer must mutually have the same

opinion that the version (trial product) is built to serve as a

mechanism for defining requirements.

3.6 Customer Evaluation
This is approximately the end of system development, now

the system is prepared to be presented to the customer.

However, deployment involves more than putting the system

into place, it is the time when users should be helped to

appreciate and feel comfortable with the software. If

deployment is not successful, users will not make the most of

the system and may be unhappy with its performance. In

either case, users will not be as creative or effective as they

could be and the care taken to build a premium system is put

in hazard.

The two key issues to successful transfer from the developer

to the user are documentation should sketch and come up with

aids that help users learn about the system, such as on-line

help. Supplementary the system is documentation and

manuals to which users refer for problem solving, trouble

shooting or further information. The quality and type of

documentation can be serious, not only to training, but also to

the accomplishment of the system. Training for users and

operators is based primarily on major system functionality;

there is no need to be aware of the system’s internal operation.

As a result, system deployment be well thought-out with more

care and professionalism than it has been usually dealt with.

3.7 Deliver
Deployment and Release is a form that can be installed on the

target machine.

4. CONCLUSION
All the software life cycle models have their own advantages

and disadvantages. In this paper, we have reviewed a number

of commotion areas that form a life cycle framework for

component-based software development.

The Elite Plus model supports “development with reuse”

through component congregation, as well as “development for

reuse” through component archiving. Initially, the software

engineer identifies likely reusable components from

accessible reusable libraries. The components are then

chosen, modified and reused through composition,

generalization and specialization mechanisms. At the end of

software development, there may be many new reusable

components that need to be established, catalogued, classified

and then stored into reusable libraries. The proposed ELITE

PLUS model covers the likely phases of large software

development and enforces software reusability along its

phases. We have introduced a new concept of Engineering of

Components from Repository. We have defined components

in a hierarchical structure.

We hope the proposed model with come out with the motto to

help the software community to develop the cost effective and

risk free software in CBSE environment.

5. ACKNOWLEDGMENTS
From the core of my heart, I am really thankful to the

Management of Graphic Era University for always being

supportive. I would also like to express my gratitude to the

management of Gurukul Kangri University for providing such

a commendable research oriented platform to us.

6. REFERENCES
[1] C. Szyperski, Component Software, Addison-Wesley,

1998.

[2] M. Aoyama, Componentware: Building Applications

with Software Components, J. of IPSJ, Vol. 37, No. 1,

Jan. 1996, pp. 71-79 (In Japanese).

[3] Microsoft, 2004. COM+,

http://www.microsoft.com/com/tech/complus.asp.

[4] SUN, 2004. Enterprise Java Beans,

http://www.java.sun.com/products/ejb/index.html.

[5] IBM, 2004. Component Broker,

http://www.software.ibm.com/ad/cb.

[6] Object Management Group, 2004. The Common Object

Request Broker Architecture, http://www.omg.org.

[7] Wallnau, K. C., S.A. Hissam and R.C. Seacord,2002.

Building Systems from Commercial Components.

Addison-Wesley.

[8] Clements, P. and L. Northrop, 2002. Software Product

Lines. Addison-Wesley.

[9] S. Cohen, D. Dori, U. de Haan, “A Software System

Development Life Cycle Model for Improved

Stakeholders Communication and Collaboration”,

International Journal of Computers, Communications &

Control,Vol. V (2010), No. 1, pp. 20-41

[10] Royce, W.W., 1987. “Managing the development of

large software systems”. Proceedings of 9th IEEE

International Conference on Software Engineering, pp:

328-338.

[11] Gill N. S. and Tomar P., “X Model: A New Component-

Based Model”, MR International Journal of Engineering

and Technology, 2008, Vol. 1, No. 1 & 2, pp. 1-9.

[12] Luiz Fernando Capretz, " Y: A new Component-Based

Software Life Cycle Model ", Journals of Computer

Science1 (1) : pp.76-82.

[13] Rajender Singh Chhillar, Parveen Kajla, “A New Knot

Model for Component Based Software Development”,

International Journal of Computer Science Issues Year:

2011 Vol: 8 Issue: 3 Pp.: 480-484

[14] Lata Nautiyal, Umesh Kumar Tiwari, Sushil Chandra

Dimri, Shivani Bahuguna, “Elite: A New Component-

Based Software Development Model”, International

Journal of Computer Technology & Applications

(IJCTA), Vol 3, Issue 1, Jan 2012, pp 119-124

[15] Lata Nautiyal, Umesh Tiwari, Sushil Dimri &

Shashidhar G. Koolagudi, “Component based Software

Development- New Era with new Innovation in Software

Development,” International Journal of Computer

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 5, March 2014

7

Applications (IJCA), vol. 51, no. 19, pp. 5-9, August

2012

[16] Ivica Crnkovic; Stig Larsson; Michel Chaudron,

“Component-based Development Process and

Component Lifecycle.” Online Available:

http://www.mrtc.mdh.se/publications/0953.pdf

[17] The W Model for Component-based Software

Development [online]. Online Available:

http://www.cs.man.ac.uk/~kung-kiu/pub/seaa11b.pdf.

IJCATM : www.ijcaonline.org

