
International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 4, March 2014

27

A New Improved Round Robin (NIRR) CPU Scheduling

Algorithm

Abdulrazaq Abdulrahim

Department of Mathematics,

Ahmadu Bello University, Zaria,
Nigeria

Saleh E Abdullahi
Department of Mathematics,

Ahmadu Bello University, Zaria,
Nigeria

Junaidu B. Sahalu
Iya Abubakar Computer Center,
Ahmadu Bello University, Zaria,

Nigeria

ABSTRACT
The Round Robin (RR) CPU scheduling algorithm is a fair

scheduling algorithm that gives equal time quantum to all

processes. The choice of the time quantum is critical as it

affects the algorithm’s performance. This paper proposes a

new algorithm that further improved on the Improved Round

Robin CPU (IRR) scheduling algorithm by Manish and

AbdulKadir. The proposed algorithm was implemented and

benchmarked against five other algorithms available in the

literature. The proposed algorithm compared with the other

algorithms, produces minimal average waiting time (AWT),

average turnaround time (ATAT), and number of context

switches (NCS). Based on these results, the proposed

algorithm should be preferred over other scheduling

algorithms for systems that adopt RR CPU scheduling.

Keywords
Operating system, Scheduling algorithms, Round Robin, Time

quantum, Time sharing systems, Real time systems

1 INTRODUCTION
Multiprogramming is one of the most important aspects of

operating systems. It requires several processes to be kept

simultaneously in memory, the aim of which is maximum

CPU utilization. If these several processes in the memory are

ready to run at the same time, the operating system must

choose which one among them to run first. Making this

decision is CPU scheduling. CPU scheduling is the basis of

multiprogramming systems. It refers to a set of policies and

mechanisms to control the order of work to be performed by a

computer system. It is made by the part of the operating

system called the scheduler, using a CPU scheduling

algorithm [9].

1.1 CPU scheduling algorithms
The basic CPU scheduling algorithms are First Come First

Serve (FCFS), Shortest Job First (SJF), Priority Scheduling

(PS) and Round Robin (RR). The FCFS is the simplest form

of CPU scheduling algorithms, which allocates CPU to the

processes on the basis of their arrival to the ready queue.

Arriving processes are inserted into the tail (rear) of the ready

queue and the process to be executed next is removed from

the head (front) of the ready queue. A long CPU-bound

process may dominate the CPU and may force shorter CPU-

bound processes to wait prolonged periods. In the SJF, the

scheduler arranges processes according to shortest burst times

in the ready queue, so that the process with least burst time is

scheduled first. If two processes have equal burst times, then

FCFS procedure is followed. Long running processes may

wait for prolonged periods, because the CPU has a steady

supply of short processes. It has been proven to be the fastest

scheduling algorithm, but it suffers from one important

problem: How does the scheduler know how long the next

CPU burst is going to be? [7]. The PS associates each process

with a priority number. The CPU is allocated to the process

with the highest priority. If there are multiple processes with

same priority, then FCFS will be used to allocate the CPU.

Lower priority processes may starve, because the CPU may

have a steady supply of higher priority processes. Round

Robin (RR) is specially designed for time-sharing systems;

each process gets a small unit of CPU time (time quantum).

This algorithm will allow the first process in the ready queue

to run until its time quantum expires, and then run the next

process in the ready queue. In a situation where the process

needs more time, the process runs for the full length of the

time quantum and then it is preempted and then added to the

tail of the queue.

1.2 Scheduling Criteria
The various CPU scheduling algorithms have different

properties as mentioned above. The choice of a particular

algorithm may favor one class of processes over another. For

selection of an algorithm for a particular situation, the

properties of various algorithms must be considered [4]. Many

criteria have been suggested for comparing CPU scheduling

algorithms. Those characteristics are used for comparison and

to make a substantial difference in which algorithm is judged

to be the best. The criteria include the following:

1. Context Switch: This is the process of storing and

restoring context (state) of a preempted process, so

that execution can be resumed from same point at a

later time.

2. Throughput: This is the number of processes

completed per unit time.

3. CPU Utilization: This is a measure of how much

busy the CPU is.

4. Turnaround Time: This refers to the total time it

takes the CPU to execute a process.

5. Waiting Time: This is the total time a process has

been waiting in ready queue.

6. Response Time: It is approximately the time of

submission of a process until its first access to the

CPU.

So, a good scheduling algorithm should possess the following

characteristics [2]:

 Minimum context switches.

 Maximum CPU utilization.

 Maximum throughput.

 Minimum turnaround time.

 Minimum waiting time.

 Minimum response time.

Due to a number of disadvantages the various CPU

scheduling algorithms have, they are rarely used in

timesharing and real time operating systems except for RR

scheduling which is considered the most widely used CPU

scheduling algorithms [2][4].

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 4, March 2014

28

The performance of RR scheduling is sensitive to time

quantum selection, because if time quantum is very large then

RR will be the same as the FCFS scheduling. If the time

quantum is extremely too small then RR will be the same as

Processor Sharing algorithm and number of context switches

will be very high. Each value of time quantum will lead to a

specific performance and will affect the algorithm's efficiency

by affecting the processes waiting time, turnaround time,

response time and number of context switches.

In this paper, an algorithm is proposed that determines the

time quantum dynamically, by taking the average of the

available burst time of processes in the system. This algorithm

together with FCFS, SJF, RR, IRR and LJF+CBT (Longest

Job First with Combinational Burst Time) are implemented

and their results were compared based on average waiting

time, average turnaround time, average response time and

number of context switches. Results of the analyses show that

the proposed algorithm is promising as it outperforms other

algorithms with respect to the average waiting time, average

turnaround time and number of context switches scheduling

criteria.

2 LITERATURE REVIEW
Various modifications to Round Robin CPU scheduling

algorithm have been proposed by several authors. These

modifications can be classified as follows:

2.1 Statically allocated time quantum
Ajit et al [2] proposed an algorithm that allocates the CPU to

every process in RR fashion for an initial time quantum (say k

units). After completing first cycle, it doubles the initial time

quantum (2k units) and allocates the CPU to the processes in

SJF format. It alternates the doubling and halving of the time

quantum if processes remain in the ready queue after

completing any execution cycle.

Ishwari and Deepa [4] proposed an algorithm that allocates

the CPU to every process in RR fashion for only one time

quantum. The CPU is then allocated to the remaining

processes in the ready queue after completion of the execution

in SJF fashion.

Manish and AbdulKadir [6] proposed an algorithm that

allocates the CPU to processes in RR fashion. After executing

each process for one time quantum, it checks if the remaining

burst time of the currently running process is less than the

time quantum. If so, it allocates the CPU to the process for the

remaining burst time, else it moves the process to the tail of

the ready queue.

2.2 Dynamically determined time quantum
Behera et al [3] developed an algorithm that arranges the

processes in the ready queue in ascending order of burst time.

Then, the time quantum is calculated. For finding an optimal

time quantum, it takes the median of the processes in the

ready queue. The time quantum is recalculated taking the

remaining burst time into account after each execution cycle.

Lalit et al [5] developed an algorithm that arranges the

processes in ascending order of burst time, and then calculate

the time quantum for RR by taking the average of the burst

times. This algorithm assumes that all processes arrive at the

time t=0.

Soraj and Roy [8] presented a new algorithm that arranges the

processes in ascending order of burst time, and then it chooses

the smart time slice (STS), which is mainly dependant on the

number of processes. It is equal to the burst time of the mid

process when number of processes is odd and average of the

processes burst times when the number of processes is even.

This algorithm assumes that all processes arrive at the time

t=0.

Abdullahi and Junaidu [1] made an improvement to the

Longest Job First (LJF) CPU scheduling algorithm. It works

by sorting the processes in descending order of their burst

times and then it determines a threshold known as Combined

Weighted Average (Cwa) which is the average of the

processes. This threshold is used to categorize the processes

into long and short processes. A Long process is a process

with burst time greater than Cwa while a short process is one

with burst time less than or equal to Cwa. New burst times are

created from this categorization by merging two consecutive

shorter processes until no shorter process has one to merge

with or no shorter process exist in the categorization. After the

merging, new queue is created by sorting the categorized and

merged processes in descending order of burst times. The

CPU is then allocated to the processes based on Longest Job

First.

This paper presents a modification in RR CPU scheduling

algorithm by modifying [6] and also determining the time

quantum dynamically. Based on results of a simulation,

application of this proposed algorithm in time sharing and real

time systems will increase the performance of the systems by

reducing average waiting time, average turnaround time and

number of context switches.

3 THE PROPOSED ALGORITHM
The proposed CPU scheduling algorithm is a modification of

the algorithm presented in [6]. It assumes another queue

called the ARRIVE queue which holds processes according to

their arrival times while there are other processes in the ready

queue (say REQUEST) waiting for CPU allocation.

The algorithm takes to the REQUEST queue, the first process

(i.e.) that enters the ARRIVE queue, and allocates the

CPU to it for the period of its burst time (i.e.bt). Processes

that arrive while the CPU is executing this process will be

added to the ARRIVE queue according to arrival time. After

execution of the process, all the processes in the ARRIVE

queue will be moved to the REQUEST queue and arranged in

ascending order of burst times. The algorithm takes the ceiling

of the average of burst times of the processes in the

REQUEST queue as the time quantum and allocates the CPU

to first process in REQUEST queue for the period of the

determined time quantum. When the time quantum for the

process expires, the algorithm checks the remaining CPU

burst time of the currently running process. If the remaining

CPU burst time is less than or equal to half of the time

quantum, the CPU will again be allocated to the currently

running process for the remaining CPU burst time. In this

case, this process will finish its execution and will be removed

from the REQUEST queue. Otherwise, if the remaining CPU

burst time of the currently running process is longer than half

of the time quantum, the process will be moved to the

ARRIVE queue. The CPU scheduler will then proceed to the

next process in the REQUEST queue. During the execution of

the processes in the REQUEST queue, any process that

arrives the system will be placed in the ARRIVE queue.

These activities continue until no process is available in the

REQUEST queue.

After execution of the processes in the REQUEST queue, the

transferred processes from the REQUEST queue to the

ARRIVE queue in the previous execution cycle and the newly

arrived processes in the ARRIVE queue will be moved to the

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 4, March 2014

29

REQUEST queue in ascending order of burst times and a new

time quantum will be calculated (i.e. the ceiling of the average

of burst times of the processes). The CPU will be allocated to

the processes in the REQUEST queue as usual using the

newly determined time quantum. These activities continue

until no process is available in the REQUEST and ARRIVE

queues.

3.1 Pseudo-code of the proposed algorithm
Step 1: Start

Step 2: Create a queue, ARRIVE, where processes will be

placed when they arrive the system before they are moved to

the ready queue

Step 3: Create a ready queue, REQUEST

Step 4: Do

Step 5: If () {

Move the first process () to REQUEST queue

 }

 Else {

 Move all processes in ARRIVE queue to

REQUEST queue in ascending burst time order

 }

Step 6: Do

Step7: Allocate the CPU to the first process in REQUEST

queue for a period of 1 time quantum.

Step 8: If the remaining CPU burst time of the currently

running process is less than or equal to half time quantum

then allocate the CPU again to the currently running process

for remaining CPU burst time. After completion of execution,

remove the process from the ready queue and go to step 7.

Step 9: If the remaining CPU burst time of the currently

running process is longer than half time quantum, remove the

process from the REQUEST queue and put it in the ARRIVE

queue and go to step 7.

Step 10: If a new process arrives the system, it is placed in the

ARRIVE queue.

Step 11: WHILE queue REQUEST is not empty.

Step 12: WHILE queue ARRIVE is not empty.

Step13: Calculate AWT, ATAT, ART and NCS.

Step 14: END

3.2 The Flow Chart
Figure 1 shows the flow chart of the proposed Round Robin

algorithm.

3.3 Illustrative Example
The processes shown in Table 1 were used to demonstrate the

proposed algorithm. All processes are assumed to arrive at the

same time, as required by one of the benchmark algorithms

[1]. The time quantum used in RR and IRR is 50ms.

Table 1: Processes with their burst times

PROCESS

ID

BURST

TIME (ms)

ARRIVAL

TIME (ms)

P1 23 0

P2 75 0

P3 93 0

P4 48 0

P5 2 0

 0 0 0 0 0 0

 0 23 98 191 239 241

Figure 2: The Gantt chart representation of FCFS

scheduling

 0 0 0 0 0 0

 0 2 25 75 148 241

Figure 3: The Gantt chart representation of SJF

scheduling

 0 0 25 43 0 0 0 0

 0 23 73 123 171 173 198 241

Figure 4: The Gantt chart representation of RR

scheduling with tq=50ms

 0 0 0 0 0 0

 0 23 98 19 239 241

Figure 5: The Gantt chart representation of IRR

scheduling with tq=50ms

 0 0 0 0 0

 0 93 168 216 241

Figure 6: The Gantt chart representation of LJF+CBT

scheduling

P1 P2 P3 P4 P5

P5 P1 P4 P2 P3

P1 P2 P3 P4 P5 P2 P3

P1 P2 P3 P4 P5

P3 P2 P4 P1,5

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 4, March 2014

30

N

Start

INPUT: Number of processes (n), Burst Time (), Time Quantum (TQ)

OUTPUT: AWT, ATAT, ART and NCS

 ,

If n

Fill the Ready queue with processes sorted in ascending order of their burst times

End

Calculate AWT,

ATAT, ART and NCS

N

N

N

Y

Y

Y

Fill the arrival queue according to arrival time

If n

N Y

Pr_

If

If

N

Y

Y

N

Assign CPU to for time

If

Process is completed

 //remove from arrival and ready queue

Update the ARRIVE queue

Y

Figure 1: The Flow Chart of the proposed Round Robin algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 4, March 2014

31

 0 0 0 0 0 38 0

 0 23 25 75 148 203 241

Figure 7: The Gantt chart representation of NIRR

scheduling

Table 2: Comparative table

Algorithms AWT ATAT ART NCS

FCFS 110.2 158.4 110.2 4

SJF 49.6 97.8 49.6 4

RR 113 161.2 78.4 6

IRR 110.2 158.4 110.2 4

LJF+CBT 95.4 143.6 95.4 3

NIRR 53.8 102 53.2 4

Table 2 shows the comparative results of the algorithms

under study. SJF has the minimal AWT and ATAT while

LJF+CBT and RR have the minimal NCS and ART

respectively. In the RR category, the proposed algorithm has

the minimal AWT, ATAT and NCS.

3.4 Simulation
FCFS, SJF, RR, IRR, LJF+CBT and the proposed (NIRR)

algorithm were simulated and their performance on four

performance criteria: AWT, ATAT, ART and NCS were

observed. The simulations were carried out in a single

processor environment with only CPU bound and no I/O

bound processes. The system was assumed to have no context

switching cost.

A process generator routine was built to generate the process

sets. Each process in the process set is a tuple: <process_id,

CPU_time)>.

The Burst time (i.e. the CPU_time) was generated using

uniform distribution. A process burst time generator was

developed to take care of the random burst time of different

processes in the system.

3.4.1 Experimental Setup
Hardware

 Hewlett Packard (HP) laptop with a T2300

processor running at 1.66GHz

 1.5GB of RAM and

 75GB of hard disk

Software

 Window XP operating system

 NetBeans IDE 6.7.1 version and JDK1.7

The following figures show results of the algorithms for

processes varying from 5 to 1000 taking the time quantum of

10ms (that will be used for RR and IRR) and burst time ranges

between 1 and 50ms.

Figure 8: Graph of Average Waiting Time

Figure 8 above shows the graphical representation of the

result of AWT. SJF produces the minimal result followed by

the proposed algorithm (NIRR). This is followed by

LJF+CBT, FCFS, IRR and RR respectively. And Figure 9

below shows the graphical representation of the result of

ATAT. SJF produces the minimal result followed by the

proposed algorithm (NIRR). This is followed by LJF+CBT,

FCFS, IRR and RR respectively.

P1 P5 P4 P2 P3 P3

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 4, March 2014

32

Figure 9: Graph of Average Turnaround Time

Figure 10: Graph of Number of Context Switches

Figure 10 above shows the graphical representation of the

results of number of context switches. LJF+CBT produces the

minimal result followed by SJF and FCFS producing the same

results. This is followed by the proposed algorithm (NIRR),

IRR and RR respectively. And Figure 11 below shows the

graphical representation of the result of average response

time. RR produces the minimal result followed by IRR, then

the proposed algorithm (NIRR). This is followed by SJF,

LJF+CBT and FCFS respectively.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 4, March 2014

33

Figure 11: Graph of Average Response Time

4 CONCLUSION
A new algorithm based on improvement on the IRR known as

A New Improved Round Robin (NIRR) CPU Scheduling

Algorithm was proposed. This proposed algorithm (NIRR)

together with FCFS, SJF, RR, IRR and LJF+CBT CPU

scheduling algorithms were implemented in Java and their

results were compared based on four scheduling criteria

namely, AWT, ATAT, ART and NCS.

The simulation results show that SJF is the optimal scheduling

algorithm in terms of minimizing AWT and ATAT. LJF+CBT

and RR are the optimal algorithms in terms of minimizing

NCS and ART respectively.

Based on the results obtained, the proposed algorithm (NIRR)

is preferred for systems that adopt the RR Scheduling because

it produces minimal AWT, ATAT and NCS compared to RR

and IRR. In the future work, more tests should be done based

on the burst time of processes that follow different patterns of

statistical distributions.

5 REFERENCES
[1] Abdullahi, I., and Junaidu, S. B (2013): Empirical

Framework to Migrate Problems in Longer Job First

Scheduling Algorithm (LJF+CBT), International Journal

of Computer Applications (0975 – 8887) Volume 75–

No.14, pp 9-14.

[2] Ajit, S, Priyanka, G and Sahil, B (2010): An Optimized

Round Robin Scheduling Algorithm for CPU

Scheduling, International Journal on Computer Science

and Engineering (IJCSE), Vol. 02, No. 07, 2383-2385,

pp 2382-2385.

[3] Behera, H.S, Mohanty, R and Debashree, N (2010): A

New Proposed Dynamic Quantum with Re-Adjusted

Round Robin Scheduling Algorithm and Its Performance

Analysis, International Journal of Computer Applications

(0975 – 8887) Volume 5, No.5, pp 10-15.

[4] Ishwari, S. R and Deepa, G (2012): A Priority based

Round Robin CPU Scheduling Algorithm for Real Time

Systems, International Journal of Innovations in

Engineering and Technology (IJIET), Vol. 1 Issue 3, pp

1-11.

[5] Lalit, K, Rajendra, S and Praveen, S (2011): Optimized

Scheduling Algorithm, International Journal of Computer

Applications, pp 106-109.

[6] Manish K. M. and Abdul Kadir K. (2012): An Improved

Round Robin CPU Scheduling Algorithm, Journal of

Global Research in Computer Science, ISSN: 2229-

371X, Volume 3, No. 6, pp 64-69.

[7] Operating Systems_ CPU Scheduling,

http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSyst

ems/5_CPU_Scheduling.html ,accessed 8th October

2013.

[8] Soraj, H and Roy, K.C: Adaptive Round Robin

scheduling using shortest burst approach, based on smart

time slice", International Journal of Data Engineering

(IJDE), Volume 2, Issue 3,

www.cscjournals.org/csc/manuscript/Journals/IJDE/.../IJ

DE-57.pdf,accessed01th December 2012.

[9] Suri, P.K and Sumit, M (2012): Design of Stochastic

Simulator for Analyzing the Impact of Scalability on

CPU Scheduling Algorithms, International Journal of

Computer Applications (0975 – 8887) Volume 49,

No.17, pp 4-9.

IJCATM : www.ijcaonline.org

