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ABSTRACT
Compressive sensing(CS) is an emerging research field that
has applications in signal processing, error correction, medical
imaging, seismology, and many more other areas. CS promises to
efficiently reconstruct a sparse signal vector via a much smaller
number of linear measurements than its dimension. In order
to improve CS reconstruction performance, this paper present
a novel reconstruction greedy algorithm called the Enhanced
Orthogonal Matching Pursuit (E-OMP). E-OMP falls into the
general category of Two Stage Thresholding(TST)-type algorithms
where it consists of consecutive forward and backward stages.
During the forward stage, E-OMP depends on solving the least
square problem to select columns from the measurement matrix.
Furthermore, E-OMP uses a simple backtracking step to detect
the previous chosen columns accuracy and then remove the false
columns at each time. From simulations it is observed that E-OMP
improve the reconstruction performance better than Orthogonal
Matching Pursuit (OMP) and Regularized OMP (ROMP).

General Terms:
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Keywords:
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1. INTRODUCTION
Exploiting the sparse nature of the signals is one of the most
important problems in various signal processing applications such
as signal compression, inverse problems and the newly developed
Compressive Sensing (CS)[1] approach. CS is a new theory of
sampling in many applications, such as data network, sensor
network [2], digital image and video camera, medical systems
and analog-to-digital convertors [3]. CS technique is employed by
directly acquiring a compressed signal representation of length M

for a length N signal with M < N , which aims to measure sparse
and compressible signals at a rate significantly below the Nyquist
rate. For a one-dimensional real-valued discrete-time signal x ∈
RNof length N with S << N , where S is nonzero entries
or sparsity level of the signal x, CS framework considers to
reconstruction the signal x from the incomplete measurements.

y = Φx (1)

where y is an M × 1 vector with M < N and Φ represents
M × N sampling matrix. Since M < N , the reconstruction of x
from y is generally ill-posed. However, Cands [4, 5] and Donoho’s
[1, 6] work states that if x is sparse enough, in the sense that
there are very limited S non-zero components in x, then the exact
reconstruction is possible and x can be well reconstructed from
only M ≤ O(S log(N/S)) measurements by reformulates Eq.(1)
as a sparsity-promoting optimization problem

x = arg min‖x‖0 subject to y = Φx (2)

where ‖x‖0, called the norm L0 by abuse of terminology, denotes
the number of nonzero elements in x. There are two families can
be alternatively used to solve Eq.(2). One is the basic pursuit that
is a convex relaxation leading to the norm minimization L1 in
which replace theL0 minimization in Eq.(2) with its closest convex
approximation, the L1 minimization. Several different schemes
have been proposed for solving the L1 minimization such as using
Linear Programming (LP)problem[7]. Although, L1 optimization
methods could be used to solve the reconstruction problem, the
computational cost is high enough, which makes them impractical
for most CS applications.
Hence, the other family which called iterative greedy algorithms
received significant attention due to their low complexity and
simple geometric interpretation. They include the Matching Pursuit
(MP)[8], Orthogonal Matching Pursuit (OMP)[9], Compressive
Sampling MP (CoSaMP) [10], Subspace Pursuit (SP) [11], Iterative
Hard Thresholding (IHT) [12], Regularized OMP (ROMP)[13],
the Stagewise OMP (StOMP)[14] algorithms. In addition, [15]
provides a framework called Two Stage Thresholding (TST)under
which the two algorithms SP and CoSaMP fall.
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This paper proposes a new iterative greedy algorithm , called
Enhanced Orthogonal Matching Pursuit (E-OMP) for signal
reconstruction. E-OMP employs forward selection and backward
removal steps which iteratively expand and shrink the support
estimate of the original data. E-OMP can operate both in the
noiseless and noisy regime, allowing for exact and approximate
signal recovery, respectively.
The rest of the paper is organized as follows: Section 2 briefly
review related work. Problem descriptions and motivation are
presented in section 3. Section 4 introduces E-OMP algorithm
to carry out the proposed problem. The simulation of E-OMP
algorithm is presented in section 5. In section 6, we conclude our
work.

2. RELATED RESEARCH
During the past few years Compressive Sensing signal
reconstruction problem has attracted a lot of attention from
the research community. The work presented in this paper has been
inspired by various existing research efforts. Historically, Matching
Pursuit (MP) [8] is the first greedy pursuit. MP expands the support
set T (the set of columns selected from Φ for representing y) of
x by the dictionary atom, i.e. columns of the dictionary Φ which
has the highest inner-product with the residue at each iteration.
Major drawback of MP is that it does not take into account the
non-orthogonality of the dictionary, which results in suboptimal
choices of the nonzero coefficients.
The non-orthogonality of dictionary atoms is taken into account
by the Orthogonal Matching Pursuit (OMP) [9]. OMP applies the
greedy algorithm to pick the columns of Φ by finding the largest
correlation between Φ and the residual of y, this process called
Forward step. At each iteration, one coordinate for the support of
the signal x is calculated. Hopefully after K iterations, the entire
support of the signal x will be identified.
Recently, more sophisticated pursuit methods, which select
multiple columns per iteration, have appeared. For example
Stagewise OMP, or StOMP [14] which selects in each step all
columns whose inner-products with the residue is higher than
an adaptive threshold depending on the L2 norm of the residue,
using a rule inspired by ideas from wireless communications.
StOMP is faster than OMP because of the selection rule, and it
sometimes provides good performance, although parameter tuning
can be difficult. There are no rigorous results available for StOMP.
Alternatively, Needell and Vershynin developed and analyzed
another greedy approach, called Regularized OMP, or ROMP [13].
ROMP groups inner-products with similar magnitudes into sets at
each iteration and selects the set with maximum energy.
Compressive Sampling Matching Pursuit (CoSaMP) [10] and
Subspace Pursuit (SP) [11] combine selection of multiple columns
per iteration(forward step) with a backtracking step. At each
iteration, these first expand the selected support by addition
of new columns, and then prune it to retain only the best S
atoms(backtracking step). While SP/CoSaMP methods improve
the performance of OMP method, they require the sparsity
level S to be known for reconstruction. However, in most
practical applications,this information could not be known before
reconstruction. One way out is to guess the value of S before
reconstruction. However, using an incorrectly estimated S, the
performance will degrade quickly [16].
Iterative Hard Thresholding (IHT) [17] employs an iterative
gradient search that first updates the sparse estimate in the direction
of the gradient of the residue and then prunes the solution by
either thresholding or keeping only the S largest entries. A recent

IHT variant, Nesterov Iterative Hard Thresholding (NIHT) [18]
employs Nesterovs proximal gradient [19] to update the sparse
representation. NIHT provides no a priori performance guarantee,
but still an online performance guarantee.
Like OMP/StOMP methods, E-OMP acts a stage by stage
estimation of the true support set. Furthermore, similar to
SP/CoSaMP methods, it uses a simple backtracking step to detect
the previous chosen columns’ reliability and then remove the
unreliable atoms at each time.
However, unlike most of the OMP-type methods, the first step
of E-OMP method is to start by solving a least-squares problem
and select only the columns of Φ that have the largest entries
in this least-squares signal approximation. Furthermore, unlike
SP/CoSaMP methods E-OMP method can achieve the blind sparse
reconstruction without knowing the sparsity level S a priori.
Besides, E-OMP adaptively chooses the forward and backward size
depended on M rather than sparsity level S like SP/CoSaMP. The
used notations in the following sections are given in Table 1.

3. PROBLEM DESCRIPTIONS
In this section, some space is devoted to a short overview of OMP
which is important for the proposed algorithm because of their
resemblance to the E-OMP algorithm and then the problem of
OMP algorithm is described. Finally, paper motivation to solve this
problem is proposed.
OMP is a forward algorithm which builds up an approximation one
step at a time by making locally optimal choices at each step. At
iteration k, OMP appends T with the index of the dictionary atom
closest to rk−1, i.e. it selects the index of the largest magnitude
entry of:

C = Φ∗rk−1 (3)

T = T ∪ C (4)

The projection coefficients are computed by the orthogonal
projection:

W = Φ†T y (5)

At the end of each iteration, the residue is updated as

rk = y −ΦTW (6)

These steps are repeated until a halting criterion is satisfied (the
number of iterations= S). After termination, T and W contains the
support and the corresponding nonzero entries of x, respectively.
For more clarity and to illustrate OMP problem, consider the
following simple example:

Φ =

 1 1 0
1 1 0
1 0 0
1 0 1

 , x =

 0
1
1

 , y =

 1
1
0
1

 , S = 2

where y = Φx, Φ ∈ RM×N , x ∈ RN , y ∈ RM and S non
zero components. Given a sensing matrix Φ and an observation
vector y, find the best solution to y = Φx with at most S non
zero components.
By applying OMP algorithm with the following initialization
parameters to solve y = Φx.

r0 = y =

 1
1
0
1

 , S = 2 , T = {}, k = 1 and W = 0.
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Table 1. : E-OMP Algorithm Notations

Symbol Meaning
S none zero components (sparsity level)
‖ . ‖p the usual Lp vector norm

Φ measurement matrix
u a positive integer
T estimated support set
rK the residue after the k′th iteration
x the target signal
xu restricting x to its u largest-magnitude components
W a projection coefficients set
∗ stands for matrix transposition
C a set which includes the largest magnitude entry of Φ∗rK−1

x|T the restriction of the signal x to the set T
ΦT the column submatrix of Φ whose columns are listed in the set T
Φ† the pseudo inverse of a tall, full-rank matrix Φ and it expressed as(Φ† = (Φ∗Φ)−1Φ∗)
E sparse approximation solution
H candidate set
F least-squares signal approximation set

Kmax maximum number of itreations
β termination parameter
ξ Forward step size(ξ = M/2)
ρ backward step size(ρ = ξ −M/3)

At iteration k = 1, OMP appends T with the index of the
dictionary atom closest to rk−1, i.e. it selects the index of the largest
magnitude entry of:

C = Φ∗rk−1 =

 1 1 1 1
1 1 0 0
0 0 0 1


 1

1
0
1

 =

 3
2
1


Therefore, the index of the first column will be added to the set
T (false column selection by OMP), since it is the index of the
largest magnitude entry of C. Then OMP forms a new signal
approximation by solving a least-square problem:

W = Φ†1y = (Φ∗1Φ1)−1Φ∗1y

=

 ( 1 1 1 1 )

 1
1
1
1



−1

( 1 1 1 1 )

 1
1
0
1


= 0.7500

Finally, OMP updates the residual

r1 = y −ΦTW =

 1
1
0
1

− 0.7500

 1
1
1
1

 =

 0.25
0.25
−0.75
0.25


During the next iterations, the OMP algorithm will add the second
column index to set T .
From the previous example it is noticed that, at the first iteration,
OMP algorithm selects the first column where the index of
magnitude entry ofC is large. However, it is not the correct column
and build its approximate solution depending on this false selection.
In this case, the correct set of columns(second and third) cannot
be selected by OMP algorithm because OMP method is not able to
remove the first column index which is selected in the first iteration.

3.1 Motivation
All forward greedy algorithms, such as OMP and other MP
variants, enlarge the support estimate iteratively via forward
selection steps. As a result, the fundamental problem of all forward
greedy algorithms is that, they possess no backward removal
mechanism, any index that is inserted into the support estimate
cannot be removed. So, one or more incorrect elements remain in
the support until termination may cause the reconstruction to fail.
To avoid this drawback during the forward step, E-OMP selects
the columns from Φ by solving the least square problem that
increasing the probability of selecting the correct columns from
Φ. It gives the best approximation solution better than using the
absolute value of inner product as all OMP-types algorithms. Also,
E-OMP algorithm adds a backtracking step to give itself the ability
to cover up the errors made by the forward step.

4. ENHANCED ORTHOGONAL MATCHING
PURSUIT (E-OMP)

E-OMP algorithm is an iterative two-stage greedy algorithm.
The first stage of E-OMP is the forward step which solving a
least-squares problem to expand the estimated support set T by ξ
columns from Φ at each time, where ξ called the forward step size.
These ξ indices are chosen as the indices of the columns which
have the largest entries in this least-squares signal approximation.
Then, E-OMP computes the orthogonal projection of the observed
vector onto the subspace defined by the support estimate set T .
Next, the backward step prunes the support estimate by removing
ρ columns chosen wrongly in the previous processing and identify
the true support set more accurately, where ρ called the backward
step size. The process of E-OMP algorithm is given in Algorithm
1.
The E-OMP algorithm consist of several steps: Initialization step,
Forward step, Estimation step, Backward step, Sample update step
and Termination rule step. These Steps are discussed as follows:
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Algorithm 1 Enhanced Orthogonal Matching Pursuit (E-OMP)

1: INPUT: Φ: M ×N Measurement Sampling matrix
and y:Sampled Measurement Vector

2: OUTPUT: S:sparse approximation EK of the target signal.
3: Initialization :
4: r0 = y (Initial residue)
5: E0 = 0 (Initial approximation )
6: T = φ(Estimated support set, empty at the beginning)
7: H = φ(Candidate set)
8: F = φ (Least - square signal approximation set)
9: while true do

10: K = K + 1
11: F = Φ†T r

k−1 (Solving the least square problem)
12: H = supp(Fξ) (Select large M/2 components)
13: T = H ∪ supp(EK−1) ( Merge supports)

14: W |T = Φ†T y (Signal estimation by least-squares)
15: W |T c = 0
16: EK = WM/3 (Prune ρ to obtain next approximation

i.e.retaining only M/3)
17: rK = y −ΦEK

18: if |rK‖2 < β orK = Kmax then
19: break
20: end if
21: end while

0-Initialization step: The E-OMP algorithm initialized as, the
residual r0 = y, initial approximation E0 = 0, estimated support
set T = φ and candidate set H = φ (Algorithm 1, Lines 3-8 ).

1-Forward step: The first step is to solve the least square problem,
i.e. F = Φ†rk−1. Next, the algorithm creates the candidate set H
by choosing the largest magnitude elements ξ = M/2 (forward
step size) in F ; and then it appends T with set of newly identified
components H united with the set of components that appear in
the current approximation EK−1 (Algorithm 1, Lines 11-13).

2-Estimation step: In this step, the projection coefficients
are computed by the orthogonal projection of y onto Φ†T , i.e.
W |T = Φ†T y (Algorithm 1, Lines 14-15).

3-Backward step: The algorithm produces a new approximation
by removing σ=ξ − M/3 (backward step size) indices with the
smallest magnitude projection coefficients (Algorithm 1,Line 16).

4-Sample update: The residue is updated as rk = y − ΦEK so
that they reflect the residual, the part of the signal that has not been
approximated (Algorithm 1, Line 17).

5-Termination rule: Since sparsity level S is not an input
parameter, E-OMP will stop when the current residue’s L2 norm
‖rK‖2 smaller than the β termination parameter or when the
maximum number of iterations is reached. After termination of the
algorithm at the Kth iteration, EK contains the corresponding
nonzero values. To avoid the algorithm running for too much
iteration in case of a failure, the maximum size of iterations is
also limited by Kmax(for example, Kmax = M like in our
experiments).

The termination parameter β has a very small value in practice
(10−6 for the experiments below)when the observations are

noise-free. For noisy observations, β should be selected depending
on the noise level (Algorithm 1, Lines 18-20).
The work done by Wei Dai and Olgica [11] demonstrated that the
reconstruction problem can be solved as long as the sparsity level
S ≤ M/2. So, E-OMP algorithm set the forward step size as ξ =
M/2 to ensure that it selects at least one correct column in each
iteration. For the backward step size, in order to find an empirically
optimal rule for choosing ρ, we test E-OMP with various ρ choices
among the experiments. It turns out that choosing ρ = ξ −M/3
leads to the optimal reconstruction performance in practice.

5. SIMULATION RESULTS
In this section the performance of the proposed technique is
evaluated in comparison to ROMP and OMP. The experiments
cover different nonzero coefficient distributions, including uniform
and Gaussian distributions as well as binary nonzero coefficients.
The reconstruction is investigated via Gaussian and Bernoulli
observation matrices and finally, E-OMP is demonstrated for
reconstruction from noisy observations.
All the simulations in this section were performed in the MATLAB
environment and repeated over 500 randomly generated S sparse
samples of length N = 256 from which M = 128 random
observations were taken via the observation matrix Φ.
Reconstruction accuracy are given in terms the Average
Normalized Mean Squared Error (ANMSE), which is defined as
the average ratio of the ‖L‖2 norm of the reconstruction error to
‖x‖2 over the 500 test samples. For each test sample, we employed
an individual observation matrix Φ whose entries were drawn from
the Gaussian distribution with mean 0 and standard deviation 1/N .

5.1 Different coefficient distributions
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Fig. 1: Reconstruction results over sparsity for uniform sparse
signals employing Gaussian observation matrices.

The first set of simulations employ sparse signals with nonzero
coefficients drawn from the uniform distributionU [−1, 1]. We refer
to these signals as uniform sparse signals in the rest. The results
of these simulations for S from 5 to 70 are depicted in Fig.1.
In this test E-OMP clearly provide lower ANMSE than ROMP
and OMP. As expected, the ANMSE of OMP is the worst, while
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Fig. 2: Reconstruction results over sparsity for Gaussian sparse
vectors using Gaussian observation matrices.
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Fig. 3: Reconstruction results over sparsity for sparse binary signals
using Gaussian observation matrices.

that of ROMP is only slightly better. ROMP provides lower error
than OMP, however it is still worse than E-OMP, where OMP and
ROMP start to fail when S > 6 and when S ≥ 22, respectively and
E-OMP fails only when S > 52.
The second set of simulations employ Gaussian sparse vectors,
whose nonzero entries were drawn from the standard Gaussian
distribution. The results of these simulations for S from 5 to 55
are depicted in Fig. 2.
Fig. 2 depicts the ANMSE rates for this test. In this scenario,
E-OMP provides clearly better reconstruction than ROMP and
OMP. E-OMP provides lower ANMSE rate than all the other
algorithms, where OMP and ROMP start to fail when S ≥ 15 and
when S > 45 respectively and E-OMP method fails only when
S > 47. ROMP yields the worst ANMSE, as a consequence of the
almost complete failure of a non-exact reconstruction.
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Fig. 4: (a) Reconstruction results over observation lengths for
binary sparse signals where S = 20 using a single Gaussian
observation matrix for each M., (b)Reconstruction results over
observation lengths for binary sparse signals where S = 20 using
a Bernoulli distribution matrix for each M.

Next set of simulations employ sparse binary vectors, where the
nonzero coefficients were selected as 1. The results are shown in
Fig. 3. E-OMP achieve overwhelming success over ROMP and
OMP methods in this case, where OMP and ROMP start to fail
when S ≥ 12 and when S > 13 respectively and E-OPM method
fails only when S > 35.
The success of E-OMP is related to its way to selects the columns of
Φ by solving the least-square problem instead of using the absolute
value of inner product such as all OMP methods. On the other hand,
the failure of ROMP is related to the fact that this is a particularly
challenging case for OMP-type of algorithms [19]. OMP is
shown to have non-uniform guarantees and though mathematical
justification of ROMP is quite hard, this non-uniformity seems to
be carried over to ROMP for this type of signals.
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Fig. 5: (a) ANMSE for reconstruction of uniform sparse signals
from noisy observations using Gaussian observation matrices.,
(b)ANMSE for reconstruction of binary sparse signals from noisy
observations using Gaussian observation matrices.

5.2 Performance over different observation lengths
Another interesting test case is the reconstruction ability when the
observation length, M , changes Fig. 4a depicts the reconstruction
performance over M for binary sparse signals where S = 20
and M is changed from 50 to 130 with step size 5 to observe
the variation of the average reconstruction error. For each M
value, a single Gaussian observation matrix is employed to obtain
observations from all signals. In this test E-OMP clearly provide
lower ANMSE than the others methods.
In order to question the choice of the observation matrix, the last
scenario is repeated with observation matrices drawn from the
Bernoulli distribution. The ANMSE for this test are illustrated
in Fig. 4b. Comparing Fig. 4b with Fig.4a, the ANMSE values

remain quite unaltered for E-OMP and ROMP, while that for OMP
decreases.

5.3 Reconstruction from noisy observations
Now, reconstruction of sparse signals is simulated from noisy
observations y = Φx + n which are obtained by contamination
of white Gaussian noise component n(n = 10−4). The simulation
is repeated for 500 binary and 500 uniform sparse signals, where N
= 256 and M = 128. The sparsity levels are changed from 5 to 50
and from 5 to 70 with step size 1 for the binary and uniform sparse
signals, respectively. The observation matrix Φ drawn from the
Gaussian distribution. Fig.5a and Fig.5b depicts the reconstruction
error for the noisy binary and uniform sparse signals. In this test
E-OMP clearly produces less error than ROPM and OMP.

6. CONCLUSION
In this paper, we have proposed a novel CS reconstruction
approach, Enhanced Orthogonal Matching Pursuit (E-OMP),
which falling into the category of TST algorithms. By solving
the least-square problem instead of using the absolute value
of inner product, E-OMP increase the probability to select the
correct columns from Φ and therefore, it can give much better
approximation performance than all the other tested OMP type
algorithms. In addition to, E-OMP uses a simple backtracking
step to detect the previous chosen columns reliability and then
remove the unreliable columns at each time. In the provided
experiments, E-OMP, with some modest settings,performs better
reconstruction for uniform and Gaussian sparse signals. It also
shows robust performance under presence of noise. E-OMP achieve
overwhelming success over ROMP and OMP methods for the
sparse binary signals. To conclude, the demonstrated reconstruction
performance of E-OMP indicates that it is a promising approach,
that is capable of reducing the reconstruction errors significantly.
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