International Journal of Computer Applications (0975 8887)
Volume 90 - No. 17, March 2014

Modal Operators in Intuitionistic Fuzzy Matrices

P. Murugadas
Assistant Professor
Mathematics Section, FEAT
Annamalai University,
Annamalainagar, India.

ABSTRACT

In this paper, we introduce modal operators for Intuitionistic Fuzzy
Matrix and derive some results.
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1. INTRODUCTION

In conventional fuzzy set , a membership function assigns to each
element of the universe of discourse a number from the unit interval
[0,1] to indicate the degree of belongingness to the set under con-
sideration. Since the emergence of fuzzy set theory by Zadeh[8],
many new approaches and theories treating imprecision and un-
certainty have been proposed. One phenomenal generalization is
intuitionistic fuzzy set theory by Atanassov[1] which is character-
ized by two function expressing the degree of belongingness and
the degree of nonbelongingness, respectively. This idea, which is a
natural generalization of a standard fuzzy set, seems to be useful
in modelling many real life situations. In this generalization he in-
troduced some operators called (modal operators) which are mean-
ingless in fuzzy set theory and found a promising direction of re-
search. Im et al.,[2], Jeong and Lee Hong[3], Khan S. K, Pal M and
Amiya K. Shyamal[5], Meenashi AR and Gandhimathi[4], Sriram
and Murugadas[6,7]and several authors have studied Intuitionistic
Fuzzy Matrices. In this paper we explore the modal operators to
IFM and discuss some properties under max-min composition.

2. PRELIMINARIES

DEFINITION 2.1. [1]An Intuitionistic Fuzzy Set(IFS) A in
FE(universal set) is defined as an object of the following form
A = {(z,pa(z),va(z))/z € E},where the functions: p4(z) :
E — [0,1]) and v4(z) : E — [0, 1] define the membership and
non-membership of the element z € E respectively and for every
z€FE:0< pa@) +valr) <L

For simplicity we consider the pair (z, x’) as membership and non-
membership function of an IFS with « + z' < 1.

DEFINITION 2.2. [6] For (z,2'), (y,y') € I F'S, define
(2, &)V {,y') — (max{z, y}, min{a’,'})
(z,2") Ay, y') = (min{z, y}, max{z’,y'})
(x,2)¢ = (2',z). Here we can replace V by + (the component
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wise addition) and A by o (the component wise multiplication). For
component wise multiplication even we can use (z,z)(y,y’) =
(min{z, y}, max{a’,y'}).
Here (z,2') > (y,y) means © > yand 2 < y. And (z,2') <
(y,vy') means x < y and >y

DEFINITION 2.3. [6] An IFM is a matrix of pairs A =
({aij,aj;)) of non negative real numbers satisfying a;; + aj; < 1
for all 4, j. The universal IFM J = ((1, 0)) for all entries and The
zero matrix O = ({0, 1))for all entries. Denote the set of all IFMs
of order m x n by .%,,,, and square matrix of order n by .Z,

DEFINITION 2.4. [6] For IFMs A = ({aij, aj;))mxn, B =
(<b”,bw>)mxn and C' = ((clj,c’-j>)mp,deﬁne
AVB ((aU’ 2]> <b7j’b,z‘7>)7A+B
AN B = ((aiz,a3;) N (bij, b)) = Ao B
AC = (Vk(<azk, m> A {Cris Cj)));
Ao C = (N, ({am, ajy,) V (crj, ;)
AT = ({aji, afy)), A = ((a};, ai;)).-

Also we can write
n

C= (3 auer, T (@) + €)))

DEFINITION 2.5. [1] For IFS A Atanassov has defined the
modal operators O and <> in the following way.
OA = {{na(z),1 — pa(x))|z € E, the Universal set} and
CA={(1—-vu(x),va(z))|z € E}.

PROPOSITION 2.6. [7] (AoB)©
PROPOSITION 2.7. [7] (A+ B)°

= A°+B¢forA,B € %
= AoB°for A,B €

3. RESULTS USING MODAL OPERATORS IN IFM

In this section we define the operators O, & for IFM and discuss
the relation between this new operators.

DEFINITION 3.1. For IFM A, define OA = ({a;;,1 — a;;))

and OA = ((1—a;;,a;;)).
LEMMA 3.2.
1- H (alk—l—bk]) = Z(l_alk)(l_bkj) (3])
k=1 k=1

n
PROOF. Let [] (a;x + bi;) = a; for some [,
k=1

then 1 — H (aik + bk]) =1-ay, 3.2)
k=1



a; > blj andso 1l —ay <1 —by;.
Now Z (I=ai)(T=bi;) = (L=au)(1=by;)+ > (1—au)(1-

k#l
bk])
= (1 — ail) + Z (1 — alk)(l — bkj) (33)
k#l
case 1.If a;, > ay; and by; < ay
l—ay <l—agandl—by; >1—ay; >1—a; = (1—au)(1—
bij) = (1 — air).
Therefore (3.3) becomes
> (1—aw)(—brj) = (1 —au)+ (1 —aw) =
k=1
From (3.2) and (3.4), (3.1) holds.
case 2. If a;;, < a;; and bkj > a4
1—a; >1,ail’1,bkj <l—-ay<1l—a
Therefore (1 — a;,)(1 — bg;) = (1 — by;) and

21(1 — )L —biy) = (1 —aw) + (1 —byy) = (1 — an)-(3.5)

From (3.2) and (3.5), (3.1) holds. Similarly the following cases are
also hold

case.3 If a;, > ay and by; > ay.

case.4 If a;, < ay and by; < ay. O

LEMMA 3.3. 1—Zaikbkj = H((l—am)—l—(l—bk]))(.?(i)
k k

(1—ai)...3.4)

PROOE. Set > a;;bx; = a; for some [, then a;; < by; and so
l—ay>1-— blj
Therefore 1 — > a;pbr; =1 — ay ..(3.7)

Now 1;[((1 - a;) + (1 =bx;)) = ((T—au)+(1—by)) [T((1-

kL
ag) + (1= byy))
=(1-ay) 1;[((1 —a;) + (1 —bgy)) ..(3.8)

case.l If a;, > a;; and by; < ay,

thenl —a;, <l—agandl —by; >1—a; >1—a

Therefore [ [((1—a;,)+(1—bk;)) = (1—au)(1—bk;) = (1—ay)
k

...(3.9)

Thus (3.6) holds from (3.7)and (3.9).

case.2 If a;;, < a4 and bk]’ > a;

thenl —a;, >1—agandl —by; <1—ay <1—a

Therefore [ [((1—a;x)+(1—b;)) = (1—au)(1—au) = (1—ay)
K

...(3.10)
Thus (3.6) holds from (3.7) and (3.10). Similarly we can prove the
other cases. [

LEMMA 3.4. 1 — mln{a,j,bm} = mam{l — aij,l — bl]}
(3.11)
(ie) 1 —a;bi; = (1 —ai;) + (1 = biy)

PROOEF. case 1. If Qa;j Z bi]'7 then 1 — Qa;j S 1-— bij
Therefore 1—a¢jbi]‘ = 1—b¢j and (1—a¢j)+(1—bij) = 1—bij.
Hence (3.11) holds.
case 2. If a;; < b;;,then 1 —a;; > 1 — b;;
Thereforelfaijbi]- = 17011'3' and (lfa”)—ﬁ—(lfb”) = 1*(11']'.
Hence (3.11) holds. O

LEMMA 3.5. 1 — max{aij,bij} = mln{l - aij,l - sz}
..(3.12)

PROOF. case 1. If Aij Z b,‘j, then 1 — (€27 S 1-— b”
Therefore 1—(a;;+b;;) = 1—a,; and (1—a;;)(1—b;;) = 1—a,;.
Hence (3.12) holds.
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case 2. If a;j S bz‘ja then 1 — [£27] Z 1- bU
Therefore 1—(011]+b”) = 1—bz] and (1—012])(1—b”) = 1—bZ]
Hence (3.12) holds. O

LEMMA 3.6. For A = ((aij,a;;)) € Fmn, (0A) = GA
and (CA°)c = OA.

,PROOF. Ac = ((a;j,aij?)A l/“herefore OA¢ = ((a;wl -
a;;)) = (0A°)° = ({1 — a;,a;;)) = OA. Similarly OA° =
(1 —aij, aiz) = (0A°)° = ((ay;, 1 — ay;)) = OA.
The following propositions are straight forward from the definition
of OAand CA. O

PROPOSITION 3.7. For A the Universal matrix J and zero ma-
trix O in %,
HoEed)=J
ayo@)=J
(iii) O(©0) = O
(iv) ©(80) = O
W) O(CA) =0A
(vi) ©(O0A) = 0A
(vi)) 0OA = OA(O2A = OA)
(vili) OCCA = CA(C2A = O A)
(ix)00 = 0,00 =0
(x)O0J =J,0J = J.

PROPOSITION 3.8. For A, B € %,,,0A00B = O(A° +
Be)e.

PROOE. A°+ B¢ =
((max{au, zg} mln{a’1]7 Z]}>)

(Ac + BC)E —

(<mln{al]7 ’LJ} ma‘x{a1]7 zg}>)

Now O(A°+B°)¢ = ((minf{a;;, b;;}, 1— mln{a” bi;})) ...(3.13)
We have OA = ((aij, 1 — a;5)), 0B = ((b;;, 1 — b))

Therefore 0A o OB =

((min{ag;, bi; }, max{l — a;;,1 — by }))

= ((min{aij, bi]‘}7 1-— min{ai]-, b”}>) (314)
(by Lemma (3.3)). Therefore A o OB = O(A° + B€)° by (3.13)
and (3.14). O

PROPOSITION 3.9. For A, B € %,,,,0A+ 0B = O(A®o
Be)e.

PROOF. Ao B =
((mln{a”, ’L]} ma‘X{a’L]’ 1]}>)
(AC o BC)C J—
((max{mﬁ b’L] }7 mln{a’”’ zg}>)
Now O(A0B¢)°¢ = ((max{a”, bi;}, 1—-max{a;j, b;;}))...(3.15)
We have OA = ((ai;, 1 — ai5)),
OB = ((bij; 1 — bi;))
Therefore OA + OB =
((max{a;;,b;;}, min{l —a;;,1 —b;;}))
= ((max{a;j, b;; }, 1 — max{a,;, b;; }))(by Lemma (3.4))...(3.16)
(by Lemma (3.4)). Therefore A + OB = O(A° o B€) by (3.15)
and (3.16).
In the dual fashion we can prove A o OB = O(A° 4+ B€)°. O

PROPOSITION 3.10. For A, B € .%#,,,, 0OA0 OB = O(A° +
BC)C
PROOF. A€+ B¢ =

(<ma‘x{az]7 ’Lj} mln{a1]7 ZJ}>)
(Ac + Bc)c —

((mln{a”, 1.7} ma‘x{az]7 zy}))



Now O(A¢ + B¢ = ((1 — max{a”, ”} max{am, ”}>)

(3.17) ,
We have <>A:(<1—a/”,am)) OB = ({1 bm,b”>)
Therefore G AoOB = ((min{l— awl—b }max{a”, ”}>)

((1- max{a”, ”} max{a”7 ”}>) (by Lemma (3.3)) ...(3.18)
Therefore CA o OB = O(A€ + B€)¢ by (3.17) and (3.18).
In the dual fashion we can prove the following proposition. [

PROPOSITION 3.11. For A, B € Z,,,, CA+ OB = O (A0
Be)e.

PROPOSITION 3.12. For A, B € %,,,,0(AoB) = OAoOB.

PROOF. D(A o B) = ((min{aij, bz;}a 1- min{aij, b”}>) =
((min{aij, bi]'}7 max{l — Qij, 1- bz]}>) (by Lemma (33))
=0Ao
Similarly we can prove the following Propositions. [

PROPOSITION 3.13. For A, B € %#,,,,0A+0B =0(A+
B).

PROPOSITION 3.14. For A, B € %, CA+ OB =O(A+
B).

PROPOSITION 3.15. For A,B € Fppp, OCA0 OB = O(Ao
B).

PROPOSITION 3.16. For A, B,C € ., O((A+ B)oC) =
(0DA+0OB)oOC.

PROPOSITION 3.17. For A, B,C € %,,,,0((Ao Bo B) +
C)=(0A-0OB)+0OC.

PROPOSITION 3.18. For A, B,C € Zp,,O((Ao Bo B) +
C)=(CAoOB)+ OC.

4. RESULTS USING MAX-MIN PRODUCT
PROPOSITION 4.1. For A, B € %,,,,0(AB) = OAOB.

PROOF. AB = ((Z @irbij, H(a;k + b))
= 0(AB) = ((Z azkbkjy Zazkbk3>) (4
Now OAOB = ((Z aikbr;, H((1 —ag) + (1 — bkj))>)
= (<§ ikbij, 1 % @irbi; >k) (by Lemma (3.2)) (42)

From (4.1) and (4.2),
O(AB) =0A0B. O

PROPOSITION 4.2. For A, B € %,,,,(AB) =
(32 asnbuy, TT(ass + Biy)))

= O(AB) = ({1 - E[(a;k + ;) I;I(a;k + b)) (4.3)
((%(1 = ay,) (1= byy), Fkl(a;k + b))
=((1- ];[(a;k +byj)s ];[(a;-k + by;)))(by Lemma (3.1)) ...(4.4)

From (4.3) and (4.4),
O(AB) =CAOB. O

QCACB.

PROOF. AB =

Now CACB =

PROPOSITION 4.3. For A, B, € %, and C € %,

O((A+ B)C) = 0(AC + BC) = O(AC) 4+ O(BC) = O(A +
B)OC
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PROOF. (A + B)C = ({3_(aix + bir)ck;, ].;.[(a,ikb;k + Clkj)>)

= ((Zk:(aikckj + bikcrj), l—kl((a;-k + 6;) (b + €45)))
O((A+B)C) = (<zk:(aikckj +bikcrj), 1*%:(aikckj+bikckj)>)

...(4.5)

AC+BC = (X @ircr;+>0 bixcrs, [1(ah+cy,) [T(05+¢5,)))
k k k

= ((Zk:(aimj + bikcr;), H(( ik i) (bi + )

Therefore O(AC+BC) = ((Z(amck]—l—bmck]) Z @ikCrit
bikcr;))) .(4.6)
From (4.5), (4.6) and Proposition (3.9)0((A + B)C) = O(AC +
BC)

Similarly we can prove the following Proposition. [

PROPOSITION 4.4. For A € %#,,,,and B,C € F,,.,,
O(A(B + C)) = O(AB + AC) = O(AB) + O(AC) =
0(A)0(B + O).

The following Proposition can be proved analogically.

PROPOSITION 4.5. For A, B, € %, and C € Z,,,
O((A+ B)C) = O(AC + BC) = O(AC) + O(BC) = O(A+
B).OC.

Also the following Proposition is trivial.

PROPOSITION 4.6. (i) O(AB)OC = 0AOQ(BC)
(ii) O(AB)<OC = ©AS(BC) for any IFM of compatible order.

5. CONCLUSION

As we know fuzzy matrix theory play vital roles in fuzzy linear
equation and finding g-inverse of fuzzy matrix. Analogous to this,
most of the theory of fuzzy matrix has been extended to IFM. But,
is it possible to decompose any IFM in to any composition of fuzzy
matrices? The work for such a result is not yet started. If we are
able to do this, many of the results which are true for matrices will
also be true for IFM. We have a decomposition for IFM using the
above said results and it will be published in future.
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