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ABSTRACT 
The demand for satellite communication and a wide-ranging   

objective, however, is often to achieve maximum data 

transfer, in a minimum bandwidth while maintaining an 

satisfactory quality of transmission. The transmission quality 

is basically concerned with the probability of bit error at the 

receiver here with respect to communication. This is an 

attempt to achieve highest capacity with minimum error rate 

by implementing modern codes named as LDPC(Low Density 

Parity Check codes) and it is represented here various 

decoding schema to decode and encode them At the present 

time LDPC codes has received a superior interest because 

their error correction performance and their functional world 

wide applications. The paper represents LDPC significance 

,its characteristics and encoding and iterative decoding 

approaches to achieve channel capacity. Thus we need some 

technology that utilizes this available bandwidth by providing 

good error correction capability. We can also achieve it by 

using FPGA spartan 3e’s VHLD implementation. 

General Terms 
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Keywords 
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1. INTRODUCTION 
LDPC was introduced by Robert Gallager at MIT in 1960 in 

his PhD thesis[1].Low density parity check codes are linear 

block codes using generator matrix G in an encoder and parity 

check matrix H in a decoder[1]. The parity check matrix has 

M rows and N columns, where M represents check nodes and 

N represents variable nodes. Here the matrix is based on 

random construction techniques. Information bits depends on 

check nodes and code word bits are depends on variable 

nodes. Tanner Graph is the bipartite graph introduced to 

graphically represent these codes. They also helps to describe 

decoding algorithms. Tanner graphs are separated into two 

distinctive sets and edges are only connecting nodes of two 

different types mainly known as check nodes and variable 

nodes. The iterative decoding of code is the true optimum 

decoding if tanner graph contains no cycles. Therefore we 

want LDPC codes with few cycles.  Low-density parity-check 

(LDPC) codes are a class of linear block codes[4]. The name 

comes from the characteristic of their parity-check matrix 

which contains only a few 1’s in comparison to the amount of 

0’s. The advantage is that they provide a performance which 

is very close to the capacity for a lot of different Channels and 

linear time complex algorithms for decoding [2]. 

 

 

 

1.1 LDPC Codes   : Construction 
LDPC Codes are Special Linear block codes with sparse 

parity-check matrix H with dimensions M × N. To denote the 

length of code N and K to denote its dimension with 

information bits M=N-K. Hi,j =1 if code bit i is involved in the 

parity check equation j , and otherwise 0.Here all the 

operations are carried out in binary field. Since generally the 

parity check matrices are not in the symmetric form, symbol A 

is used to represent the parity check matrices and H for parity 

check matrices in symmetric form. The generator matrix G is 

N*K and parity check matrix A is (N-K)*N such that H.G=0 

.m is message vector of size k*1 and code word vector of size 

c*1.The row of parity check matrix as 

 

A =

 
 
 
 
 
𝑎1

𝑇

𝑎2
𝑇

.

.
𝑎𝑀

𝑇  
 
 
 
 

 

The equation 𝑎𝑖
𝑇𝑐 = 0 is said to be linear parity check 

construction on code word  c. The notation Zm=𝑎𝑚
𝑇

 c. 

where Zm  is parity check[2] . The generator matrix for 

encoding purpose corresponding to the parity check matrix A 

is as per following. Using Gaussian elimination with column 

pivoting as necessary to determine an M*M matrix 𝐴𝑝
−1 so 

that 

H =𝐴𝑝
−1𝐴 =[I A2] 

Here H from          

                                       G= 
𝐴2

𝐼
  

while A may be sparse, neither the systematic generator G 

nor H is necessarily sparse. A matrix is said to be sparse if 

fewer than half of the elements are nonzero.  

1.2 Representation of LDPC Codes    
Any linear code has a bipartite graph and a parity-check 

matrix representation. The matrix bellow is a parity check 

matrix with dimension n × m for a (8, 4) code. We have 

defined two numbers describing the matrix. Here Wr for the 

number of 1’s in each row and Wc for the columns. For a 

matrix to be called low-density the two conditions Wc < =n 
and Wr < = m must. 
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H = 

0 1 0
1 1 1

1 1 0 0 1
0 0 1 0 0

0 0 1
1 0 0

0 0 1 1 1
1 1 0 1 0

  

Fig 1:  Matrix Representation (LDPC) [4] 

The sparse property of LDPC gives rise to its algorithmic 

advantages. An LDPC code is of two types: Regular and 

irregular. It issaid to be regular if Wc is constant for every 

column and Wr is constant for every row & Wr = Wc 

𝑛

𝑚  . If  

Wc   is constant for every column and  is also constant for 

every row, then the LDPC code is said to be regular. The 

example matrix is regular with Wc = 2 and Wr  = 4.Through 

the graphical representation, we can also see the regularity of 

LDPC codes. There is the same number of incoming edges for 

every v-node and also for all the c-nodes. If H is low density 

but the numbers of 1’s in each row or column aren’t constant 

the code is called a irregular LDPC code. 

Tanner in 1981 introduced an effective graphical 

representation for LDPC Tanner codes. Not only provide 

these graphs a complete representation of the code, they also 

help to describe the decoding algorithm. The two types of 

nodes  in a Tanner graph are known here as variable nodes (v-

nodes) and check nodes(c-nodes) Tanner graph is also called 

as bipartite graph. The reason behind it is that the nodes of the 

graph are separated into two distinctive sets and edges are 

only connecting nodes of two different types.  

 

 

 

 

 

 

 

 

Fig 2: Tanner Graph corresponding to parity check 

matrix of 8 column (N) and 4 row(M)[4] 

The tanner graph consists of m check nodes i.e. the number of 

parity bits and n variable nodes i.e. the number of bits in a 

codeword. And here Check node fi is connected to variable 

node cj if the element hij of H is a 1. 

1.3 Encoding of LDPC Code   

Encoding of codes, specially of who has higher block lengths 

can be quite difficult to implement in hardware but   there are 

several methods of generating H such that encoding can be 

done via shift registers. If the generator matrix G of a linear 

block code is known then encoding can be done using Parity 

check matrix[2].The cost of the method depends on the 

Hamming weights i.e. the no of 1’s of the basis vectors of G. 

If the vectors are dense, then cost of encoding using this 

method is proportional to n2[9].If G is sparse then this cost 

becomes linear with n. However here if the LDPC is given by 

the null space of a sparse parity-check matrix H, It is unlikely 

that the generator matrix G will also be sparse. So one of the 

straightforward method of encoding LDPC that would require 

number of operations which is proportional to n2. As this is 

too slow for most practical applications, It is desirable to have 

encoding that run in linear time. Here note that by performing 

Gauss-Jordan elimination on H to obtain it in the form a 

generator matrix  G for a code with parity-check matrix  H 

which can be found as per following. 

                               H= 𝐴 𝐼𝑛−𝑘  
 
Where A is (n-k)×k binary matrix and 𝐼𝑛−𝑘  is the size n-k 

identity matrix. The generator matrix is then  

 

G= 𝐼𝐾 𝐴𝑇  
 
Now at here we can encode this message into code words for 

LDPC Codes which requires the generation of parity check 

matrix H[2] . The encoding method is through the use of a 

generator matrix, denoted by G. A code word c is formed by 

multiplying source message u by the matrix which is 

represented as c=u*G. The constraints which are recognized 

from matrix G are contained by parity check equations of the 

LDPC code. For a binary code if it is given that if there are  k 

message bits and length of the codeword is n, then the 

generator matrix G is a (k *n) binary matrix will be in the 

form = 𝐼𝐾
𝐴𝑇. As the row space of G will be orthogonal to H,here 

GHT = 0. The process of converting H into the generator 

matrix G has the effect of causing G to lose the sparseness 

characteristic that was embodied in H. 

 

Orientation of paper 

Section I contains basic terms for LDPC code and 

requirements for efficient decoding algorithms. Literature 

survey is in Section II. Section III contains Hard and soft 

decoding schemas and their significance for decoding LDPC 

codes. Section IV contains overview of FPGA spartan 3E 

platform. Finally in Section V indicates conclusion is i.e to 

increase data rate. 

 

2. HARD DECISION DECODING 
There are different iterative decoding algorithms having two 

derivations. They are mainly classified as in  hard decision 

decoding and soft decision decoding respectively. There are 

various algorithms to deal with decoding of LDPC codes. 

They are classified according to their complexities to get 

decoded for different codes. First of all here in this hard 

decoding scheme the check nodes finds the bit in error by 

checking the parity which may be even or odd and the 

messages from variable nodes are transmitted to check nodes, 

check node checks the parity of the data stream received from 

variable nodes connected to it. And then If number of 1‘s 

received at check nodes satisfies the required parity, then it 

sends the same data back to message node, else it adjusts each 

bit in the received data stream to satisfy the required parity 

and then transmits the new message back to message nodes. 

So here in case each node fj  looks at the message received 

from the variable nodes and calculates the bit that the fourth 

variable node should have n order to fulfil the parity check 

equation[3].The bit flipping algorithm is an example of hard 

decision decoding. The bit flipping decoder is going to be 

immediately terminated, whenever a valid code word has been 

found. By checking if all the parity check equations are 

satisfied then it the process get terminated. 
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2.1 Bit flipping Algorithm 
A binary hard decision about the each received bit is made by 

detector and passed to another decoder. Here in the bit-

flipping algorithm the messages passed along the Tanner 

graph edges and a bit node sends a message declaring if it is a 

one or a zero, and then each check node sends a message to 

each connected bit node by finally declaring that what value 

the bit is based on the information available to the check node. 

The check node at this step finds that if the modulo-2 sum of 

the incoming bit values is zero, its parity-check equation is 

satisfied. The bit node changes (flips) its current value, if the 

majority of the messages received by a bit node are different 

from its received value[4]. This process of algorithm is 

repeated which is known as iteration and it is repeated until, 

some maximum number of decoder iterations has passed and 

the decoder gives up or until all of the parity-check equations 

are get satisfied. Thus how the bit flipping algorithm is known 

as hard decision decoding algorithm. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig 3:  Bit flipping Representation 
 

In bit flipping in the first step the following circuit is required 

to XOR the input message bits at variable nodes each time to 

check parity check equations at check nodes. As per Specified 

in figure 4. Another figure circuit is required to check for 

whether to flip the bit or not to get the correct word. As shown 

in figure 5 , inputs are given to gates by considering 0 as no 

complement and 1 as complement to receive output. 

 

Fig 4 : XOR circuit to check parity at check nodes 

Now in step 2 it is required to flip the bit which is incorrect 

and following circuit would help to flip the bits. 

 

Fig 5   : Circuit to flip the bits 

 

3. SOFT DECISION DECODING 
Soft-decision decoding gives enhanced performance in 

decoding procedure of LDPC codes which is based on the 

idea of belief propagate. In soft scheme, the messages are the 

conditional probability that in the given received vector 

received bit is a 1 or a 0. The sum-product algorithm is a soft 

decision message-passing algorithm. Priori probabilities for 

the received bits is the input probabilities as here they were 

known in advance before running the LDPC decoder. The bit 

probabilities returned by the decoder are called the a posterior 

probabilities[3]. 

 

3.1 Sum Product Message Passing 

Algorithm (SPA) 
The sum-product algorithm is a soft decision message-passing 

algorithm which is similar to the bit-flipping algorithm 

described in the previous section, but the major difference is 

that the messages representing each decision with 

probabilities in SPA. Whereas bit-flipping decoding on the 

received bits as input, accepts an initial hard decision and the 

sum-product algorithm is a soft decision algorithm which 

accepts the probability of each received bit as input[3].For 

example here initially take a guess that suppose a binary 

variable x, then it is easy to find P(x = 1) given P(x = 0), since 

P(x = 1) = 1−P(x = 0) and so here it is needed to store one 

probability value for x. Log likelihood ratios are introduced 

here to do so. They are used to represent the metrics for a 

binary variable by a single value as per following: 

L(x) = Log(
𝑃(𝑋=0)

𝑃 𝑋=1  
) 

  

Initialization 

0 1 0 1 1 1 

Check Messages  

Bit Update 

 

Test 

0 1 0 1 1 0 

√ √ √ √ 

1 0 1 0 1 1 

0 0 1 0 1 1 
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The aim of sum-product decoding algorithm here is first to 

compute the maximum a posteriori probability (MAP) for 

each codeword bit. Now here it is the probability that the i-th 

codeword bit is a 1 conditional on the event N and that all 

parity-check constraints are satisfied. The sum-product 

algorithm iteratively computes an approximation of the MAP 

value for each code bit. The a posteriori probabilities returned 

by the sum-product decoder are only exact MAP probabilities 

if the Tanner graph is cycle free[3] .The extra information 

about bit i received from the parity-checks is called as 

extrinsic information for bit i. Until the original a priori 

probability is returned back to bit i via a cycle in the Tanner 

graph, the extrinsic information obtained from a parity check 

constraint in the first iteration is independent of the a priori 

probability information for that bit and information provided 

to bit i in subsequent iterations which remains independent of 

the original a priori probability for bit i. In sum-product 

decoding the extrinsic message from check node j to bit node 

i, Ej,i, is the LLR of the probability that bit i causes parity-

check j to be satisfied[3].  

 

The probability that the parity-check equation is satisfied if bit 

i is a 1 is, 

 

𝑃𝑗 ,𝑖
𝑒𝑥𝑡  =

1

2
 - 

1

2
 𝛱𝑖 ′ ∈𝐵𝑗 ,𝑖 ′ ≠𝑖(1-2𝑃𝑖′

𝑖𝑛𝑡 ) ………….(1) 

 
Where 𝑃𝑗 .𝑖

𝑒𝑥𝑡  is the current estimate, available to check j, of the 

probability that bit i‘ is a one. If bit i is a zero, The probability 

that the parity-check equation is satisfied is thus (1 - 𝑃𝑗 ,𝑖
𝑒𝑥𝑡 ). 

Here it is expressed as a log-likelihood ratio, 

𝐸𝑗 .𝑖  = LLR(𝑃𝑗 ,𝑖
𝑒𝑥𝑡 ) = log(

1−𝑃𝑗 ,𝑖
𝑒𝑥𝑡

𝑃𝑗 ,𝑖
𝑒𝑥𝑡  )………….(2) 

And substituting (2) we get  

Ei,j = log(
1+ 𝛱𝑖∈𝐵𝑗 ,𝑖′≠𝑖 tan ℎ(

𝑀
𝑗 ,𝑖′

2
)

1− 𝛱𝑖∈𝐵𝑗 ,𝑖′≠𝑖 tan ℎ(
𝑀

𝑗 ,𝑖′

2
)

)……..(3) 

Where  

Mj,i’ = LLR(𝑃𝑗 ,𝑖′
𝑖𝑛𝑡 ) = log(

1−𝑃𝑗 ,𝑖′
𝑖𝑛𝑡

𝑃𝑗 ,𝑖′
𝑖𝑛𝑡 ) 

Here Each bit has access to the input a priori LLR, ri, and the 

LLRs from every connected check node. The total LLR of the 

i-th bit is the sum of these LLRs: 

𝐿𝑖  = LLR(𝑃𝑖
𝑖𝑛𝑡 ) = ri + ∑𝑗∈𝐴𝑖   𝐸𝑗 .𝑖  ……….. (4) 

The messages sent from the bit nodes to the check nodes, 

Mj,i, are not the full LLR value for each bit here. The 

equation Hx[mod 2] = 0 is satisfied (where x[mod 2] is 

received codeword) or maximum number of iterations set. 

 

 

 

 

 

4. THEORITICAL COMPARISON and 

ANALYSIS 
This paper’s aim here is to reach the most efficient approach 

to increase BER for satisfying the most demanding parameter 

of data rate by achieving highest channel capacity. The 

decoding algorithms named bit flipping is having hard 

decision characteristic of probabilities and Sum Product 

Algorithm is having Soft decision making characteristics for 

probabilities of messages. As described in the previous 

section, SPA is similar to the bit-flipping algorithm but with 

the messages representing each decision with probabilities.In 

contrast to taht bit-flipping decoding accepts an initial hard 

decision on the received bits as input, the sum-product 

algorithm is a soft decision algorithm which accepts the 

probability of each received bit as input[7].The Represented  

simulation Results of these algorithms on MATLAB are here. 

The simulation parameters   here for  bit flipping are SNR is  

0 to 15,BER is 10^-2  and M=500 ,N=1000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6: Iterative Decoding of Bit flipping 

 

Expected Result of SPA: 

The SPA algorithm increases the BER rate to increase the 

channel capacity as it is a soft decoding iterative algorithm. 

The simulation results for expected outcomes are as follows in 

figure 7 where -1=10−1. 
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Fig 7: Error performance for iterative decoding of the (1008, 504) LDPC code with SPA concept 

 

5. OVERVIEW OF FPGA SPARTAN 3E 

PLATFORM 
Implementing MATLAB code here involves feature of the 

above kit like Converting floating-point MATLAB code to 

fixed-point MATLAB code with optimized bit widths which 

is suitable for efficient hardware generation. Identifying and 

mapping procedural constructs to concurrent area- and speed-

optimized hardware operations. Then after introducing the 

concept of time by adding clocks and clock rates to schedule 

the operations in hardware and creating resource-shared 

architectures to implement expensive operators like 

multipliers and for-loop bodies. The following kit diagram 

represented here with its logic gates and external ports and 

Display. 

 

Fig 8: FPGA SPARTAN 3E kit[8] 

 

Feature of kit involves Very low cost, ,LVCMOS, LVTTL, 

HSTL, and SSTL single-ended signal standards& 622+ Mb/s 

data transfer rate per I/O, Enhanced Double Data Rate (DDR) 

support ,DDR SDRAM support up to 333 Mb/s, flexible logic 

resources, Efficient wide multiplexers, wide logic ,Fast look-

ahead carry logic ,Enhanced 18 x 18 multipliers with optional 

pipeline ,Frequency synthesis, multiplication, division, high-

performance logic solution for high-volume  consumer-

oriented applications Multi-voltage, multi-standard Select IO 

interface pins ,Up to 376 I/O pins or 156 differential signal 

pairs etc [8]. 

6. CONCLUSION 
On accomplishing theoretical analysis and comparison this 

paper concludes that SPA possess highest BER capacity 

among the discussed approaches which are Bit flipping and 

SPA. We can approach SPA algorithm in log domain rather 

than in probability domain as it has lower complexity and 

numerical stable than the probability domain and SPA in 

logarithm domain can achieve better approach for channel 

capacity. From the simulated results of comparison carried out 

here for LDPC and from performance parameters, it is 

obvious that SPA provides good BER. The work can be 

extended for high block length H matrix and for BER up to 

10^-6. The decoder can be redesigned for higher code rate. An 

irregular LDPC code can be used with these decoders in order 

to improve the error performance. This FPGA designs would 

improve the error performance of the decoder and will be 

implemented and compared with literature data. 
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