
International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 12, March 2014

34

Sharing and Hit based Prioritizing Replacement

Algorithm for Multi-Threaded Applications

Muthukumar S

Associate Professor, Department of CSE,
Sri Venkateshwara College of Engineering,

Tamil Nadu, India.

Jawahar P.K
Professor, Department of ECE,
BS Abdur Rahman University,

Tamil Nadu, India

ABSTRACT

Cache replacement techniques like LRU, MRU etc. that are

currently being deployed across multi-core architecture

platforms, try to classify elements purely based on the number

of hits they receive during their stay in the cache. In multi-

threaded applications data can be shared by multiple threads

(which might run on the same core or across different cores).

Such data needs to be given more priority when compared to

private data because miss on those data items may stall the

functioning of multiple threads resulting in performance

bottleneck. Since the traditional algorithms mentioned above

do not possess this additional capability, they might lead to

sub-optimal performance for most of the current multi-

threaded applications. To address this limitation, our paper

proposes a Sharing and Hit Based Prioritizing (SHP)

replacement strategy that takes the sharing status of the data

elements into consideration while making replacement

decisions. Every cache element is associated with a „Sharing

Degree‟ which indicates the extent to which the element is

shared based on the number of threads that try to access that

element. There are four degrees of sharing namely – Not

shared (or private), lightly shared, heavily shared and very

heavily shared. Combining the sharing degree along with the

number of hits received by the element, we embark on a

priority based on which the replacement decisions are made.

Evaluation results obtained using multi-threaded workloads

derived from the PARSEC benchmark suite shows an average

improvement of 4% to 5% in the overall hit rate when

compared to LRU algorithm.

General Terms

Multi-Core Architecture, Cache Memory, Multi-Threaded

Applications.

Keywords

Sharing, Cache, Replacement, Hits, Threads.

1. INTRODUCTION
Modern day applications possess high computational and

throughput requirements. To expedite their execution speed,

these applications spawn multiple threads which run in parallel.

Each thread has its own execution context and is assigned to

perform a particular task. In a multi-core architecture, these

threads can run on the same core or on different cores.

Generally any multi-core architecture will have the following

cache memory hierarchy- a private L1 cache for each core and

a relatively larger L2 cache which is shared by all the cores.

When threads run across different cores, the activity in L2

cache tend to shoot up as multiple threads try to store and

retrieve shared data. At this point there are many challenges

that need to be dealt with. Cache coherence has to be

maintained, the replacement decisions made need to be

judicious and the available cache space must be utilized

efficiently. It is to be noted that when there is a miss on a data

item which is shared by multiple threads, the execution of

many threads gets stalled. This is because when the first thread,

which had encountered a miss, is attempting to fetch the data

from the next level of memory, any subsequent thread which

comes looking for the same data will result in miss.So it

becomes imperative to handle shared data with more care

compared to other data items. Traditional replacement

algorithms like LRU, MRU etc do not possess this capability.

They classify elements based on when they will be required by

the processor but do not check for the status of the cache block,

i.e. whether it is shared or private at any point of time. Also

when there are more than thousands of threads running in

parallel, it may not be very useful in tagging the block simply

as „shared‟ or „private‟. In those cases, additional information

about their shared status can prove handy.

Thus in this work we have come up with a novel counter based

cache replacement strategy that associates a „sharing degree‟

with every cache block. This degree specifies a range which

includes – not shared (or private), lightly shared, heavily shared

and very heavily shared. This information combined with the

number of hits received by the element during its stay in the

cache is used to produce a priority for that element based on

which judicious replacement decisions are taken.

Rest of the paper is organized as follows: section 2 looks into the

related work that was done in this field, section 3 explains the

working of our replacement technique in detail, sections 4 and 5

describes the experimental setup and analyses the obtained

results respectively and finally section 6 summarizes the paper

followed by the list of references.

2. RELATED WORK
Shared Last Level Cache (LLC) is accessed by multiple

cores. So it is important to have a good, efficient replacement

algorithm running over it. When a miss is encountered here,

the resulting overhead can be higher compared to other cache

levels. Many works [2,3,5,6,8,9] have emerged in recent

times which strive to improve the performance at LLC.

A method which was proposed by Mainak Chaudhuri et al

[8] discusses on how the activities occurring in the inner

levels of the cache can be used to make replacement

decisions in the LLC. Here activities refer to the pattern of

hits and misses encountered. But communicating such

information across various levels of cache frequently can

cause significant overhead.

Fazal Hameed et al [9] proposed a dynamic cache

management scheme targeted towards LLCs. But it does not

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 12, March 2014

35

attach any importance to shared data. Elimination of the

dead-lines (or) the lines which will never be accessed by the

processor in the near future [3,4,11] can greatly enhance the

performance of cache memory. Livio Soares et al.[3] have

proposed a technique to get rid of the dead-lines but they

work from OS level and might burden the OS over a period

of time. Counter based replacement technique [4] tries to

predict dead-lines well in advance and choose them as

replacement victims.

Efficient cache partitioning can help in improving cache

performance. The work by Konstantinos Nikas et al [7]

suggests a dynamic cache partitioning technique using bloom

filters and counters. Since every core is allocated an array of

bloom filters and counters, the hardware complexity in this

method can shoot up as the number of cores increases. Phase

Change Memory (PCM) was suggested as an alternative to

the traditional DRAM and techniques have been proposed to

improve the performance of the LLC in PCM [10] but the

drawback of PCM is that the writes are much slower

compared to DRAM.

Almost all the techniques discussed above do not attach

importance to data that is shared by multiple threads. Hence

in this work we focus on designing a novel counter based

replacement algorithm for shared LLC in a CMP

environment To bring the status of the cache block into

picture, we allocate a „sharing degree‟ counter with each and

every cache block to classify it into any one of the four

groups. Number of hits received by the data item is also an

important factor to be considered. This number is combined

along with the sharing degree to arrive at a priority for the

cache block which assists in making replacement decisions.

3. COUNTER BASED PRIORITIZING

APPROACH
Every cache block is associated with a 2-bit counter. This

counter is called as the Sharing Degree Counter or just SD

counter. Table 1 shows all the four possible values this

counter can contain. For demonstration purposes, the

maximum number of threads that can be created is set to 10.

Based on the number of threads that try to access a data item,

we classify it into any one of the sharing categories as shown

in the table. The mapping policy employed at the cache is

taken as set associative mapping [1].

To collect the sharing status of the cache blocks, it is essential

to have an efficient data structure in place to track the number

of threads that accesses the data item. For this purpose we

have a filter which is referred to as the Thread Tracker filter

(or just TT filter). It is a flexible dynamic software based

array that gets created and is associated with every cache

block during run time.

 When a thread tries to access a data item, a search is

conducted in the TT filter to check if the thread id is already

present in it. If not, then the id is stored in the corresponding

cache block‟s TT filter. Size of the filter expands as and when

a thread id gets added to it. Once a cache block is about to be

evicted, the memory allocated for the associated TT filter is

freed. At any point of time, based on the number of threads

that are found in the TT filter, the sharing degree counter is

populated for every cache block.

Table 1. Sharing degree values and their descriptions

Number of

Accessing Threads

Sharing Degree

Counter Value
Nature of Sharing

1 0 Private/Not Shared

2-3 1 Lightly Shared

4-7 2 Heavily Shared

8-10 3
Very Heavily

Shared

3.1 Priority Computation
As discussed in the earlier sections, the sharing status of the

blocks alone cannot be used to make replacement decisions.

Justification for which goes as follows:

For example, there are two data items in the cache. One is

shared by (say) 10 threads, so it will be having the highest

sharing degree counter value of 3. The other data item is

private to one thread. But this data item is used much more

frequently by the thread than the shared one. Hence it receives

huge number of hits (say 50) whereas the shared data item has

earned only 20 hits. Though the first element is shared by

more number of threads, it is something that is not required

much over a period of time. So when a replacement decision

has to be made, it is this element which needs to be picked up

as the victim rather than the private data. This scenario

indicates that the number if hits garnered by the element is

also an important factor to consider when performing a

replacement. Hence we have arrived at a priority computation

formula that not only gives more weightage to sharing nature

but also attaches importance to the hit count.

Priority = (Sharing Degree + 1) * (Hit Count / 2)

Priority is set to „0‟ initially for all the blocks. Sharing degree

is incremented by 1 before computing the product as it can be

seen that the minimum value sharing degree can hold is set to

0. When the product is computed, priority can also result in 0

which is not desired (apart from the first time). Replacement,

insertion and deletion form the heart of any replacement

algorithm. Each phase of our algorithm is explained in detail

in the subsequent sections.

3.2 Replacement
When the cache becomes full, replacement has to be made to

pave way for new incoming data items. SHP makes

replacement decisions based on the computed priority values.

Elements are evicted in the increasing order of their priority.

The element with the least priority in the list is chosen as the

victim. If more than one element has the same least priority,

then the one which is encountered first while scanning the

cache is taken as the victim as a tie-breaking mechanism. It is

also essential to ensure that stale data do not pollute the cache

for longer periods of time. For this purpose, every time a

victim is found, the hit counter of all the other elements in the

cache is decremented by „1‟ and their corresponding priorities

are re-computed. If any element remains unreferenced for a

long period of time, its priority will gradually decrease and

the element will eventually be flushed out of the cache.

3.3 Insertion
After evicting the victim, the new data item needs to be

inserted into the cache. Since initially all the blocks would

contain invalid data and their corresponding priority values

will be „0‟, the incoming blocks‟ priority must be set to some

other value other than „0‟. It cannot be given a higher priority

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 12, March 2014

36

value since we are not sure about its sharing nature and the

amount of hits it might receive in the future. So we have

chosen a random priority value of „10‟. Sharing degree

counter is set to „0‟ (to indicate that the incoming block is

currently not shared by any other threads).

3.4 Promotion
When a cache hit happens, the hit counter of the

corresponding block is incremented by „1‟ and the priority is

re-computed. Also the accessing thread id is compared against

the ids which are already present in the TT filter and if it is

not present there, it is added into the TT filter. Sharing degree

counter is adjusted accordingly.

3.5 Scalability
For illustration purpose, the number of threads is taken to be

10. In real time applications, this number can be quite high.

Irrespective of the number of threads under execution, the

sharing degree can be set proportionally similar to the way it

has been done with 10 threads. For example if there are (say)

1000 threads, then if 200-300 threads share a data item it is

lightly shared and if 400-700 threads share a data item it can

be regarded as heavily shared and so on.

4. EXPERIMENTAL SETUP
An open-source, full system simulator called Gem5[12] which

is capable of simulating a variety of Instruction Set

Architectures (ISAs) has been chosen to evaluate our method.

The cache and the processor configuration go as follows:

Alpha ISA has been chosen with 2 cores which operate at 2

GHz clock frequency. Supported cache levels include a

private L1 cache which is further sub-divided into instruction

and data cache and a relatively larger L2 cache which is

shared between the available cores. The size of L1 and L2

cache are set to 64 kB and 2 MB respectively. Line size for

both the caches is 64B. L1 cache is 2-way associative and L2

cache is 8-way associative. SHP algorithm is applied at L2

whereas L1 runs LRU algorithm. Seven versatile workloads

have been picked from the Princeton application repository

for shared-memory computers (PARSEC), [13, 14] a

benchmark suite that comprises numerous large scale

commercial multi-threaded workloads targeted towards CMP,

to evaluate our method. Table 2 highlights the key

characteristics of all the PARSEC benchmarks used.

5. RESULTS AND DISCUSSIONS
The main parameters involved in measuring the performance

of any memory system include the data hits and misses.

Overall number of hits obtained at L2 cache for our method

compared to LRU is shown in the graph in Figure. 1. In every

figure, the y-axis indicates the parameter under scrutiny and

x-axis indicates the various benchmarks. In Figure.1 ferret

benchmark has shown the maximum improvement. On an

average, a 5% percent improvement in the overall number of

hits can be observed across the given benchmarks.

Table 2. Key characteristics of PARSEC benchmarks

Program Application

Domain

Working Set

Blackscholes Financial Analysis Small

Canneal Computer Vision Medium

Dedup Enterprise Storage Unbounded

Ferret Similarity Search Unbounded

Swaptions Financial Analysis Medium

Vips Media Processing Medium

X264 Media Processing Medium

Figure 1: Overall number of hits at L2 cache

Figure 2: Percentage decrease in number of replacements

made at L2 compared to LRU

Figure. 2 shows the overall number of replacements made at

L2 for SHP and LRU. The more the number of replacements

made, the more will be the overhead involved. So it is always

desirable to keep this parameter as low as possible. In our

method, the average number of replacements made at L2 has

decreased by almost 10 % compared to LRU. Figure. 3 shows

the miss rate measured across the given workloads. Miss rate

is computed from the overall number of misses and the overall

number of accesses.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 12, March 2014

37

Figure 3: Overall miss rate and core-wise miss rate at L2 cache

To have an impressive performance, miss rate needs to be

kept as low as possible. Figure.3 shows that majority of the

benchmarks have shown marginal improvement in the miss

rate when compared to LRU.

6. CONCLUSION
Shared data plays a crucial role in determining the

performance of cache memory systems, especially in a multi-

threaded environment. Conventional LRU approach does not

attach importance to such data and hence in this work we have

come up with a novel counter based prioritizing algorithm.

 Every cache block is associated with a 2-bit sharing

degree counter which iterates from 0 to 3.

 A dynamic software based TT filter is associated with

every block to keep track of the threads that are accessing

that block.

 A hit counter is used to keep track of the hits received by

the data item.

 Values of the sharing degree and the hit counters are used

to compute a priority for each cache block.

 This priority is then used to make judicious replacement

decisions.

Evaluation results have shown an average improvement of up

to 5% in the overall number of hits when compared to the

traditional LRU approach.

7. REFERENCES
[1] John L. Henessey, David A. Patterson. 2006. Computer

Architecture: A Quantitative Approach, Fourth Edition,

Elsevier Publications.

[2] Aamer Jaleel, William Hasenplaugh, Moinuddin

Qureshi, Julien Sebot, Simon Steely, Joel Emer,

“Adaptive Insertion Policies for Managing Shared

Caches”, ACM Parallel Architectures and Compilation

Techniques (PACT), Oct. 2008, p.208-219.

[3] Livio Soares, David Tam, Michael Stumm, “Reducing

the Harmful Effects of Last-Level Cache Polluters with

an OS-level, Software-Only Pollute Buffer”, 41st Annual

IEEE/ACM International Symposium on

Microarchitecture, 2008, p.258-269.

[4] Mazen Kharbutli, Yan Solihin, “Counter Based Cache

Replacement and Bypassing Algorithms”, IEEE

Transactions on Computers, Vol. 57, Issue. 4, April

2008, p.433-447.

[5] Carole-Jean Wu, Margaret Martonosi, “Adaptive

Timekeeping Replacement: Fine-Grained Capacity

Management for Shared CMP Caches”, ACM

Transactions on Architecture and Code Optimization,

Vol. 8, No. 1, Article 3, April 2011.

[6] Shekhar Srikantaiah, Mahmut Kandemir, Mary Jane

Irwin, “Adaptive Set Pinning: Managing Shared Caches

in Chip Multiprocessors”, ACM Architectural Support

for Programming Languages and Operating Systems

(ASPLOS), Vol. 36, Issue. 1, March 2008, p.135-144.

[7] Konstantinos Nikas. Matthew Horsnell. Jim Garside.

2008. An Adaptive Bloom Filter Cache Partitioning

Scheme for Multi-Core Architectures. In Proceedings of

the IEEE International Conference on Embedded

Computer Systems Architectures Modeling and

Simulation, p.25-32.

[8] Mainak Chaudhuri, Jayesh Gaur, Nithiyanandan

Bashyam, Srinivas Subramoney, Joseph Nuzman,

“Introducing Hierarchy-Awareness in Replacement and

Bypass Algorithms for Last-Level Caches”, ACM

Parallel Architectures and Compilation Techniques

(PACT), Sep. 2012, p.293-304.

[9] Fazal Hameed. Bauer L. and Henkel J. 2012. Dynamic

Cache Management in Multi-Core Architectures through

Runtime Adaptation. In Proceedings of Design

Automation & Test in Europe Conference & Exhibition

(DATE), p.485-490.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 12, March 2014

38

[10] Miao Zhou, Yu Du, Bruce Chilers, Rami Melham,

Daniel Mosse, “Writeback-Aware Partitioning and

Replacement for Last-Level Caches in Phase Change

Main Memory Systems”, ACM Transactions on

Architecture and Code Optimization, Vol. 8, No. 4,

Article 53, Jan. 2012.

[11] Haiming Liu, Michael Ferdman, Jaehyuk Huh, Doug

Burger, “Cache Bursts: A New Approach for Eliminating

Dead Blocks and Increasing Cache Efficiency”, 41st

Annual IEEE/ACM International Symposium on

Microarchitecture, Vol. 1, Issue. 12, 2008, p.222-233.

[12] N. Binkert et al. “The gem5 simulator”, SIGARCH

Computer. Architecture New, Vol. 39, Issue. 2, May

2011, p.1-7.

[13] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,

Kai Li, “The PARSEC Benchmark Suite:

Characterization and Architectural Implications”,

Princeton University Technical Report, TR-811-08, Jan.

2008.

[14] M. Gebhart et al., “Running PARSEC 2.1 on M5”,

University of Texas at Austin, Department of Computer

Science, Technical Report, TR-09-32, Oct. 2009.

IJCATM : www.ijcaonline.org

