
International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 11, March 2014

13

TraceCases: A Simulator for RUP Use-Case Analysis

Pallavi Pandit

Medi-Caps Institute of Technology and
Management

A.B. Road, Pigdamber
Rau, Indore

Meena Sharma
Institute of Engineering and Technology

Khandwa Road
Indore, MP

ABSTRACT

Learning styles of different learners vary. So, different

approaches to explaining theoretical concepts should be

followed. TraceCases is a simplified tool for understanding

RUP Use-Case Analysis. A use-case model is given as input,

validated and analysis classes are derived and shown. Metrics

for use-case model and analysis classes are computed.

Traceability between use-case model and analysis classes is

illustrated.

General Terms

I.6.4 [Simulation and Modeling]: Model Validation and

Analysis - Experimentation

Keywords

Pedagogy, use cases, analysis classes, VOPC class diagram,

traceability, metrics.

1. INTRODUCTION
Different learning patterns of students were observed while

taking a survey of a Software Design course[1]. Each student

exhibited a different capability to learn based on the

personality types of students.

In their paper, Thomas, Ratcliffe, Woodbury, and Jarman

(2002) closely observed the learning styles of 107

introductory computer science students and concluded that

there were slightly more active than reflective learners, a vast

majority of visual learners over verbal, and almost equal in

number of sensing or intuitive and sequential or global

learners.[1]

Many empirical studies have explored the relationship

between the Myers-Briggs Type Indicator (and its numerous

associated factor types-Extraversion, Sensing, Thinking,

Judging, Introversion, Intuition, Feeling and Perceiving) and

software engineering.[1]

The traditional methods of teaching do not take the above

factors into account and focus mainly on the textual aspect of

learning. The aforementioned studies draw our attention to the

fact that the blackboard style of teaching does not suffice to

exploit the learning patterns of each and every kind of student.

Some students find it difficult to engage themselves totally

with the chalk-and-talk learning paradigm. The recommended

different types of learning methodologies which can enhance

the grasping power of students may include case studies,

hands-on activities and other simulating approaches.

TraceCases employs a simplified approach for demonstrating

RUP concepts to students. Its purpose is giving them an

introductory hands-on on the analysis and design discipline,

mainly focusing on the use case analysis activity.

2. LITERATURE SURVEY
The authors in [2] have introduced a new strategy for teaching

RUP and UML in Software Engineering Courses to decrease

the learning time and increase the skills of the students. They

have incorporated the software engineering process workflow

with RUP and UML. New innovations using multimedia

resources and support tools were used to explain RUP and

UML to the students. The authors have prepared flash

tutorials to demonstrate the “how-to’s”, to cover specific

knowledge and to reduce practice gaps (How to create an

RUP project, how to pass from the Business model to the

Requirements Model, etc.). Their learning model makes some

changes in RUP workflows and models to suit the better needs

of students. As a result of their new strategy, learning period

in the first four phases of RUP has been dramatically reduced.

Jan Bergandy in [3] takes on a new approach to teaching RUP

wherein the course contents have the RUP process framework

integrated with the Software Engineering course curriculum.

The students are required to develop a medium sized project

for a real customer. RUP was chosen as the process

framework both for the project and served as a structure for

organizing the contents of the software engineering course.

3. RUP USE CASE ANALYSIS
Rational Unified Process is the result of adopting the best

practices of all the different methodologies. It has unified

different aspects of object-oriented development, hence the

name “Unified Process”.

3.1 The purpose of the RUP Use case

Analysis activity is [4]:
3.1.1 To identify the classes that perform the various flows of

events in a use case.

3.1.2 To distribute use case behaviour to these classes, by

creating use case realizations.

3.1.3 To identify and assign the responsibilities, attributes and

associations to these classes.

To note the need of architectural mechanisms to provide the

functionality specified by the use case, and the software

system as a whole.

3.2 Steps of RUP Use-Case Analysis

Activity
Use Case Analysis is composed of several steps in RUP

[RUP2003]:

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 11, March 2014

14

Fig 1: Steps of Use Case Analysis

3.3 Use Cases to Code
To get from use cases to code, the following steps are

followed:

A Scenario (or use case) is selected on which to begin Use

Case Analysis. Then, Use Case Analysis is performed (as

shown in the above figure). Following which Use Case

Design is performed. Then, Code for the selected use

case/scenario is written. If all use cases are coded, the system

is complete. Else, another use case (or scenario) is selected for

Use Case Analysis[4]

4. PROPOSED METHODOLOGY

4.1 Simplified approach to RUP Use-Case

Analysis Activity
Simulation of the UC Analysis Activity of RUP is performed.

PSP Templates[5] have been used to document scenarios and

class, methods, attributes’ information.

The following steps have been followed:

4.1.1 Use of XMI Parser for parsing UC Model

4.1.2 Validation of UC Model

4.1.2.1 Each use-case starts with a verb

4.1.2.2 Each use-case is associated with at least one actor and

vice-versa

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 11, March 2014

15

4.1.3 Use of POS Tagger for extracting nouns and verbs from

scenarios

4.1.4 Manually selecting analysis classes based on the nouns,

verbs and parsed information from UC model using following

guidelines[6]

4.1.4.1 One Boundary Class for each actor-use case pair

4.1.4.2 One Control Class corresponding to each use case

4.1.4.3 Noun filtering technique for Entity classes

4.1.5 Selecting attributes, methods and responsibilities and

assigning them to analysis classes

4.1.6 Illustration of Analysis Classes by VOPC Class Diagram

4.1.7 Derivation of UC Metrics, Class Metrics

4.1.8 Establish traceability links

4.1.8.1 Establish traceability links among use case model

elements[7]

 Use case to use case section

 Use case to actor

4.1.8.2 Show traceability between UC Model and Analysis

Classes Model (Analysis Class realizes use case)

4.2 Overview of the Tool
Use-case driven development approach is widely used where

use-cases form the basis of analysis, design and testing. The

use-case model is subsequently mapped to analysis model,

design model and test models. This paper aims to structure the

use-case model and identify analysis classes from the use-

cases and scenarios. The analysis classes can further be

mapped to analysis mechanisms. TraceCases performs semi-

automated use-case analysis. TraceCases also helps to

establish traceability links between the use case model and the

analysis model. Various metrics can be developed to quantify

the use case and analysis models. Metrics for use-cases and

analysis classes have been calculated using TraceCases.

An ATM Case Study is used to illustrate the working of the

tool and to validate this approach.

4.3 RUP in context of PSP
This work explores RUP in the context of the Personal

Software Process (PSP). Templates help us to define a

software design completely. Templates in the Personal

Software Process (as defined by Humphrey), have many

dimensions such as Operational Specification Template,

Functional Specification Template, State Specification

Template and Logic Specification Template. TraceCases

makes use of two templates, viz., Operational Specification

Template to store the scenarios and Functional Specification

Template to store classes, attributes and methods.

The proposed tool is designed using RUP combined with PSP.

It has been studied that PSP Design Templates can directly be

mapped to UML models and be used with the Team Software

Process[8]. Hence, TraceCases can be extended to be used

with the Team Software Process, and hence, be used in the

industry.

5. SIMILAR RESEARCH WORK
In their work “Automating the Transition from Use Case

Model to Class Model”[9], the authors employ use cases to

express the functional requirements. The use case

specifications are processed using use case language schemas.

These schemas reduce the ambiguity, vagueness and

complexity of natural English language. A use case

processing method is used to analyze the use case diagrams

and use case specifications. The analysis artefacts generated

include robustness and collaboration diagrams and the class

diagram is generated as a design artefact. UCDA CASE tool

is developed by the author for generating the diagrams

automatically in Rational Rose.

The proposed work also analyzes/processes use case

specifications using noun-filtering technique to extract the

nouns and verbs. However, it does not use use case language

schemas to process the use case specifications. TraceCases

also uses XMI to extract the names of actors, use cases and

association relationships from the use diagram. The tool

draws the VOPC class diagram as an artefact.

In the thesis entitled “Auto-generation of Use case

controllers”[10], Pushkar Marathe inputs the requirements

model from use case diagram in the form of an XMI file.

Then, entity, boundary and controller classes are extracted by

parsing this use case diagram. His tool, called Protogen,

automatically generates prototypes and hence, code for the

controller classes using a hexagonal architecture.

The proposed work is a simulator for RUP. It performs use

case analysis and is similar to Protogen in that it extracts

entity, boundary and controller classes from a use case

diagram input as XMI file. However, no code is generated for

these classes. Instead, traceability diagram and metrics are

derived from the use case analysis technique.

Other related work in this area includes Rule-based generation

of XML Schemas from UML Class Diagrams[11]. In this

work, the authors convert the class diagram to XMI and then

extract the conceptual data model using XML Schema. This

helps in Logical database Design. In Using Alloy to model-

check visual design notations[12], the authors have made use

of a new object-oriented method called Discovery and a tool

Alloy to validate five UML diagrams for completeness and

consistency.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 11, March 2014

16

Fig 2: Architecture of TraceCases

6. RUP CASE STUDY: ATM

Figure 3: ATM Use case Diagram, taken from [13],

redrawn in ArgoUML

6.1 Scenario for Withdraw Cash Use Case

(Modified from [14], stored in Operational

Specification Template)

Table 1: Use case specification of withdraw cash use case

User

Object

ive Withdraw cash use case

Scenar

io

Object

ive

This use case describes how the bank customer uses

the ATM to withdraw money to his/her bank

account

Basic

Flow

Sourc

e Step Action

Comment

s

Bank

Custo

mer bf1 Inserts their bank card

normal

flow

Use

case:

Valida bf2 Use case is performed

normal

flow

te user

ATM bf3

The ATM displays the various

list of alternatives that are

available on this unit.

normal

flow

 bf3.1

In this case, the customer

always selects "Withdraw

cash"

normal

flow

ATM bf4 Prompts for an account

normal

flow

Bank

Custo

mer bf5 Selects an account

normal

flow

ATM bf6 Prompts for an amount

normal

flow

Bank

Custo

mer bf7 Enters an amount

normal

flow

Syste

m bf8

Card ID, PIN, amount and

account is sent to Bank as a

transaction. The Bank

Consortium replies with a

go/no go reply telling if the

transaction is ok

normal

flow

Syste

m bf9 Then money is dispensed

normal

flow

Syste

m bf10 The Bank Card is returned

normal

flow

Syste

m bf11 The receipt is printed

normal

flow

End bf12 The use case ends successfully

normal

flow

Altern

ative

Flows af1

Step 2 does not end

successfully

Invalid

User

 af1.1

The use case ends with a

failure condition

normal

flow

Altern

ative

Flows af2

the account selected by the

Bank Customer is not

associated with this bank card

Wrong

account

 af2.1

The ATM shall display the

message "Invalid Account –

normal

flow

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 11, March 2014

17

please try again".

 af2.2 The use case resumes at step 4

normal

flow

Altern

ative

Flows af3

the Bank Customer enters an

amount that exceeds the

withdrawal limit

Amount

exceeds

withdraw

al limit

 af3.1

the ATM shall display a warning message,

and ask the Bank Customer to reenter the

amount

 af3.2 The use case resumes at step 7

Altern

ative

Flows af4

the Bank response indicates the

daily withdrawal limit has been

exceeded (this is determined

by the Bank and depends upon

the specific account)

Amount

exceeds

daily

withdraw

al limit

 af4.1

The ATM shall display a warning message,

and ask the Bank Customer to reenter the

amount

 af4.2 The use case resumes at step 7

Altern

ative

Flows af5

the Bank Customer enters an

amount that exceeds the

amount of cash available in the

ATM

Insufficie

nt cash

 af5.1

The ATM will display a warning message,

and ask the Bank Customer to reenter the

amount

 af5.2 The use case resumes at step 7

Altern

ative

Flows af6

there is no response from the

Bank within 3 seconds

No

Response

From

Bank

 af6.1

The ATM will re-try, up to

three times

 af6.2

If there is still no response from the Bank,

the ATM shall display the message

"Network unavailable – try again later".

 af6.3 The ATM shall return the card

 af6.4

The ATM shall indicate that it

is "Closed"

 af6.5

The use case ends with a

failure condition

Altern

ative

Flows af7

the money is not removed from

the machine within 15 seconds

Money

Not

Removed

 af7.1

the ATM shall issue a warning sound and

display the message "Please remove cash"

 af7.2

If there is still no response from the Bank

Customer within 15 seconds the ATM will

re-tract the money and note the failure in

the log

 af7.3

the use case ends with a failure

condition

Altern

ative

Flows

If at point prior to step 8 in the

basic flow the Bank Customer

selects Quit Quit

The ATM shall print a receipt

indicating the transaction was

cancelled

 The ATM shall return the card

 The use case ends

6.2 Traceability Identifiers [15] of the use

case specification:
bf2->af1, bf8->af2, bf7->af3, bf8->af4, bf7->af5, bf8->af6,

bf9->af7

6.3 Analysis classes identified from the

scenario
6.3.1 Entity Classes
Customer

ATM

Card

6.3.2 Boundary Classes (one class for each use

case-actor pair)
Withdraw cash – Bank Customer pair generates

WithdrawCashForm

Withdraw cash – Bank pair generates

MonitorWithdrawCashForm

6.3.3 Control Classes (at least one controller

class per use case)
Withdraw Cash use case generates WithdrawCashController

6.4 Filtered Candidate Attributes
Amount

Limit

Transaction

Account

ID

PIN

Cash

6.5 Filtered Candidate Operations (and

responsibilities)
withdraw

validate

dispense

exceeds

display

issue

remove

select

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 11, March 2014

18

6.6 Assigning attributes and operations to

classes – VOPC Class Diagram

Figure 3: VOPC Class Diagram for Withdraw Cash use

case

6.7 Snapshot of use-case metrics derived –

Metrics taken from [16]

6.8 Snapshot of class metrics derived –

Metrics taken from [16]

6.9 Snapshot of Traceability Tree

7. CONCLUSION
This work is focused more on demonstration of use case

analysis rather than documentation of an actual project.

Implementing TraceCases has also helped understand about

traceability and the issues in its implementation, viz.,

Having just the right degree of granularity is important in a

project.

Managing and updating traceability links is a tedious process

if done manually.

Experience and training is required for writing and modelling

use cases that can be successfully used in analysis and design.

Care should be taken to avoid functionally decomposing use

cases, over analyzing use case and analysis models, adding

the right amount of details in use cases and not mixing

analysis and design decisions.[17]

Metrics were also derived based on the use-case model

elements and analysis classes. These helped gain an insight

into the project considered.

8. LIMITATIONS OF EXISTING

SYSTEM
This technique relies on scenarios to find nouns and hence,

entity classes and attributes. Scenarios are not always

available. It is difficult to exhaustively specify scenarios,

especially in the beginning of a project. Detailed and accurate

scenarios may not be available for all use cases.

For assigning responsibilities to classes based on the

scenarios, the internal behaviour of the system needs to be

described in use case specifications (scenarios). This internal

behaviour is normally not specified in detail while writing

scenarios.

9. FUTURE WORK
XML Schema may be used to store the use case information

as well as the analysis classes’ information instead of using a

relational database.

The analysis classes can further be refined into design classes

or organized into subsystems.

The existing RUP use case analysis process can be enhanced

with user experience[18], navigation maps could result from

the use cases[19].

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 11, March 2014

19

Architectural mechanisms can be incorporated into

TraceCases[20].

Weights can automatically be assigned to use cases based on

scenarios by counting the number of transactions.

Responsibilities can be automatically assigned to classes

based on the data they contain and the GRASP principles by

Larman.

Traceability Identifiers can be used to test exception scenarios

and alternative flows through a use case. They can be

associated with test cases.

Two PSP Design Templates are being used, viz., Operational

Specification Template and Functional Specification

Template. Two remaining design templates, viz., Logic

Specification Template and State Specification Template can

be used in the future.

10. REFERENCES
[1] Ahmed F., Campbell P., Jaffar A., Alkobaisi S.

Learning & Personality Types: A Case Study of a

Software Design Course published in Journal of

Information Technology Education: Volume 9,

2010

[2] O. Coltell, P. Ortiz, A. Fabregat, E. Barrera,

G. Xaler, M. Arregui. STRATEGY TO

INTRODUCE UML AND RUP IN SOFTWARE

ENGINEERING UNDERGRADUATE COURSES

in the proceedings of INTED 2009.

[3] Jan Bergandy. “Teaching Software Engineering

with Rational Unified Process® (RUP)” in

proceedings of the ASEE New England Section

2006 Annual Conference.

[4] Gary Evans. Getting from use cases to code Part 1:

Use case Analysis. (http://www-

106.ibm.com/developerworks/rational/library/5383.

html)

[5] PSP Scripts, Forms, Templates, and Standards.

Carnegie Mellon University.

[6] Zhao J. Robust Object Oriented Systems Analysis.

Dunstan Thomas Consulting.

[7] Spence I., Probasco L. Traceability Strategies for

Managing Requirements with Use Case. Rational

Software White Paper. TP166, 2000

[8] Webb D.R., Lipkin I., Shraer E.S., Designing in

UML with the Team Software Process. CrossTalk:

The Journal of Defense Software Engineering,

March 2006.

[9] Liu D. Automating Transition from Use Cases to

Class Model. A Thesis.

[10] Marathe P. Auto-generation of Use case Controllers.

A Thesis. 1-1-2010.

[11] Tobias Krumbein, Thomas Kudrass. Rule-Based

Generation of XML Schemas from UML Class

Diagrams.

[12] Anthony J. H. Simons, Carlos Alberto Fernandez y

Fernandez. Using Alloy to model-check visual

design notations.

[13] http://epf.eclipse.org/wikis/abrd/core.tech.common.

extend_supp/guidances/examples/uc_model_elabora

tion_phase_70035F60.html

[14] http://epf.eclipse.org/wikis/openup/core.tech.comm

on.extend_supp/guidances/examples/use_case_spec

_CD5DD9B1.html

[15] Roggio R.F., Use Cases and Traceability: a

Marriage for Improved Software Quality in

Proceedings of the 16th annual NACCQ,

Palmerston North, New Zealand, July, 2003.

[16] Kim H. Boldyreff. Developing Software Metrics

Applicable to UML Models.

[17] Haumer P. Use Case-Based Software Development.

IBM Rational Software.

[18] Westerheim H., Hanssen G.K. Extending the

Rational Unified Process with a User Experience

Discipline: a Case Study.

[19] Heumann J. User experience storyboards: Building

better UIs with RUP, UML, and use cases published

in Rational Edge, November 2003.

Kazman R., Kruchten P., Nord R.L., Tomayko J.E.

Integrating Software Architecture-Centric Methods

into the Rational Unified Process July 2004

TECHNICAL REPORT CMU/SEI-2004-TR-011

ESC-TR-2004-01.

IJCATM : www.ijcaonline.org

http://library.iated.org/authors/%22Oscar+Coltell%22
http://library.iated.org/authors/%22Paula+Ortiz%22
http://library.iated.org/authors/%22Antonio+Fabregat%22
http://library.iated.org/authors/%22Elisabet+Barrera%22
http://library.iated.org/authors/%22Georgina+Xaler%22
http://library.iated.org/authors/%22Maria+Arregui%22
http://www-106.ibm.com/developerworks/rational/library/5383.html
http://www-106.ibm.com/developerworks/rational/library/5383.html
http://www-106.ibm.com/developerworks/rational/library/5383.html
http://epf.eclipse.org/wikis/abrd/core.tech.common.extend_supp/guidances/examples/uc_model_elaboration_phase_70035F60.html
http://epf.eclipse.org/wikis/abrd/core.tech.common.extend_supp/guidances/examples/uc_model_elaboration_phase_70035F60.html
http://epf.eclipse.org/wikis/abrd/core.tech.common.extend_supp/guidances/examples/uc_model_elaboration_phase_70035F60.html

