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ABSTRACT 
Previously existing graph mining algorithm typically assumes 

that database is relatively static. To overcome that we proposed 

a new algorithm which deals with large database including the 

features which captures the properties of graph in few 

parameters and check the relationship among them in both left 

as well as right direction, thus adopting DFS as well as BFS 

approach. It further finds the sub graph by traversing the graph 

and extracting the desired pattern. The proposed algorithm is 

used for detection of crime in stock market by capturing the 

properties and identifying the relationship & associations that 

may exist between the person involved in that crime which 

prevent several crimes that might occur in future. We have 

used the ECLIPSE for the implementation of proposed 

algorithm and Neo4j is the graph database used for analysis. 
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1. INTRODUCTION 
Nowadays the amount of data is increasing day by day, so 

accordingly the desire for data mining is also growing. Large 

database have to be searched to find the interesting properties 

of the graph and to establish a relationship among them. It is 

beneficial to model the complex data with the help of graph in 

which information is stored in nodes and edges represent the 

relationship among the nodes. Therefore having a graph 

database overcomes the constraint of relational database and 

helps in finding the super graph, sub graph, common graph and 

relationship between different graphs. This graph based data 

mining has become more and more popular in the last few 

years. Graph mining is the use of most important structure of 

graph to obtain frequent patterns of information. It has board 

range of applications.  

This technique can be used to find the probability of persons 

doing crime in the stock market .Some case studies of people 

involved in stock crime were studied to obtain the attributes 

such as persons involved in crime, whether they are educated 

or not, style of crime, earning from the particular threat. These 

attribute lead to the construction of graph database and an 

algorithm has been proposed for traversing the graph in both 

directions left as well as right and establish relationship among 

different nodes which further generates a sub graph according 

to the query.Neo4j is the graph database used for analysis as 

the retrieval times of graph database are less than relational 

database as it looks only at records, it does not scan the entire 

group to find the nodes that met the search criteria. Analysis 

report from this implementation will also be helpful in planning 

the prevention of several crimes. The remainder of this paper is 

organized as follows. Section 2 introduces the problem 

statement of graph based data mining and existing algorithms; 

Section 3 describes our proposed algorithm used for traversing 

the graph database; Section 4 describes comparative study of 

our proposed technique with other existing technique; 

Conclusion & future scope in Section 5 and all the used 

references are given in Section 6. 

 

 

2. OVERVIEW OF EXISTING 

ALGORITHM  

2.1 Part Miner Algorithm 
Each graph in the database is partitioned into smaller sub 

graphs. Part Miner can effectively reduce the number of 

candidate graphs by exploring the cumulative information of 

the units. This has led to a lot of cost savings. PartMiner is 

effective and scalable in finding sub graphs. 

AlgorithmGraph Part 

Input: G, the graph 

Output: G1, G2, the two subgraphs of G 

1: V = {vertices sorted according to their update frequency}; 

2: V*= Ф; 

3: w (V*) = −∞ 

4: for (i = 0; i < |V |/2; i++) { 

5: Vi = Ф; 

6: call DFSScan(V, i, Vi); 

7: Compute w(Vi); 

8: if (w (Vi) > w(V∗ )) { 

9: w (V*) = w (Vi); 

10: V*= Vi; 

11: } 

12: } 

13: G1 = {eij = (vi, vj )|vi ∈  V*, vj ∈  V*}∪{eij = (vi, vj )|vi ∈  

V*, vj /∈V*} 

14: G2 = {eij = (vi, vj )|vi /∈V*, vj /∈V*} 

             ∪  {eij = (vi, vj )|vi ∈  V*, vj /∈V*} 

 

Procedure DFSScan(V, i, Vi) 

15: stack = Ф,m= 0; 

16: stack.push(vi); 

17: while(stack ≠ Ф ∧  m ≤ |V |/2){ 

18: v = stack.pop(); 

19: Vi = Vi ∪  {v}; 

20: m++; 

21: choose the neighbor vertex vh, s.t. vh.visited = 0, and     

∀ vs, 

     Vs.visited = 0 ∧  (v, vs) ∈  E, vs.ufreq < vh.ufreq; 

22: stack.push(vh); 
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23 :} 

Dividing graph database into units 

Procedure DBPartition(D, k) 

D, graph database; 

K: number of units 

1: D0,0 = D; 

2: i = 1; 

3: l = log2k; 

4: while (i ≤ l) { 

5: for (j = 0; j < 2i−1; j++) 

6: DivideDBPart(Di-1,j,Di-2,j,Di,2j+1); 

7: i++; 

8 :} 

9: for (j = 0; j < k – 2l; j ++) 

10: DivideDBPart(Di-1,j , U2j , U2j+1); 

Function DivideDBPart(Ds, D1,0, D1,1) 

1: D1, 1 =Ф; 

2: D1, 1 = Ф; 

3: for each graph G ∈  Ds { 

4: G1, G2 = calling GraphPart(G); 

5: D1, 0= D1, 0 ∪  {G1}; 

6: D1, 1 = D1, 1 ∪  {G2} 

2.2 gSpan Algorithm 
Graph-Based Substructure Pattern Mining, which presented 

gSpan algorithm which discovers frequent substructures 

without candidate generation. gSpan builds a new 

lexicographic order among graphs ,and maps each graph to a 

unique minimum DFS code as its canonical label. Based on this 

lexicographic order, gSpan adopts the depth-first search 

strategy to mine frequent connected subgraphs efficiently. So, 

gSpan outperforms FSG by an order of magnitude and is 

capable to mine large frequent subgraphs in a bigger graph set 

with lower minimum supports. 

GraphSet Projection (D,S). 

1: sort the labels in by their frequency; 

2: remove infrequent vertices and edges; 

3: relabel the remaining vertices and edges; 

4: S1= all frequent 1-edge graphs in D  ; 

5: sort S1 in DFS lexicographic order; 

6: S →S1 

7: for each edge e € S1 do 

8: initialize s with e, set S. D by graph which contains e 

9: Subgraph Mining (D, S, s); 

10: .D←D-e 

11: if │D│< min Sup 

12: break; 

 

Subprocedure 1 Subgraph Mining(D,S,s) 

1: if s ≠ min(S) 

3: S←S U {s} 

4: enumerate s in each graph in D and count its children; 

5: for each c, c is s’ child do 

6: if support (C) > min Sup 

7: s ←c 

8: Subgraph Mining (D, S, s_); 

2.3 RMAT Algorithm 
In this recursive model for graph mining finding the properties 

of real graphs that seem to persist over multiple disciplines. We 

list such “laws” and, more importantly, we propose a simple, 

parsimonious model, the recursive matrix (R-MAT) model, 

which can quickly generate realistic graphs, capturing the 

essence of each graph in only a few parameters. R-MAT 

automatically generates graphs with the communities within 

communities’ property. R-MAT can easily generate realistic 

weighted graphs directed graphs and bipartite graphs. 

RMAT Algorithm 
The adjacency matrix A of a graph of N nodes is an N _ N 

matrix, with entry a (i; j) = 1 if the edge(i; j) exists, and 0 

otherwise. The basic idea behind R-MAT is to recursively 

subdivide the adjacency matrix into four equal-sized partitions, 

and distribute edges within these partitions with a unequal 

probabilities: starting o_ with an empty adjacency matrix, we 

\drop" edges into the matrix one at a time. Each edge chooses 

one of the four partitions with probabilities a; b; c; d 

respectively (see Figure 1). Of course, a + b + c + d = 1. The 

chosen partition is again subdivided into four smaller 

partitions, and the procedure is repeated until we reach a simple 

cell (=1_1 partition).This is the cell of the adjacency matrix 

occupied by the edge. The number of nodes in the R-MAT 

graph is set to 2n; typically n = dlog2 Ne. There is a subtle 

point here: we may have duplicate edges (i.e., edges which fall 

into the same cell in the adjacency matrix), but we only keep 

one of them. To smooth out actuations in the degree 

distributions, we add some noise to the (a; b; c; d) values at 

each stage of the recursion and then renormalize (so that 

a+b+c+d = 1). 

2.4 gIndex Algorithm 
Different from the existing path-based methods, our approach, 

called gIndex, makes use of frequent substructure as the basic 

indexing feature. Frequent substructures are ideal candidates 

since they explore the intrinsic characteristics of the data and 

are relatively stable to database updates. 

Algorithm 1 Feature Selection 

Input: Graph database D, Discriminative ratio, 

Size-increasing support function, 

Maximum fragment size maxL. 

Output: Feature set F. 

1: let F = { fФ }, DfФ = D, and l = 0; 

2: while l <= maxL do 

3: for each fragment x, whose size is l do 

4: if x is frequent and discriminative then 

5: F = F u {x}  
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6: l = l + 1; 

7: return F; 

Algorithm 2 Search 

Input: Graph database D, Feature set F, Query q, 

 Maximum fragment size maxL. 

Output: Candidate answer set Cq. 

1: let Cq = D; 

2: for each fragment x is subset of  q and len(x) <=  maxL do 

3: if x € F then 

4: Cq = Cq П Dx and return Cq. 

Algorithm 3 Insert/Delete 

Input: Graph database D, Feature set F, 

Inserted (Deleted) graph g and its id gid, 

Maximum  fragment  size maxL. 

1: for each fragment x is subset of  g and len(x) <=  maxL do 

2: if x € F then 

3: Insert: 

   insert gid into the id list of x; 

4: Delete: 

   delete gid from the id list of x; 

5: return; 

3. PROPOSED ALGORITHM 
3.1 The proposed algorithm is better in performance than 

previous algorithm such as Part Miner, gSpan, RMAT and 

gIndex in terms of sorting and searching involving DFSS 

having both left and right relationship, graph property having 

user based query and relationship property. It includes the 

following steps. 

1. Creation of nodes, property of nodes, and relationship among 

those nodes 

2. Selection of property to be searched and sorting with the 

help of relationship. 

3. Traversing to a particular node which needs to be searched in 

both left as well as right direction and store the relationship 

when the match occurred. 

    ALGORITHM FOR TRAVERSING 

Setup 

Step 1 Create Graph Database 

Step 2 Create Node 

Step 3 Set Property of nodes 

Step 4 Create Relationship           

Step 5 Select p                  /* Property to be searched */ 

Step 6 Sort the graph by their relationship 

Step 7 for Node position traverse <- depth 

Step 8 if p == node.property // if required property         match 

Step 9 S <- node-relationship // store relationship of     first 

match 

Step 10   if node.left.relationship ==S 

Step 11   display properties 

Step 12   continue traverse down 

Step 13   else 

Step 14   if node.right.relationship ==S 

Step 15   Display properties 

Step 16   continue traverse down 

Step 17   else 

Step 18     traverse <- down next node 

Step 19    end 

Step 20   end 

Step 21   if p==node.property 

Step 22    repeat Step 10 through18 

Step 23   end 

Step 24   end 

Step 25   end 

4. COMPARITIVE STUDY AND 

DISCUSSION 
The proposed algorithm when compared with above existing 

algorithms works remarkably well in terms of parameters such 

as it stores the data in sorted way, searching takes place in both  

directions left as well as right, graph property based on user  

 

Table1. Comparison of existing algorithm with proposed 

algorithm 

 

 

based query and also checks the relation whether it is one to 

one, one to many or many to many relationship. The 

comparison of existing algorithm with proposed algorithm is 

shown in Table 1. 

Some snapshots have been taken from the graph database to 

show the properties and relationship that exit among the 

different nodes such as BSE (Bombay Stock Exchange), NSE 

(National Stock Exchange) and NASDAQ.A Overview of 

Stock Crime Exchange is shown in figure 1.Stock Crime that 

has occurred inside NASDAQ is shown in figure2. Stock 

Crime that has occurred inside NSE is shown in figure3. Stock 

Crime that has occurred inside BSE is shown in figure4.Stock 

crime in NASDAQ having both has and knows relationship is 

Features Part 

Miner 

gSpan RMAT gIndex Proposed 

Algo 

Sorting Yes Yes No No Yes 

Approach Top 

down 

Top 

down 

Top 

down 

Top 

down 

Top down  

Search DFSS DFSS DFSS DFSS DFSS, Left 

and Right 

Relationship 

Partitioning Yes No Yes 

(recurs

ively) 

Yes 

(recurs

ive) 

No 

Large 

Database 

Average Good Averag

e 

Averag

e 

Good 

Graph 

Property 

No No No Featur

e 

based 

Yes(user 

Query based) 

Check 

Relationship 

No No 

(DFS 

code) 

No No Yes 

Iteration Multiple One Multip

le 

Multip

le 

One 
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shown in figure 5. Stock crime in NASDAQ having both has 

and knows relationship is shown in figure6. Stock crime in 

NASDAQ having both has and knows relationship is shown in 

figure7. Common node having relationship both in NSE & 

NASDAQ is shown in figure8 & figure9 which can be shown 

with the help of id which is common to both NSE & 

NASDAQ. 

 

 
 

 

Figure1.Overview of Stock Crime Exchange 

 

 

 

 
 

Figure2.Stock Crime that has occurred in NSE 

 

 
 

Figure3.Stock Crime that has occurred in BSE 

 

 
 

Figure4.Stock Crime that has occurred in NASDAQ 

 
 

Figure5.Stock Crime in NASDAQ having both knows 

& has relationship 
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Figure6.Stock Crime in NSE having both knows 

& has relationship 

 
 

Figure7.Stock Crime in BSE having both has 

& knows relationship 

 
 

Figure8.Stock Crime in BSE having common id 

5 & related to same crime that has occurred in 

NASDAQ 

 

 
 

Figure9.Stock Crime that in NASDAQ having common id 5 

& related to same crime that has occurred in BSE 

 

 

5. CONCLUSION & FUTURE SCOPE 
Although the current algorithm already performs quite well, it 

can be implemented in real time systems to trace the pattern of 

stock rise and fall in the share market and we can compare the 

current pattern of stock fluctuations with the pattern present in 

graph database, so that if it finds any resemblance in the pattern 

it can impose a security check over that particular stock and 

predict the future steps .This can be helpful in planning the 

prevention of several crimes which can contribute to the people 

who gets affected due to this share price manipulation. Graph 

mining is a currently very active research field. The application 

areas of graph mining are widespread ranging from biology & 

chemistry to internet applications. 
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