
International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 10, March 2014

4

Stock Crime Detection using Graph Mining

Jigyasha Arora

CSE Dept,
UTU, Dehradun.

Pawan Kumar Mishra
CSE Dept,

UTU, Dehradun.

Prakash Joshi
CSE Dept,

UTU, Dehradun.

ABSTRACT
Previously existing graph mining algorithm typically assumes

that database is relatively static. To overcome that we proposed

a new algorithm which deals with large database including the

features which captures the properties of graph in few

parameters and check the relationship among them in both left

as well as right direction, thus adopting DFS as well as BFS

approach. It further finds the sub graph by traversing the graph

and extracting the desired pattern. The proposed algorithm is

used for detection of crime in stock market by capturing the

properties and identifying the relationship & associations that

may exist between the person involved in that crime which

prevent several crimes that might occur in future. We have

used the ECLIPSE for the implementation of proposed

algorithm and Neo4j is the graph database used for analysis.

Keywords
Graph database, Graph mining, DFSS, Sub graph.

1. INTRODUCTION
Nowadays the amount of data is increasing day by day, so

accordingly the desire for data mining is also growing. Large

database have to be searched to find the interesting properties

of the graph and to establish a relationship among them. It is

beneficial to model the complex data with the help of graph in

which information is stored in nodes and edges represent the

relationship among the nodes. Therefore having a graph

database overcomes the constraint of relational database and

helps in finding the super graph, sub graph, common graph and

relationship between different graphs. This graph based data

mining has become more and more popular in the last few

years. Graph mining is the use of most important structure of

graph to obtain frequent patterns of information. It has board

range of applications.

This technique can be used to find the probability of persons

doing crime in the stock market .Some case studies of people

involved in stock crime were studied to obtain the attributes

such as persons involved in crime, whether they are educated

or not, style of crime, earning from the particular threat. These

attribute lead to the construction of graph database and an

algorithm has been proposed for traversing the graph in both

directions left as well as right and establish relationship among

different nodes which further generates a sub graph according

to the query.Neo4j is the graph database used for analysis as

the retrieval times of graph database are less than relational

database as it looks only at records, it does not scan the entire

group to find the nodes that met the search criteria. Analysis

report from this implementation will also be helpful in planning

the prevention of several crimes. The remainder of this paper is

organized as follows. Section 2 introduces the problem

statement of graph based data mining and existing algorithms;

Section 3 describes our proposed algorithm used for traversing

the graph database; Section 4 describes comparative study of

our proposed technique with other existing technique;

Conclusion & future scope in Section 5 and all the used

references are given in Section 6.

2. OVERVIEW OF EXISTING

ALGORITHM

2.1 Part Miner Algorithm
Each graph in the database is partitioned into smaller sub

graphs. Part Miner can effectively reduce the number of

candidate graphs by exploring the cumulative information of

the units. This has led to a lot of cost savings. PartMiner is

effective and scalable in finding sub graphs.

AlgorithmGraph Part

Input: G, the graph

Output: G1, G2, the two subgraphs of G

1: V = {vertices sorted according to their update frequency};

2: V*= Ф;

3: w (V*) = −∞

4: for (i = 0; i < |V |/2; i++) {

5: Vi = Ф;

6: call DFSScan(V, i, Vi);

7: Compute w(Vi);

8: if (w (Vi) > w(V∗)) {

9: w (V*) = w (Vi);

10: V*= Vi;

11: }

12: }

13: G1 = {eij = (vi, vj)|vi ∈ V*, vj ∈ V*}∪{eij = (vi, vj)|vi ∈

V*, vj /∈V*}

14: G2 = {eij = (vi, vj)|vi /∈V*, vj /∈V*}

 ∪ {eij = (vi, vj)|vi ∈ V*, vj /∈V*}

Procedure DFSScan(V, i, Vi)

15: stack = Ф,m= 0;

16: stack.push(vi);

17: while(stack ≠ Ф ∧ m ≤ |V |/2){

18: v = stack.pop();

19: Vi = Vi ∪ {v};

20: m++;

21: choose the neighbor vertex vh, s.t. vh.visited = 0, and

∀ vs,

 Vs.visited = 0 ∧ (v, vs) ∈ E, vs.ufreq < vh.ufreq;

22: stack.push(vh);

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 10, March 2014

5

23 :}

Dividing graph database into units

Procedure DBPartition(D, k)

D, graph database;

K: number of units

1: D0,0 = D;

2: i = 1;

3: l = log2k;

4: while (i ≤ l) {

5: for (j = 0; j < 2i−1; j++)

6: DivideDBPart(Di-1,j,Di-2,j,Di,2j+1);

7: i++;

8 :}

9: for (j = 0; j < k – 2l; j ++)

10: DivideDBPart(Di-1,j , U2j , U2j+1);

Function DivideDBPart(Ds, D1,0, D1,1)

1: D1, 1 =Ф;

2: D1, 1 = Ф;

3: for each graph G ∈ Ds {

4: G1, G2 = calling GraphPart(G);

5: D1, 0= D1, 0 ∪ {G1};

6: D1, 1 = D1, 1 ∪ {G2}

2.2 gSpan Algorithm
Graph-Based Substructure Pattern Mining, which presented

gSpan algorithm which discovers frequent substructures

without candidate generation. gSpan builds a new

lexicographic order among graphs ,and maps each graph to a

unique minimum DFS code as its canonical label. Based on this

lexicographic order, gSpan adopts the depth-first search

strategy to mine frequent connected subgraphs efficiently. So,

gSpan outperforms FSG by an order of magnitude and is

capable to mine large frequent subgraphs in a bigger graph set

with lower minimum supports.

GraphSet Projection (D,S).

1: sort the labels in by their frequency;

2: remove infrequent vertices and edges;

3: relabel the remaining vertices and edges;

4: S1= all frequent 1-edge graphs in D ;

5: sort S1 in DFS lexicographic order;

6: S →S1

7: for each edge e € S1 do

8: initialize s with e, set S. D by graph which contains e

9: Subgraph Mining (D, S, s);

10: .D←D-e

11: if │D│< min Sup

12: break;

Subprocedure 1 Subgraph Mining(D,S,s)

1: if s ≠ min(S)

3: S←S U {s}

4: enumerate s in each graph in D and count its children;

5: for each c, c is s’ child do

6: if support (C) > min Sup

7: s ←c

8: Subgraph Mining (D, S, s_);

2.3 RMAT Algorithm
In this recursive model for graph mining finding the properties

of real graphs that seem to persist over multiple disciplines. We

list such “laws” and, more importantly, we propose a simple,

parsimonious model, the recursive matrix (R-MAT) model,

which can quickly generate realistic graphs, capturing the

essence of each graph in only a few parameters. R-MAT

automatically generates graphs with the communities within

communities’ property. R-MAT can easily generate realistic

weighted graphs directed graphs and bipartite graphs.

RMAT Algorithm
The adjacency matrix A of a graph of N nodes is an N _ N

matrix, with entry a (i; j) = 1 if the edge(i; j) exists, and 0

otherwise. The basic idea behind R-MAT is to recursively

subdivide the adjacency matrix into four equal-sized partitions,

and distribute edges within these partitions with a unequal

probabilities: starting o_ with an empty adjacency matrix, we

\drop" edges into the matrix one at a time. Each edge chooses

one of the four partitions with probabilities a; b; c; d

respectively (see Figure 1). Of course, a + b + c + d = 1. The

chosen partition is again subdivided into four smaller

partitions, and the procedure is repeated until we reach a simple

cell (=1_1 partition).This is the cell of the adjacency matrix

occupied by the edge. The number of nodes in the R-MAT

graph is set to 2n; typically n = dlog2 Ne. There is a subtle

point here: we may have duplicate edges (i.e., edges which fall

into the same cell in the adjacency matrix), but we only keep

one of them. To smooth out actuations in the degree

distributions, we add some noise to the (a; b; c; d) values at

each stage of the recursion and then renormalize (so that

a+b+c+d = 1).

2.4 gIndex Algorithm
Different from the existing path-based methods, our approach,

called gIndex, makes use of frequent substructure as the basic

indexing feature. Frequent substructures are ideal candidates

since they explore the intrinsic characteristics of the data and

are relatively stable to database updates.

Algorithm 1 Feature Selection

Input: Graph database D, Discriminative ratio,

Size-increasing support function,

Maximum fragment size maxL.

Output: Feature set F.

1: let F = { fФ }, DfФ = D, and l = 0;

2: while l <= maxL do

3: for each fragment x, whose size is l do

4: if x is frequent and discriminative then

5: F = F u {x}

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 10, March 2014

6

6: l = l + 1;

7: return F;

Algorithm 2 Search

Input: Graph database D, Feature set F, Query q,

 Maximum fragment size maxL.

Output: Candidate answer set Cq.

1: let Cq = D;

2: for each fragment x is subset of q and len(x) <= maxL do

3: if x € F then

4: Cq = Cq П Dx and return Cq.

Algorithm 3 Insert/Delete

Input: Graph database D, Feature set F,

Inserted (Deleted) graph g and its id gid,

Maximum fragment size maxL.

1: for each fragment x is subset of g and len(x) <= maxL do

2: if x € F then

3: Insert:

 insert gid into the id list of x;

4: Delete:

 delete gid from the id list of x;

5: return;

3. PROPOSED ALGORITHM
3.1 The proposed algorithm is better in performance than

previous algorithm such as Part Miner, gSpan, RMAT and

gIndex in terms of sorting and searching involving DFSS

having both left and right relationship, graph property having

user based query and relationship property. It includes the

following steps.

1. Creation of nodes, property of nodes, and relationship among

those nodes

2. Selection of property to be searched and sorting with the

help of relationship.

3. Traversing to a particular node which needs to be searched in

both left as well as right direction and store the relationship

when the match occurred.

 ALGORITHM FOR TRAVERSING

Setup

Step 1 Create Graph Database

Step 2 Create Node

Step 3 Set Property of nodes

Step 4 Create Relationship

Step 5 Select p /* Property to be searched */

Step 6 Sort the graph by their relationship

Step 7 for Node position traverse <- depth

Step 8 if p == node.property // if required property match

Step 9 S <- node-relationship // store relationship of first

match

Step 10 if node.left.relationship ==S

Step 11 display properties

Step 12 continue traverse down

Step 13 else

Step 14 if node.right.relationship ==S

Step 15 Display properties

Step 16 continue traverse down

Step 17 else

Step 18 traverse <- down next node

Step 19 end

Step 20 end

Step 21 if p==node.property

Step 22 repeat Step 10 through18

Step 23 end

Step 24 end

Step 25 end

4. COMPARITIVE STUDY AND

DISCUSSION
The proposed algorithm when compared with above existing

algorithms works remarkably well in terms of parameters such

as it stores the data in sorted way, searching takes place in both

directions left as well as right, graph property based on user

Table1. Comparison of existing algorithm with proposed

algorithm

based query and also checks the relation whether it is one to

one, one to many or many to many relationship. The

comparison of existing algorithm with proposed algorithm is

shown in Table 1.

Some snapshots have been taken from the graph database to

show the properties and relationship that exit among the

different nodes such as BSE (Bombay Stock Exchange), NSE

(National Stock Exchange) and NASDAQ.A Overview of

Stock Crime Exchange is shown in figure 1.Stock Crime that

has occurred inside NASDAQ is shown in figure2. Stock

Crime that has occurred inside NSE is shown in figure3. Stock

Crime that has occurred inside BSE is shown in figure4.Stock

crime in NASDAQ having both has and knows relationship is

Features Part

Miner

gSpan RMAT gIndex Proposed

Algo

Sorting Yes Yes No No Yes

Approach Top

down

Top

down

Top

down

Top

down

Top down

Search DFSS DFSS DFSS DFSS DFSS, Left

and Right

Relationship

Partitioning Yes No Yes

(recurs

ively)

Yes

(recurs

ive)

No

Large

Database

Average Good Averag

e

Averag

e

Good

Graph

Property

No No No Featur

e

based

Yes(user

Query based)

Check

Relationship

No No

(DFS

code)

No No Yes

Iteration Multiple One Multip

le

Multip

le

One

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 10, March 2014

7

shown in figure 5. Stock crime in NASDAQ having both has

and knows relationship is shown in figure6. Stock crime in

NASDAQ having both has and knows relationship is shown in

figure7. Common node having relationship both in NSE &

NASDAQ is shown in figure8 & figure9 which can be shown

with the help of id which is common to both NSE &

NASDAQ.

Figure1.Overview of Stock Crime Exchange

Figure2.Stock Crime that has occurred in NSE

Figure3.Stock Crime that has occurred in BSE

Figure4.Stock Crime that has occurred in NASDAQ

Figure5.Stock Crime in NASDAQ having both knows

& has relationship

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 10, March 2014

8

Figure6.Stock Crime in NSE having both knows

& has relationship

Figure7.Stock Crime in BSE having both has

& knows relationship

Figure8.Stock Crime in BSE having common id

5 & related to same crime that has occurred in

NASDAQ

Figure9.Stock Crime that in NASDAQ having common id 5

& related to same crime that has occurred in BSE

5. CONCLUSION & FUTURE SCOPE
Although the current algorithm already performs quite well, it

can be implemented in real time systems to trace the pattern of

stock rise and fall in the share market and we can compare the

current pattern of stock fluctuations with the pattern present in

graph database, so that if it finds any resemblance in the pattern

it can impose a security check over that particular stock and

predict the future steps .This can be helpful in planning the

prevention of several crimes which can contribute to the people

who gets affected due to this share price manipulation. Graph

mining is a currently very active research field. The application

areas of graph mining are widespread ranging from biology &

chemistry to internet applications.

6. REFERENCES
[1] Kamrul Abedin Tarafder, Shah Mostafa Khaled, moham

Ashraful Islam,” Reverse Apriori algorithm for frequent

pattern mining , Medwell journals, 2008.

[2] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic

Smyth,” From Data Mining to Knowledge Discover

Databases”, AI MagazineVolume 17 Number 3 (1996) (©

AAAI)

[3] Justin J. Miller,”Graph Database Applications and Concept

with Neo4j”,Proceedings of the Southern Association for

Information System Conference, Atlanta, GA, USA

March 23rd- 24th, 2013

 [4] Ingrid Fischer and Thorsten Meinl,”Graph Based

Molecular Data Mining - An Overview”,∗ 0-7803-8566-

7/04/$20.00 c.2004 IEEE

[5] Xifeng Yan and Jiawei Han,”gSpan: Graph-

BasedSubstructure”http://oldwww.comlab.ox.ac.uk/oucl/g

roups/machlearn/PTE

[6] Deepayan Chakrabarti, Yiping Zhan and Christos

Faloutsos,”R- MAT: A Recursive Model for Graph

Mining”, ‡ School of Computer Science, CMU.

[7] Frank Eichinger,Klemens B¨ohm and Matthias Huber,

Improved Software Fault Detection with Graph Mining”,

Appearing in the 6th International Workshop on Mining

and Learning with Graphs, Helsinki, Finland, 2008.

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 10, March 2014

9

[8] JunmeiWang, WynneHsu Mong and Li Lee Chang Sheng,”

“A Partition-Based Approach to Graph Mining”,

Proceedings of the 22nd International Conference on Data

Engineering (ICDE’06)8-7695-2570-9/06 $20.00 © 2006

IEEE

[9] Garima Jaiswal and Arun Prakash

Agrawal”Comparativeanalysis of Relational and Graph

databases”, IOSR Journal of Engineering (IOSRJEN).

[10] Ciro Cattuto, André Panisson, Marco Quaggiotto and Alex

Averbuch,”Time-varying Social Networks in a

GraphDatabase”http://www.sociopatterns.org

[11] Quist-Aphetsi Kester,”Criminal Geographical Profiling:

Using FCA for Visualization and Analysis of Crime

Data”,Email: kquist-aphetsi@gtuc.edu.gh /

kquist@ieee.org

[12] G. Kishore Kumar, Dr. V. K. Jayaraman ” Clustering of

Complex Networks and Community Detection Using

Group Search Optimization”.

[13] Hsinchun Chen, WingyanChung, Jennifer Jie Xu, Gang

Wang Yi Qin and Michael Chau,” Crime Data Mining:

AGeneral Framework and Some Examples”, 0018-

9162/04/$20.00 © 2004 IEEE

[14] Tibor Bosse, Charlotte Gerritsen, and Jan Treur,” Analysis

of Criminal Behaviour ”.

[15] Sytske Besemer,” The impact of timing and frequency of

parental criminal behaviour and risk factors on offspring

offending”, an Institute of Criminology University of

Cambridge, Cambridge, UK Version of record first

published: 05 Nov 2012.

IJCATM : www.ijcaonline.org

