
International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No.7, March 2014 

31 

Appropriate Starter for Solving the Kepler’s Equation 

 
Reza Esmaelzadeh 
Space research institute 

Tehran, Iran 
 

Hossein Ghadiri 
Space research institute 

Tehran, Iran 
 

 

ABSTRACT 

This article, focuses on the methods that have been used for 

solving the Kepler’s equation for thirty years, then Kepler’s 

equation will be solved by Newton-Raphson’s method. For 

increasing the stability of Newton’s method, various guesses 

studied and the best of them introduced base on minimum 

number repetition of algorithm. At the end, after studying 

various guesses base on time of Implementation, one 

appropriate choice first guesses that increase the isotropy and 

decrease the time of Implementation of solving is introduced. 

Keywords 

Kepler’s equation; initial guesses; iterative solution; Newton -

Raphson method 

1. INTRODUCTION 
Various problems are solved by Kepler’s equation. This 

equation is used for describing movement of a body under 

central gravity. Kepler’s equation looks simple and shows as 

below [1]: 

𝑀 = 𝐸 − 𝑒𝑠𝑖𝑛𝐸 (1) 

𝑒 ∈ [0,1] 

𝑀 ∈ [0,2𝜋] 
Where 𝐸 designates eccentric anomaly, 𝑀 designates mean 

anomaly, and 𝑒 designates eccentricity. This equation can be 

used to determine the relationship of time and angle place of 

the body in the orbit. In some cases, 𝐸 is given and also 𝑒 is 

determined and 𝑀 is unknown, in this case, equation (1) can 

be directly used. But most of the time, 𝑀 and 𝑒 are determined 

and 𝐸 must be calculated. In this case, equation (1) cannot be 

directly used.  

During years, for solving Kepler’s equation, many methods 

are introduced. Colwell [2] provides an in-depth survey of 

solution methods. In following of Colwell’s work, a brief 

survey of solution methods of Kepler’s Equation that are 

published from 1979 until now is explained. Then, choice 

Newton’s method for solving Kepler’s equation and scrutiny 

convergence and time of Implementation of this method for 

several first guesses and choose the best of them. Finally, use 

guesses that reduce the time of Implementation of Newton-

Raphson’s method and have desirable convergence rate for 

solving equation.  

2. METHOD FOR SOLVING KEPLER’S 

EQUATION 
Solving Kepler’s Equation attracts many scholars. Although, 

this equation looks sample, cannot be solved analytically and 

other methods must to be used. The methods that suggested 

for solving Kepler’s equations can be classified in three 

categories: classic methods, non-iteration method and 

iteration methods. 

2.1 Classic Method 
These methods depend on using power series. 𝐸 power series 

is one kind of them that known as Lagrange series [3]: 

𝐸 = 𝑀 +  𝑎𝑛𝑒
𝑛

∞

𝑛=1

 (2) 

If 𝑒 is small enough, Lagrange series is convergent and the 𝐸 

with a good accuracy will be found. But this series is 

divergent for 𝑒 > 0.66 and the more parameters the worse 

result, the parameters of Lagrange series must be reduced, too. 

Another method is Fourier series that is shown as below [3]: 

𝐸 = 𝑀 +  
2

𝑛
𝐽𝑛 𝑛𝑒 sin(𝑛𝑀)

∞

𝑛=1

 (3) 

𝑗𝑛  is known as the Bessel function and defined as follows: 

𝐽𝑛 𝑥 =  
(−1)𝑘

𝑘! (𝑛 + 𝑘)!
(
𝑥

2
)𝑛+2𝑘

∞

𝑘=0

 (4) 

Series solution of Bessel function is convergent for all values 

𝑒 < 1. Sentences of series to be increased, more accurate 

solutions are closer to Kepler’s equation. Another method is 

using Taylor series expansion to approximate the Kepler’s 

equation. 

𝑓 𝑥 =  
𝑓(𝑥)𝑛𝑥𝑛

𝑛!

∞

𝑛=0

 (5) 

If the series is convergent, approximation of the 𝑓(𝑥) function 

will result for small values of 𝑥. Depending on what the 

function of 𝑓(𝑥) is considered, different solutions can be 

represented. According to what was mentioned, classical 

methods of solving Kepler’s equation based on the direct use 

of the series expansion. There are other methods, some of 

them use series expansion, but as a part of the whole 

procedure, these methods are called direct or non-iterative 

methods. 

2.2 Non-Iterative Methods 
Such methods are a non-iterative solution of Kepler’s 

equation and like the classic methods directly provide 

estimate of Kepler’s equation. In 1987, Mikkola [4] presented 

a non-iterative two-step solution; initially provided below 

approximation by using an auxiliary variable and 𝐴𝑟𝑐𝑠𝑖𝑛𝑒 

function expansion. 

𝐸 = 𝑀 + 𝑒(3𝑠 − 4𝑠3) (6) 

Mikkola’s method is a direct solution of Kepler’s equation 

with a desirable precision. 

In 1995, Markly [5] published a solution that is based on Pedé 

estimating of 𝑠𝑖𝑛𝑒 function. In his method, he tried to 

minimize the using of trigonometric function. In 2006, 

Feinstein [6] provide a non-iterative solution with using 
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dynamical discretization techniques combined with dynamic 

program that was superior of all published methods. In 2007, 

Mortari and Clocchiatti [7] provided a non-iterative solution 

for Kepler’s equation with the Bézier curves. Compare with 

dynamic discretization method, this method does not need any 

pre-computed information. 

2.3 Iterative Methods 
Although non-iterative methods for solving Kepler’s equation 

worked, a number of researchers have devised iterative 

numerical methods that base on Newton-Raphson method. 

The idea of Newton-Raphson’s method is to approximate the 

nonlinear function 𝑓 𝑥  by the first two terms in a Taylor 

series expansion around the point 𝑥. Newton-Raphson’s 

method is defined as follows [1]:  

𝑓 𝐸 = 𝐸 −𝑀 − 𝑒 𝑠𝑖𝑛𝐸  

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 

(7) 

For Newton’s method, the rate of convergence is said to be 

quadratic that is a very desirable property for an algorithm to 

possess. But, if the initial guess is not sufficiently close to the 

solution, i.e., within the region of convergence, Newton’s 

method may diverge. In fact, Newton’s method behaves well 

near the solution (locally) but lacks something permitting it to 

converge globally. The second problem occurs when the 

derivative of the function is zero. In fact, Newton’s method 

loses its quadratic convergence property if the slope is zero at 

the solution. Therefore, this method requires that the slop of 

the function is computed on each iteration and mustn’t be zero 

[8]. Halley generalized the Newton’s method by applying the 

second derivative that resulted from Taylor series expansion 

[6]: 

𝑥𝑛+1 = 𝑥𝑛 −
2𝑓(𝑥𝑛)𝑓′(𝑥𝑛)

2[𝑓′ 𝑥𝑛 ]2 − 𝑓(𝑥𝑛)𝑓′′ (𝑥𝑛)
 (8) 

Additional terms of Halley method include additional 

calculation on each iteration. His method is more dependent 

on the initial guess but have a strong convergence property 

[9]. 

Proper choice of the initial guess can greatly reduce the 

computation and guarantee the convergence of method. In 

1978, Smith [10] found that the root of Kepler’s equation is 

between two values 𝑀 and 𝑀 + 𝑒 by replacement of with 𝐸. 

Then, by using the equation of a straight line between 𝑀 and 

M+e, introduced this initial guess for Kepler’s equation [10]: 

𝐸0 = 𝑀 + 𝑒
𝑠𝑖𝑛𝑀

1 − sin 𝑀 + 𝑒 + 𝑠𝑖𝑛𝑀
 (9) 

In fact, his initial guess is a linear approximation of the root of 

Kepler’s equation between two points 𝑀 and 𝑀 + 𝑒. He 

compared this initial guess with Newton’s method in two 

regions with some other value. Regions deemed by him as 

follows: 

Region 1:  0.05 ≤ M ≤ π  and 0.01 ≤ 𝑒 ≤ 0.99 . 

Region 2: 0.005 ≤ 𝑀 ≤ 0.4  and 0.95 ≤ 𝑒 ≤ 0.999 . 

His guesses are in the Table 1. Smith’s criterion for a good 

initial guess was the average number of iterations to reach a 

solution by Newton’s method in each region. He considered 

tolerance 5×10-8 to stop the algorithm. Finally, after 

comparing the initial guess concluded that without initial 

guess 𝑀 + 𝑒, initial guess (9) is the best of the number of 

iterations. Difference between the Smith’s initial guess and 

𝑀 + 𝑒 in the region 2 is not big. So, the initial guess 

introduced as the best one. By using it the Newton’s method 

doesn’t need to add correction clauses to avoid divergence 

and the number of iteration of this approach is also desirable. 

In 1979, Edward NG [9] used a method like Halley. He 

considered for distinct areas in space (𝑀, 𝑒), and used a 

different value for each area. The first three areas had current 

calculations, but found that the Kepler’s equation treats like a 

third degree function near this point (𝑀, 𝑒) = (0,1); so, used 

third degree root for this area. 

Another iterative method was introduced by Danby [11] in 

1983, he argued that the degree of convergence goes upper, 

the sensitivity of initial value and risk of diverging reduced. 

Danby method shows as below: 

𝑥𝑛+1 = 𝑥𝑛+𝛿𝑛   

𝛿𝑛1 = −
𝑓

𝑓′  (10) 

𝛿𝑛2 = −
𝑓

𝑓′ −
1
2
𝛿𝑛1𝑓

′′
 

(11) 

𝛿𝑛3 = −
𝑓

𝑓′ −
1
2
𝛿𝑛2𝑓

′′ +
1
6
𝛿𝑛2

2 𝑓′′′
 

(12) 
By using equation (10), the Newton’s method with second 

degree convergence will be resulted. If equation (11) used, the 

Halley’s method with third degree convergence will be 

resulted and using equation (12) will result fourth degree 

convergence. Danby used initial guess 𝐸 = 𝑀 in his article, 

but later in 1987 [12], understood that division of computing 

is useful in two regions. So declared below guesses: 

𝐸0 =  
𝑀 +   6𝑀 

1
3 −𝑀 𝑒2   0 ≤ 𝑀 < 0.1

𝑀 + 0.85𝑒                          0.1 ≤ 𝑀 ≤ 𝜋

  (13) 

In 1986, Serafin [13] stated that a good choosing for initial 

guess 𝐸, needed rang the root of 𝐸 belong to it. He defined 

intervals that include root of Kepler’s equation by using the 

property of 𝑠𝑖𝑛𝑒 function. Table 2 shows his results. In the 

same year, Conway [14] stated a method base on Leguerre’s 

method that using for finding the root of a polynomial. 

𝑥𝑖+1 = 𝑥𝑖 −
𝑛𝑓(𝑥𝑖)

𝑓 ′(𝑥𝑖) ±   𝑛 − 1 2(𝑓′(𝑥𝑖))2 − 𝑛(𝑛 − 1)𝑓 ′′ (𝑥𝑖)
 (14) 

Table 1. Smith’s initial guesses 

Initial guesses 
𝐸0 = 𝑀 

𝐸0 = 𝑀 + 𝑒 

𝐸0 = 𝑀 + 𝑒 𝑠𝑖𝑛  𝑀 

𝐸0 = 𝑀 + 𝑒
𝑠𝑖𝑛𝑀

1 − sin 𝑀 + 𝑒 + 𝑠𝑖𝑛𝑀
 

𝐸0 = 𝑀 + 𝑒 sin𝑀 + 𝑒2 sin𝑀 cos𝑀 

𝐸0 = 𝑀 +  𝛼  1 −
𝛼2

2
 , 𝛼 =

𝑒 sin𝑀

1 − 𝑒 cos𝑀
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He selected 𝑛 = 5. The convergence of this method, 

regardless of the initial guess is guaranteed. Odell and 

Gooding [15], in a part of their article studied twelve different 

initial guesses. They believe that rapid convergence in small 

𝑀, and big e, only can be possible when initial value shows a 

good status of 𝐸. Then, they stated their method. In 1989, Taff 

[16] evaluated thirteen different initial guesses and finally the 

best and simplest initial guess and solution stated in order  

𝐸0 = 𝑀 + 𝑒 and Wegstein’s method. Nijenhuis in 1991 
[17] in his article, divided (𝑀, 𝑒) space to four 
areas and using a different initial guess for each 
area. His work was like Edward regardless stated different 

areas. His initial guesses are: 

1- Area of A that includes big M: 

𝐸 =
𝑀 + 𝑒𝜋

1 + 𝑒
 (15) 

2- Area of B for middle M: 

𝐸 =
𝑀

1 − 𝑒
 (16) 

3- Area of C for small M: 

𝐸 =
𝑀

1 − 𝑒
 (17) 

4- Area of D includes a space near the point    

(𝑀, 𝑒) = (0,1) that uses Mikkola’s method: 

𝐸 = 𝑀 + 𝑒(3𝑠 − 4𝑠3) (18) 
Outline of his method contain three steps. First, space 

of (𝑀, 𝑒) is divided into four separate areas and defines the 

initial guess for each area. Second, refine initial guesses of 

three areas by one use of Halley’s method and for area of 

four, by one use of Newton’s method. Third, modified 

Newton’s method used for solving Kepler’s equation. His 

modification of Newton’s method is different from what 

Danby used. Chobotov [18] compared Newton’s method with 

Conway’s method. He shows although convergence of 

Conway’s method is guarantee, Newton’s method for 

computing the execution time is preferred. In 1997, Vallado 

[19] solved the Kepler’s equation for elliptic, parabolic and 

hyperbola orbits. For elliptical and hyperbola orbits, studied 

the number of iteration of Newton’s method for three below 

initial guess: 

𝑀 (19) 
𝑀 + 𝑒 (20) 

𝑀 + 𝑒 𝑠𝑖𝑛𝑀 +
𝑒2

2
𝑠𝑖𝑛2𝑀 

(21) 

Table 2.  Intervals of 𝑬𝟎 

 𝑬𝟎 𝑴 ∈ 

𝑀

1 − 2
𝑒
𝜋

 ≤  𝐸 ≤  
𝑀

1 − 𝑒
 

[0, 1 − 𝑒𝛼] 

𝑀

1 − 2
𝑒
𝜋

 ≤  𝐸 ≤  M + e [1 − 𝑒𝛼0 ,
𝜋

2
− 𝑒] 

𝑀 + 2𝑒

1 + 2
𝑒
𝜋

 ≤  𝐸 ≤  M + e [ 
𝜋

2
− 𝑒,𝜋 − (1 − 𝑒𝛼0)] 

𝑀 + 2𝑒

1 + 2
𝑒
𝜋

 ≤  𝐸 ≤  
𝑀 + 𝑒𝜋

1 + 𝑒
  

[𝜋 −  1 − 𝑒𝛼0 ,𝜋] 

He concluded that Newton’s method with initial guess (21) 

compare with two others is convergent with less number of 

iteration. But due to transcendental function, amount of 

computing time is more than two others. He understood initial 

guess (20) is 15% faster than guess (19), while the initial 

guess of (21) is only 2% faster. He choose initial guess (20) 

for elliptic and hyperbola orbits base on the overall 

computation time to avoid the divergence of Newton’s 

method and reduce the computation time. In 1998, Charles 

[20] stated the Newton’s chaotic behavior and examined it for 

these guesses: 𝐸0 = 𝑀, 𝐸0 = 𝜋. He stated that Newton’s 

method all the time is convergent for 𝐸0 = 𝜋, but for E0 = M  

there is a possibility of divergence. Bellow equation is 

provided to obtain a better initial guess: 

𝐸0 = 𝑀 + 𝑒[(𝜋2𝑀)
1

3 −
𝜋

15
𝑠𝑖𝑛𝑀 −𝑀] (22) 

Curtis, in 2010 [3], used following initial guesses for the 

solution of Kepler’s equation: 

𝐸0 =  
𝑀 +

𝑒

2
 ,      𝑀 < 𝜋

𝑀 −
𝑒

2
 ,      𝑀 > 𝜋

  (23) 

Among the presented paper, these that have focused on 

iterative methods are considered and after collecting used 

initial guesses, examine them with suggested method and 

choose the best of them in term of the number of iterations. 

Choosing a good initial guess can significantly reduce the 

number of required iterations. In general, two clear demand of 

an initial guess for solving Kepler’s equation must be fast and 

accurate enough. Being a fast initial guess can be determined 

by counting the number of iteration do reach a solution or by 

measuring time of computation.  

Table 3 shows the initial guesses that will be tested. First 

guess from Table 3 is the simplest that can be considered. The 

root of Kepler’s equation is between two values, these values 

as guesses 2 and 3 that belong to Smith’s work are considered. 

The conjectures of 4, 5 and 6 from Table 3, are obtained from 

𝐸 power series expansion that has one, two and three 

sentences. The conjecture of 7 from Table 3 results of this 

unequal | sin𝐸| ≤ |𝐸| and 𝑀 −𝐸 = 𝑒 sin𝐸 [13]. Conjectures 

of 8 and 9 belong to Smith’s work. Conjecture 11, is resulted 

of one using Newton- Raphson’s method on initial  𝜋 value. 

Conjectures 12, 20, 21, 22 from Table 3 are the solution of  

S9 , S8  ,  S10، S12  Odell and Gooding. 

Conjecture 13 from Table 3 belongs to Danby in 1987. The 

conjecture 14 is the result of linear interpolation between 2 

and 16 conjectures. Conjecture 16, introduced by Edward Ng. 

conjectures 17 and 18 from Table 3 are the above and below 

roots of Kepler’s equation that introduce by Serafin, and 

conjecture 19 belongs to Charles paper. 

3. THE PROPOSED ALGORITHM 
Two important factors are considered in the compassion of the 

iterative methods are: Number of iterations and how much 

work must the considered method do for each iteration. The 

ideal solution is a balance between these two indicators. Since 

Newton’s method known standard method for solving 

Kepler’s equation and among the method’s that have been 

proposed so far, has the lowest calculations, this method will 

be chosen and try to minimize the number of iterations by 

selecting a good initial guess. The only problem with this 

method is the possibility of divergence in some areas that can 

be solved by defining of different initial guesses for some 
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areas first of all. First, rough initial guesses are refined with 

one use of Newton’s method. 

𝑓 𝐸 = 𝐸 −𝑀 − 𝑒 𝑠𝑖𝑛𝐸  

𝐸1 = 𝐸0 −
𝑓(𝐸0)

𝑓′(𝐸0)
 (24) 

Then these refined guesses are used as the starter in the 

solution of Kepler’s equation. The using algorithm has two 

steps: first, using Newton’s method on the initial guesses, 

second, solving Kepler’s equation by Newton’s method and 

refined guesses. To stop this algorithm, this tolerance (10-10 ) 

has been considered. 

4. RESULTS 
By using any of the initial guess in Table 3, the Kepler’s 

equation is solved in this range 0 ≤ e ≤ 1,  0 ≤ 𝑀 ≤ 𝜋 with 

semi-major axis with this length  𝑎 = 5850.6753 𝑘𝑚 by 

MATLAB software. Then results introduce in 𝑀 − 𝑒 

diagrams. Some of them are showed in below. 

In Figure 1, the lowest iteration occurs at small M. Important 

property of this is no divergence near the singularity point 

(𝑀, 𝑒) = (0,1). The number of iterations of this guess in 

small M is less than guesses number 8 and 12 from Table 3. In 

Figure 2, almost three repeats for middle 𝑀 is observed. 

According to Figures 3 and 4, Newton’s method in a wide 

range of space (𝑀, 𝑒) has the lowest iteration but near the 

point (𝑀, 𝑒) = (0,1) number of iterations increased. In Figure 

5, best performance for M > 2 can be observed. Figure 6 

shows the five repeats, but this guess shows increasing the 

number of iteration for small 𝑀, e > 0.99 and going to 

become divergence. According to the Figure 7, guess number 

13 from table 3 has better convergence than initial guess 

number 10 from Table 3. According to Figure 8, guess 

number 16 from Table 3, has three iterations in wide space 

has the best performance in small 𝑀.  

Among the initial guesses were examined, two conjectures 8 

and 12 from Table 3, have the best performance of number of 

iteration in the whole space. On the other hand, these are the 

fastest guesses of convergence. So they will be chosen 

because they supply an overall convergence for Newton’s 

method with minimum number of iteration. For reaching the 

minimum iteration in the whole space (𝑀, 𝑒), it is divided  

into three area and have been considered an initial guess for 

each area according to the results. 

𝐸0 =

 
 
 

 
 𝑀 +   6𝑀 

1
3 −𝑀 𝑒2   ,         0 ≤ 𝑀 ≤ 0.25

𝑀 + 𝑒
𝑠𝑖𝑛𝑀

1 − sin 𝑀 + 𝑒 + 𝑠𝑖𝑛𝑀
 , 0.25 ≤ 𝑀 ≤ 2

𝑀 +
𝑒𝑠𝑖𝑛𝑀

 1 − 2𝑒𝑐𝑜𝑠𝑀 + 𝑒2
  ,               2 ≤ 𝑀 ≤ 𝜋

  

 

(25) 

Table 3.  Initial guesses 

 𝑬𝟎  𝑬𝟎 

1 𝜋 12 
𝑀 +

𝑒𝑠𝑖𝑛𝑀

 1 − 2𝑒𝑐𝑜𝑠𝑀 + 𝑒2
 

2 𝑀 13 𝑀 + 0.85𝑒 

3 𝑀 +  𝑒 14 𝑀 +   6𝑀 
1

3 −𝑀 𝑒2  

4 𝑀 +  𝑒 𝑠𝑖𝑛𝑀 15 𝑀 −  𝑒 

5 
𝑀 + 𝑒 𝑠𝑖𝑛𝑀 +

𝑒2

2
𝑠𝑖𝑛2𝑀 

16  6𝑀 
1

3  

6 
𝑀 + 𝑒 𝑠𝑖𝑛𝑀 +

𝑒2

2
𝑠𝑖𝑛2𝑀 +

𝑒3

8
(3𝑠𝑖𝑛3𝑀

− 𝑠𝑖𝑛𝑀) 

17 𝑀 + 2𝑒

1 + 2
𝑒
𝜋

 

7 𝑀

1 + 𝑒
 18 𝑀 + 𝑒𝜋

1 + 𝑒
 

8 
𝑀 + 𝑒

𝑠𝑖𝑛𝑀

1 − sin 𝑀 + 𝑒 + 𝑠𝑖𝑛𝑀
 

19 𝑀 + 𝑒[(𝜋2𝑀)
1

3 
𝜋

15
𝑠𝑖𝑛𝑀 −𝑀] 

9 
𝑀 + 𝛼  −

𝛼2

2
 , 𝛼 =

𝑒 𝑠𝑖𝑛𝑀

1 − 𝑒 𝑐𝑜𝑠𝑀
 

20 𝑠 +
𝜋

20
𝑒4 𝜋 − 𝑠 , 𝑠 = 𝑀 + 𝑒𝑠𝑖𝑛 + 𝑒2𝑠𝑖𝑛𝑀𝑐𝑜𝑠𝑀 

10 𝑀 +
𝑒

2
 21 

𝑠 −
𝑞

𝑠
  , 𝑠 = [(𝑟2 + 𝑞3)

1
2 + 𝑟]

1
3, 𝑞 =

2 1 − 𝑒 

𝑒
 , 𝑟 =

3𝑀

𝑒
 

11 
𝑀 +

𝑒(𝜋 −𝑀)

1 + 𝑒
 

22 
𝑒𝐸01 +  1 − 𝑒 𝑀, 𝐸01 = 𝜋 −

 𝜋 − 1 2(𝜋 − 𝑀)

2  𝜋 −
1
6
 

2

− (𝜋 − 𝑀)(𝜋 −
2
3

)
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Fig 1: Number of iterations with initial guess   

𝑴 +   𝟔𝑴 
𝟏
𝟑 −𝑴 𝒆𝟐  

 
Fig 2: Number of iterations with initial guess 

𝑴 +  𝒆 

 
Fig 3: Number of iterations with initial guess 

𝑴 + 𝒆
𝒔𝒊𝒏𝑴

𝟏−𝐬𝐢𝐧 𝑴+𝒆 +𝒔𝒊𝒏𝑴
   

 

 
Fig 4: Number of iterations with initial guess 

𝑴 +
𝒆𝒔𝒊𝒏𝑴

 𝟏−𝟐𝒆𝒄𝒐𝒔𝑴+𝒆𝟐
  

 
Fig 5: Number of iterations with initial guess   

𝑴 +
𝒆(𝝅 −𝑴)

𝟏 + 𝒆
 

 
Fig 6: Number of iterations with initial guess  

𝑴 +
𝒆

𝟐
  

 

Fig 7: Number of iterations with initial guess  
𝑴 + 𝟎.𝟖𝟓𝒆 

 

Fig 8: Number of iterations with initial guess  

 𝟔𝑴 
𝟏
𝟑  
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The minimum number of iteration means that the speed of 

convergence is more [13]. Then, rate convergence Newton’s 

method increase by these initial values. But, a smaller number 

of iterations does not necessarily imply a shorter computation 

time. For any given algorithm, the associated computing time 

will vary with the computer used to perform the calculation. 

The computational efficiency will also depend on the manner 

in which the algorithm is implemented. Computation time (or 

runtime) reduces whatever number of multiplications, 

divisions, square roots, additions, subtractions and 

trigonometry function is minor. Then, inexpensive initial 

guesses can affect strongly on computation time. Hereinafter, 

the runtime of various conjectures will be surveyed briefly 

and finally the initial values will be chosen that increase 

convergence rate and decrease computation time of Newton-

Raphson’s method at the same time. 

Style implementation of Newton-Raphson’s method equal 

Tewari’s approach [21]. Used Intel Core i7-2630QM and 

DDR III 8G (4GB×2) RAM. The 𝑒 value with step 0.01 

between 0 ≤ e ≤ 1 and the 𝑀 value with the time step 60 

second (0.875 radiant) are changed that the M’s range is 

defined in the range of equation (25) and the run time of 

algorithm for each initial guess and range  are measured. 

According to Figures of 9, 10, 11 the difference between time 

of calculating of initial conjectures are low near the 𝜋 point 

(millisecond), and also the suggested algorithm for initial 

guess 10 from table 3 has the least runtime for 0 < 𝑚 < 0.25 

and 0.25 < 𝑚 < 2, in other word, has the maximum speed in 

calculations. 

Initial guess 11 from Table 3 for 2 < 𝑚 < 𝜋 has the least 

runtime. And after it the guess 18 is, but these values are not 

as well as values of equation (25) in convergence. 

Guess 15 from Table 3 has the lower calculation time in 

Comparison of guess 21 from Table 3  for 0 < 𝑚 < 2 it’s 
because of nonlinear functions in guess 21; so, for having a 

good choice of speed of convergence and calculation, the 

values of equation (25) are corrected as follow: 

𝐸0 =

 
 
 

 
 𝑀 + 𝑒

𝑠𝑖𝑛𝑀

1 − sin 𝑀 + 𝑒 + 𝑠𝑖𝑛𝑀
      0 < 𝑀 < 0.25 

𝑀 + 𝑒  ,                                                   0.25 < 𝑀 < 2

𝑀 +
𝑒(𝜋 −𝑀)

1 + 𝑒
  ,                                         2 < 𝑀 < 𝜋 

  

 

(26) 

Equation (26) is similar to Odell and Gooding with this 

difference that they used 
𝑀

1−𝑒
 for small 𝑀. The fault of it is, in 

the small 𝑀 and 𝑒 near number one become divergent, 

because of it, Nijenhuis used Mikkola’s solution for this 

range, but increase the time of calculation. In follow, 

although, there is no demand for using Mikkola’s solution by 

suggested conjectures, the time of calculation will be reduced   

and also the speed of convergence will be maintained. 

Figures 12 and 13 show Comparison of suggested method 

with Nijenhuis method. Nijenhuis’s solution has minimum 

repetition because uses Halley’s method for refining the 

conjectures and also using Newton’s method of degree of 

three for solving Kepler’s equation and reaches to maximum 

three repetition in one small area. 

However, the suggested method use Newton’s method for 

refining conjectures and solving Kepler’s equation has 

maximum four repetitions. 

 

 

 

Fig 9: Runtime for each initial guess within 𝟎 < 𝑒 < 1, 𝟎 < 𝑀 < 0.25 
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Fig 10: Runtime for each initial guess within 𝟎 < 𝑒 < 1 , 0.25 < 𝑀 < 2 

 

 

Fig 11: Runtime for each initial guess within 𝟎 < 𝑒 < 1 ,2 < 𝑀 < 𝜋 

 

 

Fig 12: Number of iteration of newton’s method with 

conjectures of equation (26) 

 

Fig 13: Number of iteration of Nijenhuis ‘s method 
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Fig 14: Number of repetition of Nijenhuis‘s method with 

conjectures of equation (26) 

If suggested conjectures (26) combine with Nijenhuis’s 

method, a speed of convergence like Nijenhuis’s solution will 

be obtained, and there is no need using Mikkola’s solution for 

avoiding divergence. It is showed in Figure 14, also the time 

of calculation reduce by deleting Mikkola’s solution. 

In the Table 4 the runtime of these three approaches is 

compared. 

According to Table 4, Newton’s method with the new guesses 

has the lowest runtime, and time of calculation  of Nijenhuis’s 

method with the new guesses reduce almost 4 millisecond, so, 

Conjectures of equation (26) are better than others in speed of 

convergence and runtime. Combining Conjectures of equation 

(26) with better methods (like Nijenhuis’s method) is better 

than Newton’s method. 

Table 4. comparison of time of whole run 

Time of whole run of algorithm 

(millisecond) 

method 

176.791 Equation (26) with 

Newton’s method 

188.843 Equation (26) with 

Nijenhuis’s method 

192.681 Nijenhuis’s method 

5. CONCLUSION 
In this article, Newton’s method has been chosen as a known 

standard method for solving Kepler’s equation and tested 

different initial guesses. The used method has two steps: first, 

refining guesses with one use of Newton’s method; second, 

solving Kepler’s equation with this method. The speed of 

convergence of initial guesses were studied and chosen the 

best of them. Then examined the calculation time of them and 

to reach these two properties in the whole space (𝑀, 𝑒), 

divided this space into three spaces. That used different initial 

guesses for each area according to equation (26). The initial 

conjectures of equation (26) are not the best but have two 

properties in the same time: speed in convergence and 

calculation. For this reason, they are considered as optimized 

initial conjectures for suggested algorithm. By them, the 

solving method reached a good speed in convergence and 

time of calculation. 
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