
International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No.5, March 2014 

49 

A Deadline based Task Scheduling Algorithm for 

Heterogeneous Grid Environments 

 
Rahul Sharma 

Department of C.S.E 
GBPEC, Pauri Garhwal,                                         

Uttarakhand, India  
 

S. K. Verma 
Department of C.S.E 

GBPEC, Pauri Garhwal, 
Uttarakhand, India 

ABSTRACT 

Grid computing is the framework of computer systems that 

provides high performance computing environment. The 

challenging issue in grid computing is to design efficient and 

reliable task scheduling algorithms for efficient utilization of 

grid computing. In this paper, we are proposing a new 

Improvised Prioritized Deadline (IPD) based scheduling 

algorithm for efficient task execution with deadline 

constraints of users’ tasks. The proposed algorithm considers 

the processing power of the resources while scheduling the 

tasks. Performance comparison of the algorithm has been 

done with the other task scheduling algorithms such as 

Earliest Deadline First (EDF) and Prioritized Based Deadline 

Scheduling Algorithm (PDSA). The proposed algorithm 

improves 45%-70% with respect to the average tardiness over 

the PDSA algorithm. The proposed algorithm also shows 

good results with respect to the number of non-delayed tasks. 

In the cases the purposed improvised algorithm has shown 

good results.  

Keywords 

Grid Computing, Non-Delayed Tasks, Processing Power, 

Tardiness, Task Scheduling.. 

1. INTRODUCTION 
Interconnection of geographically distributed computer 

resources from multiple administrative domains gave a 

concept of virtual computing called Grid [1]. The main 

objective of grid computing environment is to combine the 

computing power involved, with widely distributed resources, 

as well as to deliver non-trivial services to users. A grid 

environment collects, integrates and uses heterogeneous or 

homogeneous resources scattered around the globe by a high-

speed network. Over the past decade, the Grid has emerged as 

a promising platform to address large-scale applications in 

various fields [2]. However, the grid computing environment 

is heterogeneous, as the resources present in the grid varies on 

operating systems, communication bandwidths and the 

processing abilities. To use the grid resource efficiently, the 

resource scheduling is the key to the problem which turns into 

a fundamental issue in grid computing. 

Effective and efficient task scheduling algorithms is 

implemented to better use of the capabilities of the grid 

computing environment [3]. Scheduling tasks on Grids is an 

important issue for optimizing the Grid resource allocation. 

Scheduling tasks on grids is a challenging issue due to the 

dynamism and the heterogeneity of the resources. In recent 

years, the researchers have proposed several efficient 

scheduling algorithms that are used in grid computing to 

allocate grid resources with a special emphasis on task 

scheduling [4].  The proposed algorithm is based on the 

deadline constraints of the tasks and the expected execution 

time of the task in this paper.  

The presented algorithm is an improvement over existing 

Prioritized Deadline Based Scheduling Algorithm (PDSA) 

[12] called the Improvised Prioritized Deadline (IPD) based 

scheduling algorithm. It has considered the task deadline 

constraint associated with the task for its execution. Many 

grid users are highly interested in the timely execution of the 

tasks under the given deadline constraints. Most of the 

existing scheduling algorithms have not considered deadline 

perspective for task execution. To evaluate the performance of 

the scheduling algorithms we have used synthetic workload 

traces.  

The rest of this paper is organized as follows. Section 2 gives 

an overview on previous researches in the field of task 

scheduling. Section 3 discusses the system design and 

implementation details of our improvisation on the task 

scheduling algorithm respectively. Section 4 describes 

experimental results which are evaluated by using synthetic 

workload traces and section 5 concludes the paper. 

2. RELATED WORK 
Intensive research has been conducted over the past years in 

grid task scheduling field to solve the problem of mapping a 

set of tasks to a set of machines [5]. It has been proved that 

the scheduling problem is an NP complete problem. The 

mapping criteria are mainly classified into two modes which 

are online mode and batch mode. In the online mode a task is 

mapped to the resource as soon as it arrives at the scheduler 

on the other hand, in the batch mode mapping, a set of tasks is 

made called the meta-task. Mapping of meta-task is 

performed at prescheduled times called mapping event [6]. 

Many algorithms have been proposed by various researchers 

to schedule the tasks in grid environment. The selection of the 

algorithm for scheduling the tasks in grid environment is the 

most critical due to performance major of the grid. The 

selection also depends on the type of the tasks, number of 

resources and other constraints like the deadline of the task, 

processing speed of the processing element, bandwidth of the 

communication network. Based on these constraints suitable 

algorithm is used for scheduling the tasks. The various 

Performance metrics are used to evaluate the results of one 

algorithm with other existing algorithms like, makespan, 

tardiness, resource utilization, response time and many more 

depending upon the scenarios for which the algorithm have 

been designed. 

An algorithm based on combinational backfilling strategy is 

proposed in [5]. This algorithm selects multiple tasks 

combined from the waiting task queue to backfill for 



International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No.5, March 2014 

50 

maximizing the use of idle resources. This algorithm attains a 

lower average waiting time of tasks and higher utilization of 

resources than existing representative backfilling algorithms. 

The [6] proposed task scheduling algorithm based on task 

grouping concept. In this strategy the task grouping is based 

on the memory constraint together with other constraints such 

as processing power, bandwidth, expected execution and 

transfer time. These vary constraints are taken at task level 

rather than at group level. The experimental results 

demonstrated that this proposed scheduling algorithm 

efficiently reduces the processing time of tasks. In [7] author 

presented a heuristic algorithm called Harder First Prior First 

(HFFP). The algorithm presented in this paper schedule tasks 

based on the characteristics such as processing time, release 

time and delivery time. HFFP can minimize the completion 

time of tasks, especially when the number of tasks is much 

larger than the number of resources.  

In [8] author presented a strategy which is based on two 

scheduling methods Max-Min and Min-Min and named as the 

Weighted Mean Time Min-Min Max-Min Selective 

Scheduling (WMTS). The overall performance of the 

resources is also considered by this strategy while scheduling 

the sequence of tasks. This strategy performed better than 

Max-Min and Min-Min scheduling strategies.  In the work of 

[9], a cost-based workflow scheduling algorithm was 

presented. This strategy aims at minimizing the cost of 

execution while reaching the deadline. While in [10], the 

fairness problem is dealt by dropping the service time frame 

error. Sufficient computational power is assigned to each task 

so that it can be completed within its deadline. However, it 

will be more optimize if priority is given based on the 

minimum time of execution of tasks. In [11] author discusses 

policy-based scheduling techniques on heterogeneous 

resources. This proposed algorithm allocates grid resources to 

an application under the constraints presented with resource 

usage policies. First, the algorithm supports the resource 

usage constrained scheduling. The resources of the grid are 

controlled and owned by decentralized institutions. Second, 

optimization based scheduling is provided by the algorithm. It 

provides an optimal solution to the grid resource allocation 

problem. Third, the algorithm assumes that a set of resources 

is distributed geographically and heterogeneous in nature. 

Fourth, the scheduling method dynamically adjusts to the grid 

status. This algorithm tracks the current workload of the 

resources.  

The algorithms discussed above do not consider the deadline 

constraint of the tasks. So these algorithms are not applicable 

to the grid environment where tasks have deadline associated 

with them. The tasks need to be completed within the deadline 

in order to produce useful results. The most common 

scheduling algorithm with considers the deadline of the tasks 

is Earliest Deadline First (EDF). EDF or least time to go is a 

dynamic scheduling algorithm. Earliest deadline based 

scheduling algorithm is one the simplest scheduling algorithm 

which is a type of priority scheduling. In this algorithm 

highest priority is given to the tasks with minimum deadline. 

It means that earlier the deadline of the task higher will be its 

priority. After completion of the previous task, the new task 

having minimum deadline value will be fetched from the 

ready queue. When the system is overloaded, the set of 

processes that will miss deadlines is largely unpredictable. 

EDF is not fair in the cases where the two tasks have the same 

absolute deadlines as it chooses one of the two at random. No 

other criterion is considered at that point. The flowchart of the 

EDF algorithm is given in the fig 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Flowchart of EDF Algorithm 

The other scheduling algorithm which considers the deadline 

of a task is Prioritized Deadline Based Algorithm (PDSA). 

PDSA is also a dynamic task scheduling algorithm. This 

algorithm gives priority to the tasks according to their time 

delay. This delay is calculated as the difference between the 

deadline and the computational time of the task [11]. The task 

with the minimum time delay executed when the current task 

finishes off. The algorithm is based on the allocation of the 

task to uniprocessors. It means the task requesting only one 

processing element for its execution. This deadline based 

algorithm was able to give better results than the EDF. The 

flowchart of the PDSA is shown by the Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yes 

Fetch task from the queue 

Begin 

Input the pool of tasks 

Arrange the tasks in ascending order of 

their deadline 

Assign resources to the tasks 

End 

Release the resources 

Is task queue 

Empty 

No 



International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No.5, March 2014 

51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig 2: Flowchart of PDSA 

3.  PROPOSED TASK SCHEDULING 

ALGORITHM 
Improved Prioritized Deadline (IPD) based scheduling 

algorithm is proposed in this paper. The proposed algorithm is 

an improved version of the Prioritized Deadline based 

Scheduling Algorithm (PDSA) [11]. In the system design the 

resources are ranked according to their total processing 

power, i.e., the product of the number of the processing 

elements and the processing power of each element. The 

processing speed of each processing element in one resource 

is same. The allocation of the resources to the tasks is based 

on the time delay which is the difference between the deadline 

of the task and the expected computation time of the task. 

Further, the list of resources is maintained for the allocation of 

the queued task based on their requirements. After making the 

list of the resources which are suitable for the task, the 

selection of the resource is done on the basis of the processing 

speed of the resource. The highest priority is assigned to the 

resource with the highest processing speed for the faster 

execution of task. 

Let us assume Ti is the ith task, n is the number of tasks, ai is 

the arrival time of task I, di is deadline of task I, ETi is the 

expected execution time of task i, TDi is the time delay of task 

i, TRi is the tardiness of task I, Avg_TR is the average 

tardiness of the schedule and fi is the finish time of the task i; 

Time Delay is referred as the difference between the deadline 

of the task and the expected execution time of the task as 

defined in Eq-1.  

                                                        (1) 

Tardiness refers to the time delay between the finishing time 

of task and the deadline of the task as defined in Eq-2. 

                            
                                      

(2) 

Total Tardiness is the sum of the tardiness of the each task 

which did not get executed under the provided deadline. The 

average Tardiness is defined in Eq-3.  

                      

                (3) 

The number of non delayed tasks is the total number of tasks 

whose finishing time was less than the deadline of the task, 

i.e., which finished inside the deadline given to them. The 

expected completion time is calculated as the mean of the 

completion time for the task at every resource. 

The algorithm takes the input from users, where as each task 

is described by its taskID Ti, arrival time ai, expected 

execution time ETi, computational length CLi, deadline di and 

number of processors NPi required. Then we compute the 

value of the time delay TDi for each task by using Eq. (1). 

The tasks in the ready queue are arranged in the ascending 

order based on the computed time delay (task with minimum 

time delay will be given priority) of the tasks. If the two tasks 

have a same computing delay, then the task will ordered on 

the basis of the first come first serve method in the ready 

queue. The tasks are executed according to their arrangement 

in the queue. For a task in the ready queue we will make a list 

of the suitable processors for the task. Then from that list we 

select the resource having the best processing speed. The task 

is then executed on that resource for the time depending on its 

computational length and the processing speed of the 

resource. The finishing time fi of the task is calculated and the 

tardiness TRi is calculated using Eq. (2). If there is no 

tardiness for that task then the number of non-delayed tasks is 

incremented. When all the tasks in the ready queue are 

finished then we calculate the average tardiness Avg_TR using 

Eq. (3).  The flowchart of the proposed algorithm is shown in 

the fig 3. 

 

 

 

i i iTD d ET 

i i iTR d f 

1_
i

n
TR

iAvg TR
n




Arrange them in 

FCFS order 

Begin 

Input the pool of tasks 

Compute the time delay for 

each task 

Arrange the tasks in ascending 

order of the time delay 

Assign resource to the task 

Release the resource 

Is task queue 
Empty 

End 

Tasks having 

same time 

delay 

No 
Yes 

Yes 

No 

Fetch task from the queue 



International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No.5, March 2014 

52 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: Flowchart of proposed algorithm 

3.  RESULTS AND DISCUSSION 
A grid simulation tool based on the GridSim [13] toolkit is 

used for implementation of the proposed algorithm. The 

simulation tool used for this work is Alea 2.1 grid simulator 

[14]. The proposed scheduling algorithm is compared with 

Prioritized Deadline Based Scheduling Algorithm (PDSA) 

and Earliest Deadline First (EDF). The PDSA algorithm is 

used in [12] is for the task that requires a single processing 

element for execution. Here we are further extending it and 

using it for the tasks requiring more than one processing 

element in heterogeneous environments. In addition to this, 

the proposed algorithm considers the processing speed of the 

resources. Metacentrum workload traces are used for the 

generation of the tasks. The experiment has been performed 

for varying workload by increasing number of tasks from 

1000 to 4000 in a scalable manner.   

The performance metrics for the scheduling algorithms is 

based on the average tardiness and the percentage of non-

delayed tasks. In the deadline based system, our main 

emphasis is to make as much as tasks to be completed inside 

their deadline. So these two performance metrics give us the 

clear idea of the performance of the algorithms for these types 

of systems where the deadline of the task is the main 

constraint. The comparison of the proposed algorithm with 

other algorithms is described below using the performance 

metrics. 

Table 1:  Average Tardiness for Scheduling Algorithms (in 

Seconds) 

 

Fig 4: Average Tardiness 

Table1. and graph in fig 4. shows the average tardiness of the 

scheduling algorithms. This graph shows the average tardiness 

of each scheduling algorithm under a variable number of 

tasks. It is clear from the graph that our purposed improvised 

scheduling algorithm gives better results than the other two 

scheduling algorithms. The tasks with large value of time 

delay are made to wait for the execution of the tasks with less 

time delay. Proposed algorithm works on scheduling the tasks 

with minimum time delay to the best resource with high 

processing speed. So the maximum tasks are completed inside 

the deadline given or near away from the deadline, thus 

reducing the average tardiness as compared to the others two 

scheduling algorithms. This is clearly seen in the graph given 

0 

200 

400 

600 

800 

1000 

1200 

1400 

0 1000 2000 3000 4000 

A
v
er

ag
e 

T
ar

d
in

es
s 

Number of Task 

EDF 

PDSA 

IPD 

NO. OF TASKS EDF PDSA IPD 

1000 783.22 783.22 106.59 

2000 612.34 496.32 83.23 

3000 751.35 458.37 110.52 

4000 1275.73 1162.97 305.15 

Arrange 

them in 

FCFS order 

Yes 

Assign resource with highest 

processing speed to the task 

Release the resource 

Is task queue 

Empty 

End 

Input the pool of tasks 

Compute the time delay for 

each task 

Arrange the tasks in ascending 

order of the time delay 

Tasks having 

same time 

delay 

Yes 

No 

Make a list of the resources 

that matches the task 

Fetch task from the task queue 

Begin 

No 



International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No.5, March 2014 

53 

above. The horizontal axis shows the number of the tasks, 

whereas the vertical axis shows the average tardiness. The 

average tardiness can be computed by using the Eq. (3). 

Table 2. Percentage of non-delayed tasks for Scheduling 

Algorithms 

 

 

Fig 5: Percentage of non-delayed tasks 

The percentage of the non-delayed tasks is shown by the 

Table 1. and graph in fig 5. The horizontal axis shows the 

number of the tasks, whereas the vertical axis shows the 

percentage of the non-delayed tasks. The analysis is done on a 

variable number of tasks. Again, it is clear from the graph that 

the purposed improvised algorithm has performed better than 

the other two scheduling algorithms that are PDSA and EDF. 

As the resource with the best processing speed will be given 

priority for executing the tasks, so more tasks will get 

executed inside their deadline thus decreasing the number of 

delayed tasks. For the deadline constraint tasks, the main 

emphasis is on the timely execution of the tasks inside their 

deadline. The proposed improvised algorithm makes as much 

as tasks possible to be getting executed inside their relevant 

deadline. 

The overall comparative performance analysis has shown that 

our proposed algorithm is more efficient than simple PDSA 

and EDF. Average tardiness and the percentage of non-

delayed tasks are the performance metrics. Results show that 

the average tardiness can be minimized and the number of 

non-delayed tasks can be increased with this approach in a 

heterogeneous grid environment. 

 

5.  CONCLUSION 
In this paper, a scheduling strategy for high performance 

computing in a Grid Environment is proposed. The 

experiment has been conducted by varying the number of the 

tasks from 1000 to 4000. Only few algorithms are proposed 

for the grid environment where deadline of the task is of main 

emphasis. In this experiment we have considered the dynamic 

arrival of the tasks as well as the deadline requirement of each 

task to be processed. The proposed algorithm considers the 

expected completion time of the task for the scheduling 

purpose. This algorithm also considers the overall 

performance of the resources and their processing speed for 

deciding the assigning tasks. To decide which task will be 

submitted for execution, it selects the task with the minimum 

time delay. Then the task with the minimum time delay is 

assigned to the available resource with the best processing 

speed in the grid system. The results show that the proposed 

algorithm outperforms the PDSA and EDF scheduling 

algorithm. Two performance metrics average tardiness and 

non-delayed tasks has been used for the comparison purpose. 

6. ACKNOWLEDGMENT 
We thank the Czech National Grid Infrastructure 

Metacentrum for making the Metacentrum workload log 

publicly available. 

7. REFERENCES 
[1]  I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of 

the Grid: Enabling Scalable Virtual Organizations”, 

International J. Supercomputer Applications, 2001, 

15(3). 

[2] Yun-Han Lee, Seiven Leu, Ruay-Shiung Chang, 

“Improving task scheduling algorithms in a grid 

environment”, Future Generation Computer Systems , 

vol. 27,  pp. 991-998, 2011. 

[3] Braun T D, Siegel H J and Beck N. “A Comparison of 

Eleven Static Heuristics for Mapping a Class of 

Independent Tasks onto Heterogeneous Distributed 

Computing Systems”. Journal of Parallel and Distributed 

Computing, Vol. 61, No. 1, pp. 810 –837, 2001. 

[4] Menglan Hu and Bharadwaj Veeravalli, “Requirement-

Aware Scheduling of Bag-of-Tasks Applications on 

Grids with Dynamic Resilience”, IEEE Transactions on 

Computer, vol. 62, no. 10, pp. 451-459, 2013. 

[5] Shengwei YI,, Zhichao WANG, Shilong MA, Zhanbin 

CHE, Yonggang HUANG, Xin CHEN. “An Effective 

Algorithm of Tasks Scheduling in Clusters”, Journal of 

Computational Information Systems, vol 6, no. 10, pp. 

3163-3171, 2010. 

[6] Manoj Kumar Mishra, Raksha Sharma, Vishnu Kant 

Soni, Bivasa Ranjan Parida, Ranjan Kumar Das, “A 

Memory-Aware Dynamic Task Scheduling Model in 

Grid Computing”, International Conference On 

Computer Design And Applications, vol. 1, 2010,  pp. 

545-549. 

[7] Jing Wang, Gongqing Wu, Bin Zhang, Xuegang Hu, “A 

heuristic algorithm for scheduling on grid computing 

environment”, Seventh ChinaGrid Annual Conference  

2012, pp. 36-42. 

[8] Sameer Singh Chauhan, R. C. Joshi, “A Weighted Mean 

Time Min-Min Max-MinSelective Scheduling Strategy 

for Independent Tasks on Grid”, 2nd IEEE on 

93 

94 

95 

96 

97 

98 

99 

100 

0 1000 2000 3000 4000 

P
er

ce
n

ta
g
e 

o
f 

n
o

n
-d

el
ay

ed
 t

as
k
s 

Number of Task 

EDF 

PDSA 

IPD 

NO. OF TASKS EDF PDSA IPD 

1000 95.3 95.3 95.85 

2000 96.5 97.05 97.35 

3000 96.9 97.56 97.86 

4000 94.4 95.3 96.63 



International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No.5, March 2014 

54 

International Advance Computing Conference ,  2012, 

pp. 4-9. 

[9] Siriluck Lorpunmanee, Mohd Noor Md Sap, Abdul 

Hanan Abdullah and Surat Srinoy” A static tasks 

scheduling for independent tasks in Grid Environment by 

using Fuzzy C-Mean and Genetic algorithms ” 

Proceedings of the Postgraduate Annual Research 

Seminar 2006. 

[10] Daphne Lopez, S. V. Kasmir Raja”A Dynamic Error 

Based Fair Scheduling Algorithm For A Computational 

Grid” Journal of Theoretical and Applied Information 

Technology © 2005 - 2009 JATIT.  

[11] Korkhov, Vladimir V., Jakub T. Moscicki, and Valeria 

V. Krzhizhanovskaya. "Dynamic workload balancing of 

parallel applications with user-level scheduling on the 

Grid." Future Generation Computer Systems, vol  25, no. 

1, pp- 28-34, 2009. 

[12] Haruna Ahmed Abba, Nordin B. Zakaria, Syed Nasir 

Mehmood Shah, Anindya.J.Pal, “Deadline Based 

Performance Evaluation of Task Scheduling Algorithms” 

IEEE International Conference on Cyber-Enabled 

Distributed Computing and Knowledge Discover 2012, 

pp. 106-110. 

[13] R. Buyya, M. Murshed, “GridSim: A toolkit for the 

modeling and simulation of distributed resource 

management and scheduling for grid computing,” 

Journal of Concurrency and Computation: Practice and 

Experience, pp. 1175–1220, 2002. 

[14] Dalibor Klusacek, Hana Rudova. Alea 2- Task 

Scheduling Simulator. In proceedings of the 3rd 

International ICST Conference on simulations and 

techniques (SIMUTools), ICST 2010. 

 

 

IJCATM : www.ijcaonline.org 


