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ABSTRACT

The original rough set theory deals with precise and complete data,
while real applications frequently contain imperfect information.
A typical imperfect data studied in rough set research is the
missing values. Though there are many ideas proposed to solve the
issue in the literature, the paper adopts a probabilistic approach,
because it can incorporate other types of imperfect data including
imprecise and uncertain values in a single approach. The paper
first discusses probabilities of attribute values assuming different
type of attributes in real applications, and proposes a generalized
method of probability of matching. This probability is then used
to define valued tolerance/similarity relations and to develop new
rough set models based on the valued tolerance/similarity relations.
An algorithm for deriving decision rules based on the rough set
models is also studied and proposed.
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1. INTRODUCTION

Classical Rough set theory [21} [22]] provides a mathematical tool
to analyse databases under objects description. The original rough
sets approach presupposes that all objects in an information system
have precise and complete attribute values. Problems arise when
information systems contain imperfect data, which occasionally
happens in the real world. Controversial rough set research mostly
considers that imperfect data in information systems comes from
missing values [4} 5, 16} 8 [111 [12} 231 24} 25| 126]. An information
system with missing values is called incomplete information
system [[L1} [12]. In incomplete information systems, Table [I] for
example [8]], objects may contain several unknown attribute values.
Unknown values are denoted by special symbol “*”.

In studies of rough sets in incomplete information systems,
probabilistic solutions have been introduced based on the
possibility of “missing value” [4, 17, [18} 19123, 124]. Among them,
some approaches [4, 23] suppose a priori assumption that there
exists a uniform probability distribution on every attribute domain
and compute valued tolerance (or similarity) classes based on the
joint probability distribution. The paper aims at defining a general
method of determining the probability that two object may be

Table 1. An example of a dataset with missing values

Cases | Temperature | Headache | Nausea | Flu
1 high * no yes
T2 very-high yes yes yes
T3 * no no no
T4 high yes yes yes
5 high * yes no
e normal yes no no
T7 normal no yes no
s * yes * yes

tolerant of (similar to) each other on an attribute. The probability of
matching will be defined based on the probability that two objects
may take the same values on an attribute in the dataset.

Besides the missing values, there are many reasons why imperfect
data are produced in datasets [16]. Imprecision is another type
of possible imperfect data. Stored information is imprecise when
it denotes a set of possible values and the real value is one
of elements of this set. Specific kinds of imprecise information
include disjunctive information (e.g., John’s age is either 31 or 32),
negative information (e.g., John’s age is not 30), range information
(e.g., John’s age is between 30 and 35 or John’s age is over 30), and
information with error margins (e.g., John’s age is 30 & 1 years).

One more possible type of imperfect data is Uncertainty|[16].
Whereas the statement “John’s age is either 31 or 32” is in the form
of imprecision, the statement “John is probably 32” or “John’s age
is 32 with confidence 0.6” denotes uncertainty. Both imprecise and
uncertain values can be represented by probabilistic data [2]. For
example, Toyota might have demographic information indicating
that customers living in a certain region are likely to purchase
a Corolla with probability 0.7 or a Celica with probability 0.3.
Tableillustrates an information system [/1] with probabilistic data.

The last of imperfect data listed in[[L6] is Error. Stored information
is erroneous when it is different from the true information. If errors
in the given information are identified, they can be removed and
the rest is treated as information with missing values. However, in
the case where errors are unidentified, the reliability of the whole
information will be lost. Approximations in the rough set theory are
derived from the information available. Hence, the paper does not
deal with errors. The term imperfect data, hereafter, will represent
the case of missing, uncertain and imprecise information.



Table 2. An example of a dataset with uncertainty

Employees Deterministic | Stochastic Stochastic
Department Quality Bonus | Sales
0.4[Great Yes] 0.3[$30-34K]
Jon Smith Toy 0.5[Good Yes] 0.7[$35-39K]
0.1[Fair Yes]
Fre Jones Housewares 1.0[Good Yes] gggig:igg

Now, in information systems containing missing, imprecise and
uncertain values, it is not appropriate to apply to the systems a
method that can deal only with missing values. An possible solution
could be a combination of transforming any type of imperfect data
to probabilistic values [20] and applying an probabilistic method
[17, 18} 20, 23} 24]. This paper will introduce a representation
of imperfectness including missing values, uncertainty as well as
imprecision, then discuss the valued tolerance/similarity relation
based rough set (VRRS) model in an imperfect information system,
which is first introduced in [20]. Another important target is to find
a method to obtain decision rules in imperfect information systems.

The paper is organized as follows; Section [2] suggests a
representation of imperfect data. Section [3| summarizes rough set
theory as well as valued tolerance/similarity relation definitions.
Sectionf]adopts several methods to determine Probability of object
attribute values as well as a general definition of Probability
of matching between objects, which can be used to define
approximation spaces using VRRS approaches. The last but
not least part proposes a rule induction method for imperfect
information systems.

2. IMPERFECT DATA REPRESENTATION

An information system in the rough set study is defined as a pair
I = (U, A), where U is a non-empty finite set of objects called
the universe and A is a non-empty finite set of attributes such that
fo : U — V, for every a € A [21]22]. The non-empty discrete
value set V, is called the domain of a. The original rough set theory
deals with complete information systems in which Vax € U, a € A,
fa(z) is a precise value.

Any information system of the form I = (U, A U {d}) is called
decision table where d ¢ A is called decision and the elements of
A are called conditions. The paper assumes V; = {dy, ..., dy }. The
decision d determines a partition {C4, Cs, ..., Cx } of the universe
U, where C; = {z € U|fq(x) = d;}, 1 < ¢ < k. The set C; is
called the i-th decision class or concept on U.

Now, for an information system, in which some attribute values of
objects are missing and/or associated with probabilistic data, the
attribute values of an object might be represented as follows:

DEFINITION 1. In an imperfect information system I =
(U, A), let t ; C V, be the i-th set of overall “s” possible value
sets of “x” on “a” and pg ; > 0 be its probability. Then the pair
(T3, P3), where T3 = {t7 ,[1 < i < s}, Py = {pj 1> i pa: =
1}, represents imperfect values of object x on a.

In the above, t¥, are not necessarily be mutually disjoint.
Obviously, for this representation of imperfect values, it is able
to present any type of imperfectness discussed in Section [I] A
value is uncertain when any set of possible of values is singleton.
In this case [t7 ;| = 1. Some types of missing values may have
a pre-defined probability distribution and the imperfectness could
be regarded as uncertainty. One example is a game of four people
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Table 3. Dice game

score
Players | Score
Terry 3
David 6
Tom *
Anna 8

playing with dice. Their scores can be calculated based on the sum
of two dice thrown for each of them. Table [3] shows their scores.
In this table, the score of Tom is unknown due to some reasons.
However, the probability of each value for Tom’s score can be
identified by a probability distribution for the sum of two dice. The
probability that Tom’s score is 7, for example, is 1/6. On the other
hand, the probability that his score equals to 11 is 1/18. In this case
Vv € Vo, to; = {vit,pl; = Xa(vs) when fo(x) = *, where

Ao (v) is the probability mass function on a.

A value is imprecise when there is only a set of multiple possible
values and the probability of this set is also 1, formally |T7| = 1,
D1 = 1. A precise value and a missing value with no pre-defined
probability distribution can be considered as two extreme kinds of
imprecision [16]. A value is precise if the set of possible values
is singleton. In this case [tZ ;| = 1. Missing values without
pre-defined probability distribution could be regarded as imprecise
information where the set of possible values encompasses the entire
attribute domain, such that t; ; = V.

More importantly, if an object attribute value contains both
uncertainty and imprecision, it is possbile to use the imperfect
representation of Definition [I] to show this type of value. To
illusstrate, the “Stochastic sales” value of Jon Smith in Table [2] is
represented as follows: £3717", = {30,31, 32, 33, 34}, pgith, =
0.3 and tgg}?s’fz = {35, 36,37, 38, 39}, pgﬁgi‘z =0.7.

3. VALUED TOLERANCE/SIMILARITY
RELATION AND ROUGH SET

A solution of defining valued tolerance/similarity relations can be
stated as follows: first, the pair (T'¥, P*) of object x is defined
for each attribute a, and the probability that two objects are
tolerant of (similar to) each other on the attribute is determined.
Then, the degree that two objects are tolerant of (similar to)
each other on a set of attributes is calculated, for example,
using the joint probabilities assuming that all the attributes are
independent of one another. This section will summarizes concepts
in valued tolerance/similarity relation definitions as well as a
rough set approach with this kind of relations. Problems of valued
tolerance/similarity relation based rough set models in the related
work are also addressed in this section.

In complete information systems, the relation EQUp(z,y), P C
A denotes a binary relation between objects that are equivalent in
terms of values of attributes in P [21]]. The equivalence relation
is reflexive, symmetric, and transitive. Let Ep(z) = {y €
U|EQUp(y,z)} be the set of all objects that are equivalent to x
by P, and be called equivalence class.

Now, for an information system, in which some attribute values
of objects are missing and/or associated with uncertainty or
imprecision, the paper will define probabilities of attribute values.
For a discrete attribute, Probability of object attribute value
denoted by Pr,(f,(z) = v) represents the probability that x € U
takes the value v € V,, on attribute a € A. Two methods to estimate



the probabilities of object attribute values will be discussed in the
next section.

Based on the probability estimated, Probability of matching
between two objects x,y € U on attribute a € A denoted
by 0, (x,y) defines the probability that object x takes the same
value as object y on attribute a. In [4] 23| [24], it is supposed that
there is an uniform probability distribution on an attribute, and the
probability of matching is defined as 0,(x,y) = Pr.(f.(z) =
v;)) ® Pro(fa(y) = v;) = 1/|V,|? where v; is a value in the
domain of attribute a. The definition is clearly inadequate when the
attribute values of both “x” and “y” are supposed to be missing
on “a”. The definition of probability of matching is discussed and
calculated in general in the next section.

From the probability of matching between two objects, the degree
that x,y € U are tolerant of (similar to) each other on a set
of attributes P C A, which is denoted by ¢p(z,y) can be
induced. The degree of tolerance/similarity can be defined as the
probability that two objects have the same values on all attributes
in set P and is calculated by joint probability ¢p(z,y) =
[l.cp Oa(x,y) assuming independence among attributes. Other
methods of tolerance (similarity) degree definitions can be found
in [19].

Now, it is able to define a relation Rp(x,y) between objects
z and y by controlling the degree of tolerance(similarity) using
threshold «, such that Rp(x,y) < ¢p(x,y) > «. Based on that, a
neighbourhood, which consists of successor and predecessor sets,
of an object [10,27] is determined. The successor set of x is the set
of objects to which z is similar:

sucRp(z) ={y € UIRp(z,y)} (1)
The predecessor set of x is the set of objects which is similar to x:
preRp(z) = {y € U|Rp(y, )} 2

For complete information systems, the lower and upper
approximations are defined on the basis of an indiscernibility
relation and should be the same among the different three
definitions: singleton, subset and concept definitions [21} 22]. In
the case of non-equivalence relations, which may not be reflexive,
symmetric nor transitive, approximation spaces defined may lead to
variant results [10]]. Formally, approximations based on singleton,
subset and concept approaches with a valued tolerance/similarity
relation can be defined as follows:

Singleton lower approximation:
SingleAppr ,(X) = {z € U|Rp(z) C X} 3)
Singleton upper approximation:
SingleApprp(X) = {z € U[Rp(x) N X £0} @)
Subset lower approximation:
SubsetAppr ,(X) = U{Rp(2)lz € U A Rp(z) C X} (5)
Subset upper approximation:
SubsctApprp(X) = U{Re(o)a € U
ARp(z)NX # 0} (6)
Concept lower approximation:

ConceptAppr ,(X) = U{Rp(z)lz € X ARp(z) C X} (7)
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Concept predecessor upper approximation:

ConceptApprp(X) = U{Rp(z)|lz € X
ARp(z) N X # 0} ®)

where Rp(z) denotes either successor and predecessor
neighbourhood sets of x.

The difference between subset and concept definitions may be
missed easily. In subset definition, extended tolerance classes of
all elements in the universal set are examined, while only elements
in X are examined in the case of concept definition.

Obviously, singleton lower and upper approximations of X are
subsets of the subset lower and upper approximations of X,
respectively. The subset lower approximation is the same set as the
concept lower approximation. The concept upper approximation,
however, is a subset of the subset upper approximation.

4. PROBABILITY OF MATCHING

This section will show how to define the probability of matching
in an imperfect information system discussed in Section [2| in
order to apply VRRS methods to this type of information
system. According to Section [3] the probability of each object
attribute value needs to be defined before calculating probability
of matching.

4.1 Probability of object attribute values

In general, if there is no information about probability distribution
of attribute values, it is possible to make the hypothesis that the
probability is determined by an uniform distribution.

DEFINITION 2. In an imperfect information system [ =
(U, A), let the pair (T, P¥) present an imperfect attribute value
of object x on a. Then the probability that an object x takes the
value v € V,, on a can be calculated as follows:

ntx.
Pra(fu(e) =) = g, 0

i

(©)]

In this equation, the probability mass distributed equally in possible
value set t7 , will be added to the probability of attribute value
if v € tZ,, such that [{v} N ¢Z,| = 1. Obviously, in case
of uncertainty where a probability distribution is given, it is not
necessary to calculate the probability of object attribute values. In
this case Pr,(fa(z) = v) = pf ; because t7 ; = {v}. In case of
the missing value without any pre-defined proi)ability distribution,
Pro(fo(z) =v) =1/|V,| forany v € V,.

However, even there is no pre-defined probability distribution, the
probability of attribute values in some cases still can be estimated.
The next step will summarize two possible solutions discussed
in [20] with the adaptation of the representation of imperfect values
in Definition[T]

4.2 Method of the frequency of attribute value

The approach is based on the notion of “The most common
method”. This is a method of handling missing values summarized
by Grzymala-Busse [9,[10], in which, missing values are replaced
by the most common value of the attribute. The method of handling
missing attribute values is implemented, e.g., in well-known
machine learning algorithm CN2 [3].



Suppose the value domains are known. First, the probability that
each value of the attribute appears based on the frequency of the
available values in a dataset is defined. The probability that a value
v € V, appears as a value of a certain object is define by:

Vi (v .
% if Va (7) cU,
pao) =4 5 (10)
m otherwise.

where V,, (v) and V,(7) are the sets of objects whose attribute value
is “v” and the set of objects whose value on “a” is imperfect,
respectively. The symbol “C” denotes a proper subset. As seen in
the equation, the probability p,(v), v € V, is defined by the ratio
of the value v among objects whose values are not imperfect. If
V. (?) = U, that is, values of attribute a are imperfect in all objects,
the equal probability distribution is given. The value of p,(v) is
greater than zero if there is at least an object such that f,(z) = v.
Since it could be zero for many values if the size of U is small, the
size of U should be large enough when using the approach.

Now, it is possible to define the probability of object attribute values
by the frequency of values in a dataset. Formally, in imperfect
information system I = (U, A), an attribute a € A and its domain
Vi, pa(v) denotes the frequency of each value v € V, in the
dataset. Given an object x € U with imperfect value on a the
probability Pr,(f,(z) = v) for any v € V, as follows:

ey .pai(”)
;pa’i o} nie, Zvet" Pa( )

ity etTi pa( ") # 0,
Zpai.HU}m |tz

otherwhise.
1)
Of course, the idea could be applied to the missing value with
no predefined probability distribution. However, it should not be
applied to attributes where uncertainty or a probability distribution
is derived from a theoretical point of view, e.g. in the case of dice
game mentioned before.

Pro(fa(z) =v) =

4.3 Method of the frequency of attribute value related
to concepts

This is an extension of the method in the previous subsection.
Observing some systems, sometimes it is possible to recognize
that attribute values might depend on some concepts. Supposed
the value domains are known, the probability that a value v € V,
appears as a value of objects contained in a concept X C U is
defined as follows:

[Va(v)x]|
o KoV ex e X "
a X 1 )
W otherwise.

where V,(v)x and V,(7)x are the set of objects in concept X
whose attribute value is “v” and the set of objects whose value on

@ 9

a” is imperfect, respectlvely.
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Table 4. Probability of attribute values given a

concepts
. Probability in concepts
Attributes Values Fli=Yes Fli=No
Temperature | very-high 0.33 0.00
Temperature high 0.67 0.33
Temperature normal 0.00 0.67
Headache yes 1.00 0.33
Headache no 0.00 0.67
Nausea yes 0.67 0.50
Nausea no 0.33 0.50

Table [4] shows that flu relates to high and very-high temperature,
headache and nausea. On the other hand non-flu supports the cases
of low temperature and no headache.

In the same way as the previous method, it is possible to define the
probability of object attribute values by the frequency of values
in the dataset. Formally, in imperfect information system I =
(U, A), an attribute @ € A and its domain V,, p,(v)x denotes
the frequency of each value v € Vj, in concept X . Given an object
x € X with imperfect value on a the probability Pr,(f,(z) = v)
for any v € V, as follows:

- 2 pa(v)X
Pai e {vinNt;|e
Ei: “ ’ Zv Et'“E pa(Ul)X

lev et’”i pa( x #0,
Zpal.Hv}ﬂt ‘ |tz |

otherwhise.
(13)

Pro(fa(z) =v) =

4.4 Obtaining Probability of matching

This section will re-define the degree that two object have the same
value on an attribute if at least one of the two objects has the
missing, imprecise or uncertain value on the attribute.

DEFINITION 3. Given an information system I = (U, A), on
an attribute a € A with its domain V,, the probability that the
value of “x”

«, » «

is the same as the value of “y” on “a” is given by:

(x,y) = > Pra(fa(z

veVy

=v[faly) = 0)Pro(faly) = v)
(14)

when = # y. Otherwise 6,(z,y) = 0,(z,z) = 1. Note that
0o (z,y) = 1, if the two objects x and y have the same precise
value on a, while it is zero if they have different precise values.
Pro(fo(z) = v|fa(y) = v) denotes the conditional probability of
fa(z) = v given f,(y) = v. Hereafter, the paper assumes that two
events f,(z) =vand f,(y) = u,z,y € U,a € A are independent
of each other for any u, v € V.

The probability of matching for each type of missing, uncertain and
imprecise values has been discussed in [20]. However, the concept



of imperfectness introduced in this paper generalizes the way to
calculate the probability of matching as follows:

Z PTa(fa(x) = 'U)Pra(fa(y) = ’U)

veA(z,y)
it Az, y) £ 0.
0 if A(z,y) =0,

0o (z,y) = 15)

when © # y, A(z,y) = [Uitei()]N[Ujta,;(y)]. Otherwise
0. (x,y) =0,(x,z) = 1.

Obviously, the probability of matching between two objects equals
to zero unless there are common possible values for both two
objects. Otherwise, the sum of product of probabilities should be
taken that the two objects coincide to have a common value.

In short, the method of calculating probability that two objects
have the same attribute values in case of imperfect information
has been shown. This probability can be used to define a valued
tolerance/similarity relation, then obtain approximation space in
any published VRRS approach. Note that rough set definition is not
in the scope of this paper. In the next parts, a rough set based rules
induction for imperfect information systems will be introduced.

5. RULES INDUCTION

Rule induction is one of the most important knowledge discovery
techniques in machine learning. A decision rule can be presented
in the following expression:

r:Ni(a; =v) = (d=w)

where a; € A, v € V,,, and d, w is the decision attribute and a
decision value respectively. The set A, = U{a;} and attribute d is
called condition set and decision, respectively, of rule . Hereafter,
fa(r) and f4(r) represent the value of attribute a € A, and
decision d, respectively, in r. Rp(z,r), the same symbol for a
relation between objects, is used to represent the relation between
object  and the conditional part of r with respect to attribute set
P CA.

In supervised learning, rules are obtained from information which
consists of conditional and decisional attributes. However, due
to imperfect data and/or some other reasons, rules may conflict
with each other. In Table [I] for example, the rule from case
z4: (Temperature = high) A (Headache = yes) A
(Nause = yes) — (Flu = yes) conflicts with the rule of z5:
(Temperature = high) A (Nause = yes) — (Flu = no) if it
is assumed that the missing value of Headache is “yes”.

Rough sets, which describe a set of objects in the approximation
space, play a vital role in rule induction. Rules induced from the
certain region (lower approximation) and possible region (upper
approximation) of a concept are called certain and possible rules
respectively [[7,128].

Among published rule induction algorithms, LEM2 (Learning
from Examples Module, version 2) of LERS (Learning from
Examples using Rough Sets) is used commonly since it gives
better results [7]. The algorithm is based on the idea of blocks
of attribute-value pairs. For an attribute-value pair (a,v), a block
[(a,v)]is aset of all cases from U such that for attribute a has value
v. This algorithm can be also used for some rough set approaches in
incomplete information systems [} 124} 28] in which objects belong
to the block [(a, v)] if their values on a are tolerant of (similar to) v.
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Table 5. An example
incomplete table

Cases a b d
T al * dl
To * b1 d1

Let B be a non-empty lower or upper approximation of a concept
represented by a decision-value pair (d, w). Let us say that the set
B depends on a set 1" of attribute-value pairs if and only if

0 7{ [T} = m(a,ﬂu)eT[(a7 U)] CB (16)

From the equation, it could be believed intuitively that the less
cardinality of 7" is the more objects 1" covers. Thus, set 7 is called
a minimal complex of B if and only if B depends on 7" and no
proper subset 7" exists such that B depends on 7”. LEM2 algorithm
defines each rule based on a minimal complex.

However, the belief mentioned above does not hold in some cases
such as relations defined in [[18} [19, 25} 126]. Let us illustrate the
problem. Table [5] presents an incomplete information system. The
following equation shows a relation called Extended Tolerance
relation defined by Wang [25]:
Rp(z,y) < (Va € P, fa(z) = *, fa(y) = )

V((Op(x) NOp(y) #0)

A (Va € Op(x) N Op(y)fa(@) = faly)))
where Op(z) = {ala € P, f,(x) # *}.

Using the Extended Tolerance relation, the pair {(a,a;)} covers
only 1, {(b, b1)} covers only z2, yet {(a, a1), (b, b1)} covers both
x1 and x5 in Table[5] which violates the intuitive belief.

Taking imperfect data discussed in Section [2] into account, in the
rest of this section, a method to obtain decision rules in imperfect
information systems will be proposed.

DEFINITION 4. In an imperfect information system I =
(U, A), a candidate rule set suggested from object = is denoted
by S(z) and defined by the following equation:

S(x)={rl(a € PC A P#0, fo(r) € Ust] ;)
ANRp(z,m)} (17)

In the definition, the paper limits possible conditional values of the
candidate rule r using the possible values of object x as well as
the conditional part of the rule should be tolerant of (similar to) the
object x with respect to attributes in .4,.. From this definition, the
suggested rule set S(X) of an object set X C U can be defined by:

S(X) = UgexS(z) (18)

On the other hand, for a rule r, a set of objects that rule r covers is
defined by the following equation:

G(r) =A{zlx € U, R4, (z,7)} 19)

A rule r is optimal if and only if no rule ' exist such that A, C
A, and G(r') = G(r). Let G(R) = U,erG(r) denotes the set of
objects that a rule set R covers, two regions are defined as follows:

DEFINITION 5. A rule set R is called a lower covering of a set
of objects B if only if the following conditions are satisfied:
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Table 6. An example of a dataset with imperfect values

Cases Temperature Headache Nausea Flu
1 high {yes:0.9; no:0.1} no yes
T very-high yes yes yes
3 {high:0.3; normal:0.7} no no no
T4 high yes yes yes
5 high {yes:0.1; n0:0.9} yes no
6 normal yes no no
T7 normal no yes no
g {very-high:0.3; high:0.7} yes {yes:0.7; n0:0.3} | yes

(I) each member of R is a optimal.

(2) Vr e R, G(R—{r}) C G(R).

3 GR)C B

(4) and there is no rule set R' such that G(R) C G(R') C B

DEFINITION 6. A rule set R is called an upper covering of a
set of objects B if only if the following conditions are satisfied:

(1) each member of R is a optimal.

(2) Vr e R, G(R—{r}) C G(R).

(3) G(R)2 B

(4) and there is no rule set R’ such that G(R) D G(R') 2 B

Based on the two definitions above, the paper suggests an algorithm
to induce certain and possible rules by finding a lower and upper
covering of a set of objects as follows:

Input: A set of object X C U .
Output: lower covering R and upper covering R of X

Step 1:

Make a candidate rule set L = S(X);
Remove any rule in L which is not optimal;
L'={rlr e L,G(r) € X};

L:=L-1L

R :=0;
B =X;
Step 2:

If B= 0 or L' = () then go to step 3;

Select the rule r € L’ such that G(r) N B is the maximum;
If a tie occurs, select the rule with the smallest |.A,.|;

If another tie occurs, select the first rule;

R:=RU{r};

B:=B—(BnNg(r));

Remove from L' all rules r such that BN G(r) = 0;
Repeat the step 2;

Step 3:

R =R

Step 4:

Remove from L all rules r such that BN G(r) = 0;

If B = () or L = {) then stop;

Select the rule r € L such that G(r) — B is the minimum;

If a tie occurs, select the rule such that G(r) N B is maximum;
If a tie occurs, select the rule with the smallest | A, [;

If another tie occurs, select the first rule;

R:=RU{rk

Table 7. Candidate rules

Rules | Temperature | Headache | Nausea | Covered objects
T1 no T1,%3,%6,T7,T8
r2 yes T1,%2,%4,T5,T6, T8
r3 yes no r1,Te, T8
T4 no T1,23,%5, L7
T5 no no r1,T3
r6 high T1,T3,T4,T5,T8
rT high no r1,T3,T8
T8 high yes T1,T4,T5,T8
9 high yes no T1,T8
10 high no r1,T3,Ts5
T11 yes X2,%4,T5,T7,T8
T12 yes yes x2,%4,%5,T8
13 very-high T2, T8
T14 high yes T4,T5,T8
The absence of attribute values in a rule mean those value are not exist in conditional part of

that rule.

B:=B—(BNG(r); B
Remove any rule r € R such that G(r) C G(R — {r});
Repeat the step 4;

The information in Table 6] will be used to illustrate the algorithm.
In this example, the simplest method - joint probability - is
used to calculate the degree of tolerance, formally ¢p(x,y) =
[lacp Oa(,y). The threshold o is supposed to be 0.1. Thus,
Rp(z,y) & ¢p(z,y) > 0.1. Now it is possible to induce certain
and possible rules for the concept X = {z|fp;,(z) = yes}.

At first, the candidate rule set S(X) is calculated using
equations and (18), where any rules that can satisfy one or
more cases in Table @ are generated. Then rules, that are not
optimal, will be removed. For example, rule 7’ : (T'emperature =
very — high) N\ (Headadge = yes) — (Flu = yes) is not
optimal because it covers the same set {z,zg} with the rule
ri3 : (T'emperature = very — high) — (Flu = yes) while
A, C Ay The rules that are optimal are shown in Table
Then, to find certain rules, rules in a candidate set which cover
only objects belonging to X should be chosen. Thus, the candidate
set for certain rules is L' = {rg, r13}.

Going to the step 2, which is the step to induce certain rules, the
maximal cardinality of G(r) N B is two. So the rule 713, which has
the smallest number in cardinality of conditional part, is selected
such that A, .| = 1. Thus, the first certain rule presented by the
first element of the lower covering is:

(Temperature = very — high) — (Flu = yes)




Now, the rule is added to the certain rule set and remove all covered
objects of this rule such that B = B — {x2, 23} = {x1,z4}. Then,
rule 79 is chosen and it covers x1. Hence the next certain rule is:

(Temperature = high) A (Headache = yes)
A (Nausea = no) — (Flu = yes)
The step is stopped because L' = (.

Going through the step 3 and 4, the possible rule set of the concept
X is obtained as follows:

(Temperature = high)\(Headache = yes) — (Flu = yes)
(Temperature = very — high) — (Flu = yes)

From the above, it is possible to see that =, does not support any
certain rule. This is because any candidate rule in S(z4) would
cover some other objects with Flu=no. This type of rule may be
present in possible rules instead.

6. CONCLUSION

In this paper, a new representation of multiple types of imperfect
information including missing, uncertain and imprecise values
is introduced. Using this representation, the paper defines the
probability that two objects are tolerant of (similar to) each
other. This probability can be used in various types of valued
tolerance/similarity relations based rough set definitions that have
been published so far.

In addition, a method of obtaining decision rules from an imperfect
decision table was also discussed and proposed. At the same time,
the algorithm also can produce both certain and possible rule
without calculation of approximation space for a set of objects.

The imperfect representation could be utilized in some applications
where data is described in imprecise as well as uncertain
representation rather than precise values. One of typical fields with
the need is Kansei Engineering or affective engineering [13} [14]
where human feeling, subjective impression, affective images as
well as imprecise specifications of target products are dealt with
frequently in a decision table. In those systems, approximations
using and the rule induction algorithm would be a great help for
the analysis.
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