
International Journal of Computer Applications (0975 – 8887)

Volume 89 – No.4, March 2014

36

A Fuzzy based TCP Congestion Control for

Wired Networks

 Zainab T. Alisa Sara Raad Qasim
 Assist. Prof, Ph.D. Electrical Eng. Department,
 Baghdad University, Iraq University Of Baghdad, Iraq

ABSTRACT

Since TCP cannot recognize bit error loss event from

congestion loss event, it fails to work well in wired networks

with large random error rate. In this paper, a modification in

TCP Westwood congestion control algorithm is proposed by

using a fuzzy controller to enhance its performance in wired

networks with high error rate. The number of timeout events

and the number of triple duplicate acknowledgement (also

called 3dupacks) is counted to measure their ratio as the first

input to a fuzzy system so that to differentiate congestion loss

from bit error loss. Also the time difference between the last

two timeout events is taken as the second input to the fuzzy

system to check whether the timeout events are due to

congestion or non-congestion event. The delay or RTT

(Round Trip Time which is the time from transmitting a

segment till receive an acknowledgement) also considered in

the fuzzy system as the third input. The proposed TCP Fuzzy

is tested using OMNET++ IDE simulator and found that it

gives better performance than TCP standards in wired

networks when error rate is increased.

1. INTRODUCTION
Popular protocols, such as TCP, are designed and

implemented for wired networks but they fail to perform well

in networks with high error rates since it treats all loss events

due to congestion such that it decreases its transmission rate

when any loss occur. The congestion control algorithm used

in the TCP/IP protocol suite [1], [2], [3] is a sliding window

mechanism that uses segment loss as a sign to congestion. The

TCP sender probes the state of the network by gradually

increasing the window of segments that are outstanding in the

network until the network drops segments and become

congested. Initially, the increase is exponential and this phase

is called “Slow-start”. This phase is intended to quickly take

all the available bandwidth. When the window size reaches a

slowstart threshold (called ssthresh), TCP starts the second

phase called “Congestion Avoidance” [4], where the increase

is linear. Clearly, it is desirable to set the threshold to a value

that approximates the connection’s “fair share”. The optimal

value for the slowstart threshold is the one that corresponds to

the number of segments in flight in a pipe when TCP

transmission rate is equal to the available bandwidth [5], i.e.

when its transmission window is equal to the available

bandwidth-delay product.

The rest of the paper is organized as follows. A brief

description of TCP congestion control is presented in section

2. Related research works are discussed in Section 3. A brief

overview of fuzzy controller is presented in section 4. The

proposed new TCP Westwood congestion control algorithm is

presented in Section 5. Detailed performance analysis of the

proposed algorithm with the help of OMNET++ IDE

simulator is presented in Section 6. The conclusions of the

paper with some hints on the future research in this direction

are discussed in section 7.

2. TCP CONGESTION CONTROL
When a loss occurs either through triple duplicate

acknowledgements, or through the expiration of the

retransmission timer, the connection backs off by shrinking its

congestion window.

In TCP Tahoe, an RTO (Retransmission TimeOut) is an

indication of congestion and enters congestion avoidance

phase by setting congestion window (cwnd) to 1 and slow

start threshold (ssthresh) to half of cwnd. Cwnd is increased

additively till it reaches ssthresh, then it is increased linearly

until a packet loss is encountered.

TCP Reno [1] retains the basic principle of Tahoe, but uses

the logic of triple duplicate acknowledgements (3dupacks) to

trigger Fast Retransmit. After 3 dupacks, TCP Reno takes it as

a sign of segment lost and retransmits the packet immediately

and enters Fast Recovery. In Fast Recovery, ssthresh and

cwnd is set to half the value of the current cwnd. For each

subsequent dupack, the cwnd is increased by one and a new

segment is transmitted if the new value permits it. TCP Reno

cannot detect multiple packet loss within the same window.

TCP NewReno [6] is able to detect multiple losses within the

same window with small modification to Reno. TCP

NewReno does not exit fast recovery mode until all the data

that was outstanding at the time it entered Fast Recovery is

acknowledged. Thus it does not reduce cwnd multiple times.

The Fast Recovery phase proceeds as in Reno. When a fresh

ACK is received then there are 2 cases:

 If it ACKs all the segments which were outstanding

when entered Fast Recovery, then it exits Fast

Recovery and sets cwnd and ssthresh and continues

congestion avoidance as in Tahoe.

 If the ACK is partial then it deduces that the next

segment in line was lost and retransmits that

segment and sets dupacks to 0. It exits Fast

Recovery when all the data segments in the window

are acknowledged.

TCP New Reno suffers from the fact that it takes one RTT to

detect each packet loss. When the ACK for the first

retransmitted segment is received, only then it is possible to

deduce which other segment was lost.

TCP Westwood (TCPW) [7] improves the performance of

TCP Reno in wired as well as wireless networks. The

improvement is most significant in wireless networks with

lossy links. In fact, TCPW performance is not very sensitive

to random errors, while TCP Reno is equally sensitive to

random loss and congestion loss and cannot distinguish

between them. Hence, the tendency of TCP Reno to overreact

to errors. The key innovative idea is to continuously measure

at the TCP sender side the bandwidth used by the connection

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No.4, March 2014

37

via monitoring the rate of returning ACKs. The estimate is

then used to compute congestion window and slow start

threshold after congestion detection, that is, after three

duplicate acknowledgments or after a timeout. This

mechanism avoids the blind halving of the sending rate of

TCP Reno after packet losses and enables TCP Westwood to

select a slow start threshold and a congestion window which

is consistent with the effective bandwidth used at the time

congestion is experienced. This mechanism is called faster

recovery.

TCP, which was originally designed for wired network, does

not work efficiently with the increase of error rates. TCP

assumes packet losses are due to congestion in the path and

reacts accordingly. However, in erroneous networks the

packet loss is not always due to congestion. This problem is

become worse when sporadic losses occur. Random losses are

losses not caused by congestion at the links. In this case, a lost

segment is misinterpreted by a TCP sender as a sign of

congestion, and dealt with by decreasing the sender’s window.

Such action, clearly, does not handle the random loss

condition nicely and it merely results in reduced throughput.

The larger the bandwidth-delay product, the larger the

performance degradation caused by such action.

In networks with random error rates, a good percentage of

timeouts and reception of out of order segments have been

happened due to the bit error rather than congestion. In such

cases, reducing transmission rate does not help as this action

results in under-utilization of network bandwidth. The basic

TCP congestion control algorithm cannot distinguish between

congestion and bit error timeouts; as a result it fails to give

good performance in such networks.

In this paper, a new TCP Westwood congestion control

algorithm is proposed, TCP FWestwood, by using a fuzzy

controller in order to get better performance in wired

networks. Several counters at the sending host were used in

order to record the frequencies on retransmission timeout and

duplicate acknowledgement. This statistics with the help of

fuzzy controller used to differentiate non-congestion event

from congestion event and to take appropriate action at a

specific event. Experimental result shows that the algorithm

ensures good throughput for connections that incorporate

erroneous links.

3. RELATED WORKS
In [8], Balakrishnan et al. proposed the design and

implementation of a simple protocol called “Snoop” for the

scenario where a fixed host is communicating with a mobile

host with the help of a base station. The network layer code at

the base station is changed to implement the Snoop protocol.

The packets sent from the fixed host are buffered at the base

station before delivering them to the mobile host. When the

Snoop agent residing at the base station receives a duplicate

acknowledgement against a lost packet at the mobile host, it

retransmits the missing packet locally to the mobile host and

conceals the packet loss events from the sender and hence

prevents it from reducing its congestion window to maintain a

good throughput.

In [9] Cen et al. proposed a hybrid loss discriminator ZBS

which uses three loss discriminators: ZigZag [9], Biaz [10],

and Spike [11]. ZBS (the name is taken from the first letters

of Zigzag, Biaz and Spike) is used at the receiver. ZigZag and

Biaz are based on the interarrival of the packets at the receiver

and the number of losses detected. Spike is based on the

relative one way trip time. ZBS dynamically switches

between the three losses discriminators according to observed

network conditions. The accuracy of ZBS discriminator

depends on the number of flows sharing the bottleneck and

yields high congestion misclassifications.

Indirect-TCP (I-TCP) [12] uses TCP splitting approach with

different flow control and congestion control mechanism on

the wireless and wired parts of a network. The TCP

connection is splitted into two connections at the point where

the wired networks meet, i.e. at the base station. The base

station keeps one TCP connection with the fixed host, while it

uses another connection with a protocol specially designed for

better performance over wireless links for the mobile host.

The base station acknowledges the segments as soon as it

receives them. I-TCP provides faster adaptation to mobility

and wireless link breaks. However, I-TCP breaks end-to-end

TCP ACKs and puts extra load on the base station. It is not a

scalable solution.

El Khayat et al. [13] worked with applying machine learning

(ML) towards improving TCP over wireless connections. The

idea is to use data available inside of the state machine as

variables to feed into a ML algorithm that powers a packet

loss classifier. By lowering the number of registered LE

(denote a loss due to a link error) on wireless networks (and

simultaneously maintaining the correct C (denote a loss due to

a congestion) for TCP- friendliness on wired networks.

Wozniak [16] classifies packet losses using Fuzzy system as

due to congestion or random collision and react only to those

losses perceived as being caused by network congestion and

seeks to use environmental variables available to TCP

implementations to feed a fuzzy inference system(such as

Delay and InterArrival). Fuzzy inference systems also allow

problems to be defined in an intuitive way using a

propositional IF-THEN rule base.

Liu [17] proposes a distributed traffic management

framework, in which routers are deployed with intelligent

Fuzzy controllers to tackle the traffic mass. This fuzzy-logic-

based controller can measure the router queue size directly;

hence it avoids various potential performance problems

arising from parameter estimations while reducing much

consumption of computation and memory resources in

routers.

4. FUZZY SYSTEM
While traditional logic contains only two truth values (true

and false), fuzzy logic may contain an infinite number of truth

values on the continuous range [0,1].

The fuzzy controller [14] is composed of the following four

elements (fig.1):

1. A rule-base (a set of If-Then rules), which contains a fuzzy

logic quantification of the expert’s linguistic description of

how to achieve good control.

2. An inference mechanism (also called an “inference engine”

or “fuzzy inference” module), which emulates the expert’s

decision making in interpreting and applying knowledge

about how best to control the plant.

3. A fuzzification interface, which converts controller inputs

into information that the inference mechanism can easily use

to activate and apply rules.

4. A defuzzification interface, which converts the conclusions

of the inference mechanism into actual inputs for the process.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No.4, March 2014

38

Fig 1: The Fuzzy Logic Controller structure

The fuzzy system is divided into two main types, Standard

Fuzzy Systems and Takagi-Sugeno Fuzzy Systems (also

called functional fuzzy system).

For the functional fuzzy system, it uses singleton

fuzzification, and the ith rule has the form :

If ᾶ₁ is Ᾰʲ₁ and ᾶ₂ is Ᾰᵏ₂ and, . . . , and ᾶᵣ is Ᾰᶦᵣ Then bᵢ = gᵢ(•)

Where ᾶ₁ to ᾶᵣ are the linguistic variable for the input, Ᾰʲ₁ to
Ᾰᶦᵣ are the fuzzy set, “•” simply represents the argument of the

function gᵢ and the bᵢ are not output membership function

centers.

The consequents of the rules are different, however. Instead of

a linguistic term with an associated membership function, in

the consequent a function bᵢ = gᵢ (•) is used (hence the name

“functional fuzzy system”) which does not have an associated

membership function. Notice that often the argument of gᵢ

contains the terms uᵢ, i = 1, 2, . . . , n, but other variables may

also be used. The choice of the function depends on the

application being considered. For instance, it may have the

form:

bᵢ= gᵢ(•) = aᵢ,₁+ aᵢ,₂(u₁)² + • • • + aᵢ,ᵣ(uᵣ)² ……….. (1)

More information on fuzzy system can be shown in [15].

Fuzzy control systems have been utilized in many areas such

as the industrial and scientific Projects, in parallel processor

systems and in networks applications.

5. THE PROPOSED TCP CONGESTION

CONTROL ALGORITHM
In this paper, the proposed functional fuzzy system consists of

three inputs that are represented using triangular membership

function (Fig. 2), two outputs and nine rules that aggregated in

a disjunctive manner.

Fig 2: triangular membership function

The “center-average” method is used to obtain the

representative value of the fuzzy set which is:

𝑦 =
 𝑏ᵢ𝜇ᵢ𝑅
𝑖=1

 𝜇ᵢ𝑅
𝑖=1

 …………………… (2)[14]

Where bᵢ is the output function and μi is defined as the Height

of a fuzzy set or membership function:

μᵢ(u₁,u₂,. ., uᵣ)= μAʲ₁(u₁) ∗ μAᵏ₂(u₂) ∗. .∗ μAᶦᵣ(uᵣ)……. (3)[14]

Where Ᾰʲ₁ to Ᾰᶦᵣ are the fuzzy set, u₁ to uᵣ are the universe of

discourse, j to l are the linguistic value of the linguistic

variables u₁ to uᵣ respectively, 1 to r represent the linguistic

variables and * represent AND operation.

The characteristics of TCP operations were examined in wired

networks with various error rates and observed two important

phenomenons that can be used to detect false congestion

alarm with good precision. The input’s variables are chosen

from the parameters of the network and they are measured

with respect to error rates from some experiences that are

performed separately on random networks and topologies.

5.1 The inputs of fuzzy system

The proposed system structure is shown in Figure 3.

Fig 3: the proposed system structure

 The inputs of the fuzzy controller are:

5.1.1. Delay or RTT (Round Trip Time)

This is the first input, it is the time required for a packet to go

from a source to a destination and then back again in the form

of acknowledgement. It is compared with RTT_MIN

(minimum value of RTT) and RTT_MAX (maximum value of

RTT) to get the state of the network overloaded or has error.

The value of RTT_MIN and RTT_MAX are read during the

execution of the program.

5.1.2 The ratio of the number of timeouts to the

number of dupacks (ratio)

This is the second input, if the ratio is very small (in between

0.01 to 0.2), the observation shows that this event has been

caused by a bit error event, not by congestion. If the ratio is

high (e.g. greater than 0.5) then the event is more likely due to

congestion. This ratio is concluded according to the

experiences first with respect to error rate and then with

respect to UDP traffic with error rate =0 as in Table 1 and

Table 2 respectively.

Table 1 Ratio with respect to different error rates

Error Rate

(%)

Timeout Count

(x)

3Dupack Count

(y)

Ratio

(x/y)

1 1 14 0.0714

5 1 13 0.0769

10 1 12 0.0833

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No.4, March 2014

39

Table 2 Ratio with respect to different UDP traffics

UDP traffic

(Mbps)

Timeout

Count (x)

3Dupack

Count (y)

Ratio

(x/y)

0.75 3600 1215 2.963

1 3643 1214 3

2 3643 1214 3

5.1.3 The ratio of the time difference between two

consecutive timeouts to the current estimate of

retransmission timer’s timeout interval (diff.ratio)

This is the last input of the Fuzzy controller. It is measured in

the same experiences for the above two inputs.

 If the ratio is small (in between 0.01 to 0.1), the observation

shows that this event has been caused by a bit error event, not

by the congestion. If the ratio is high (e.g. greater than 0.25)

then the event is more likely due to congestion.

5.2 Rules of Fuzzy System
The proposal algorithm includes 9 rules that are aggregated in

a disjunctive manner, as in the table below.

Table 3 Rules of the Fuzzy System

Delay Ratio Diff_Ratio

Small Small Small

Small Medium Medium

Small High High

Medium Small Small

Medium Medium Medium

Medium High High

High Small Small

High Medium Medium

High High High

5.3 Outputs of the Fuzzy System
As mentioned before, Takagi-Sugeno Fuzzy System is used

which its output represented by a function Instead of a

linguistic variable. In this paper, there are two outputs

ssthresh (slow start threshold) and cwnd (congestion window)

which specify the new phase of TCP to trigger after the packet

loss event.

5.4 Algorithm Steps
The proposed algorithm is shown in Figure 4. TCP with

Fuzzy algorithm begins working just when a packet loss

occurs and as follow:

Fig 4: TCP Fuzzy System Algorithm

1. When a packet loss occurs, the algorithm start with

checking whether this loss is the first loss or not, if it is the

first loss then Start checking the cause of this loss(due to

timeout or 3dupack)

a. If it a timeout event, then start slow start phase

which performed by set ssthresh to half (or 2

segments size whichever is the minimum) of the

current congestion window and cwnd to one

maximum segment size (MSS).

b. If it a 3dupack event, then start congestion

avoidance phase which performed by set ssthresh to

one-half of the current window size and cwnd to

ssthresh.

2. If it is not the first packet loss, then the TCP with Fuzzy

algorithm starts. This begins with collecting the values

required as inputs for the Fuzzy System (delay, the ratio of the

number of timeout to the number of 3dupack and the ratio of

the difference between the last 2 consecutive times to the

current retransmission timeout) then checking the rules of the

Fuzzy system to conclude which rule is on.

3. As soon as the rule that is on is found, the values of

ssthresh and cwnd are set according to this rule. Based on the

rules mentioned in Table 3, the equation of the two outputs is

one of the following:

a. TCP starts slow start phase which is performed by

setting

Ssthresh = max {(BW[k] * RTT_min)/seg_size, 2*mss)}..(4)

Cwnd = 1* mss………….(5)

Where seg_size is the segment size and BW[k] is the

estimated bandwidth and can be measured by:

BW[k] = β • BW [k − 1] + (1−β /2) (sample_BW[k] +

sample_BW[k − 1]) ……..(6)

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No.4, March 2014

40

Where β=19/21, BW [k − 1] is the previous estimated

bandwidth, sample_BW[k] and sample_BW[k − 1])

are the last two bandwidth samples used by a

connection [7].

b. TCP starts congestion avoidance phase which is

performed by setting

Ssthresh = max {(BW * RTT_min)/seg_size, 2*mss)}….(4)

Cwnd = ssthresh ….(7)

c. TCP remains on same state such that ssthresh and

cwnd keep the same values.

6. PERFORMANCE EVALUATION OF

TCP FWESTWOOD
OMNET++ simulation IDE [18], [19], [20] has been used to

evaluate TCP algorithm on the following network (Figure 5).

The scenario has been built to compare TCP proposal with

various kinds of TCP as TCP Reno, TCP Tahoe and TCP

Westwood.

As shown in figure 5, the nodes starting with “w” connected

with router1 through an individual link has delay = 0.02s and

data rate = 1Mbps. Router2 is connected with the nodes

starting with “n” by a link that has delay = 0.02s and data rate

= 1.5Mbps. Finally, the link between router1 and router2 has

data rate=10Mbps.

Fig 5: Simulation setup of wired network

The following traffics are generated:

 A TCP connection between 𝑤1 and 𝑛2

 A TCP connection between 𝑤2 and 𝑛1

 A TCP connection between 𝑤3 and 𝑛3

 A UDP connection between 𝑤1 and 𝑛2

 A UDP connection between w3 and 𝑛1

UDP connections have been used to generate constant bit rate

traffics and create congestion in the network. In order to

evaluate the performance of different TCP implementations

the number of unique segments transmitted by the sender is

used as a comparison parameter. If these values of the TCP

are larger in one TCP implementation than that are in another

TCP implementation, the former denotes the superiority over

the later.

The simulation is run for TCP Tahoe, TCP Reno, TCP

Westwood and TCP FWestwood. All the runs have been

continued for 250 seconds. When a single TCP connection is

concerned; TCP connection between nodes is used to analyze

how TCP FWestwood behaves when it does not have to

compete with other concurrent TCP connections.

6.1 Simulation Results and Analysis
Figure 6 shows simulation results obtained after running a

single TCP connection without any UDP traffic for different

TCP variants and TCP FWestwood. From the figure, it is

clearly evident that FWestwood outperforms all other TCP

variants with increasing error rate, even TCP Westwood

which relies on consistent supply of acknowledgement

segments from the receiver to estimate the available

bandwidth of the network. TCPWestwood’s performance

depends highly on the precision of the above estimation. In

the presence of bit errors, the nodes will fail to successfully

transmit acknowledgement segments to their respective peers.

So the presence of random bit errors refrain TCP Westwood

from having an accurate estimate of available network

bandwidth.

The performance improvement of FWestwood can be

attributed to its less conservative reaction during segment

losses due to random bit errors. Whenever FWestwood detects

a possible non-congestion event it does not reduce its

transmission rate too much rather continues to transmit at a

good rate i.e. delivers more segments. On the other hand,

other TCP variants (Tahoe, Reno and Westwood) drastically

reduce the congestion window whenever a segment loss is

detected, i.e. they fail to achieve a good throughput. In case of

Reno, fast retransmission and fast recovery are capable of

ensuring a good throughput when one segment is dropped

from the window.

Fig 6: Performance comparison of single TCP connection

without UDP traffic

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No.4, March 2014

41

Fig 7: Performance comparison of single TCP connection

with UDP traffic

However, if segment drops are sporadic in nature, consecutive

reception of 3-dupacks will continue the halving of the

congestion window even though the segments are dropped

due to bit error. FWestwood detects segment losses due to bit

error with better precision and keeps a steady flow of

segments towards the destination to ensure a good throughput.

Again in real congestion, FWestwood does not behave

aggressively and hence do not worsen the congestion in the

network. This behavior is very much significant where two

concurrent TCP connections are used.

Figure 7 shows the performance of single TCP connection in

the presence of UDP traffic for different TCP variants. Even

in the presence of UDP traffic, FWestwood performs better

than both TCP Reno and TCP Westwood.

Table 4 shows the simulation results obtained from two

concurrent TCP connections. Here, the average number of

unique segments sent by the two connections has been

recorded. UDP traffics were kept present during these

simulation runs.

Table 4 Performance comparison by the number of

transmitted segments with error rate

Error Rate % Reno Westwood FWestwood

0 17468 17469 17480

1 10004 7985 10179

5 1329 1322 5058

From the above data, it is clearly evident that FWestwood

successfully injects more unique segments into the network

compared to TCP Reno and TCP Westwood. These

observations confirm that TCP FWestwood does not suffer

with concurrent TCP connections. If TCP FWestwood were

too much aggressive then it would have adversely affected the

other TCP connections, who are sharing the same bottleneck

link. In such case, a large number of segments will be dropped

at the congested node during network overload time. Both the

moderate and the aggressive connections will experience

more timeout events and hence will throttle their rate of

transmission. Moreover, TCP FWestwood does not reduce

cwnd and/or ssthresh too much until it is sure about the fact

that the timeout or 3-dupack event has been occurred due to

real congestion related event. All the simulation results

presented above have also shown that the gain of the TCP

FWestwood increases with the increase in the error rate in the

network, which is a desired property of a TCP algorithm that

is designed to overcome the bit error problem.

7. CONCLUSIONS
A new congestion control algorithm is proposed that can be

incorporated with any existing TCP variant and is capable of

performing well in erroneous wired networks. This feature

makes it suitable for deploying in real life scenario and does

not impose any burden on the internal network. With the help

of some newly introduced variables and decision blocks, it is

able to determine whether segments are getting dropped in

congested routers or are being damaged due to random bit

errors. In case of real congestion, it simply behaves as original

TCP Reno algorithm. However, after detecting a probable

non-congestion event, unlike TCP Reno, it does not throttle its

transmission rate too much. It continues to transmit at a good

pace so that the network capacity does not remain unutilized

at the presence of random bit errors. The proposed algorithm

was compared with other major TCP variants using omnet++

and found that it performs better than all of them. Changes in

the estimated round-trip time (RTT) of a TCP connection

which enters as one of the parameters gives a good overview

on the current network load. Therefore, the record keeping of

previous RTT values and compare it with RTT_MIN and

RTT_MAX and decisions based on those records give a great

benefit toward improve TCP’s performance in erroneous

wired networks.

8. REFERENCES
[1] M. Allman, V. Paxson, W. Stevens, “TCP

Congestion Control, RFC2581”, April 1999.

[2] V. Jacobson, “Congestion avoidance and control”,

In ACM SIGCOMM, pages 314–329, Stanford, CA,

August, 1988.

[3] J. Postel. Transmission control protocol, RFC 793,

September, 1981.

[4] TCP Congestion avoidance algorithm,

http://en.wikipedia.org/wiki/TCP-congestion-

avoidance- algorithm, Accessed in July, 2012.

[5] J. C. Hoe, “Improving the start-up behavior of a

congestion control scheme for tcp”, In ACM

SIGCOMM, pages 270–280, Stanford, CA, USA,

August, 1996.

[6] S. Floyd, T. Henderson, A. Gurtov, "The NewReno

Modification to TCP's Fast Recovery Algorithm",

RFC 3782.

[7] C. CASETTI, M. GERLA, S. MASCOLO, “TCP

Westwood: End-to-End Congestion Control for

Wired/Wireless Networks”, Wireless Networks 8,

467–479, 2002.

[8] H. Balakrishnan, S. Seshan, E. Amir, and R. H.

Katz, “Improving tcp/ip performance over wireless

networks’, In 1st ACM International Conference on

Mobile Computing and Networking (Mobicom),

pages 2–11, November, 1995.

[9] S. Cen, P. C. Cosman, and G. M. Voelker, “End-to-

end differentiation of congestion and wireless

losses”, IEEE/ACM Transactions on Networking,

11(5):703{717, October 2003.

[10] S.Biaz and N. H. Vaidya, “Discriminating

congestion losses from wireless losses using inter-

arrival times at the receiver”, In IEEE Symposium

ASSET'99, Richardson, TX, USA, March 1999.

http://en.wikipedia.org/wiki/TCP-congestion-avoidance-%20algorithm
http://en.wikipedia.org/wiki/TCP-congestion-avoidance-%20algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No.4, March 2014

42

[11] Y. Tobe, Y Tamura, A Molano, S. Ghosh, and H.

Tokuda, “Achieving moderate fairness for UDP

flows by path-status classication”, In 25th LCN'00),

Tampa, FL, USA, November 2000.

[12] A.Bakre and B. R. Badrinath. “I-tcp: Indirect tcp for

mobile hosts”. In 15th International Conference on

Distributed Computing Systems, pages 136–143,

May, 1995.

[13] P. Geurts, I. El Khayat, G. Leduc, “A Machine

Learning Approach to Improve Congestion Control

over Wireless Computer Networks”, Institute

Montefiore - B28 - Sart Tilman Li`ege 4000 –

Belgium, 2010.

[14] K. M. Passino, S. Yurkovich, “Fuzzy Control”,

1998 Addison Wesley Longman, Inc., 2725 Sand

Hill Road, Menlo Park, California 94025,

Columbus, Ohio, July 1997.

[15] N. K. Kasabov, “Foundations of Neural Networks,

Fuzzy Systems, and Knowledge Engineering,

Chapter 3”, 1996 Massachusetts Institute of

Technology, JUNE 1995.

[16] M.Wozniak, “Using Fuzzy Inference to Improve

TCP Congestion Control over Wireless Networks”,

College of Arts and Science at Stetson University

Deland, Florida 2010.

[17] J.Liu, O.W.Yang, ”Using Fuzzy Logic Control to

Provide Intelligent Traffic Management Service for

High-Speed Networks”, IEEE TRANSACTIONS

ON NETWORK AND SERVICE

MANAGEMENT, VOL.10, NO.2, JUNE 2013.

[18] A.Varga and OpenSim Ltd., “OMNeT++, User

Manual, Version 4.3”, 2011

[19] A.Varga and OpenSim Ltd., “OMNeT++, User

Guide, Version 4.3”, 2011.

[20] OMNeT++ Community available at
www.omnetpp.org.

IJCATM : www.ijcaonline.org

file:///C:\Users\hussein\AppData\Local\Microsoft\Windows\Temporary%20Internet%20Files\Content.IE5\F3S2C7V9\www.omnetpp.org

