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ABSTRACT 

Since TCP cannot recognize bit error loss event from 

congestion loss event, it fails to work well in wired networks 

with large random error rate. In this paper, a modification in 

TCP Westwood congestion control algorithm is proposed by 

using a fuzzy controller to enhance its performance in wired 

networks with high error rate. The number of timeout events 

and the number of triple duplicate acknowledgement (also 

called 3dupacks) is counted to measure their ratio as the first 

input to a fuzzy system so that to differentiate congestion loss 

from bit error loss. Also the time difference between the last 

two timeout events is taken as the second input to the fuzzy 

system to check whether the timeout events are due to 

congestion or non-congestion event. The delay or RTT 

(Round Trip Time which is the time from transmitting a 

segment till receive an acknowledgement) also considered in 

the fuzzy system as the third input. The proposed TCP Fuzzy 

is tested using OMNET++ IDE simulator and found that it 

gives better performance than TCP standards in wired 

networks when error rate is increased. 

1. INTRODUCTION 
Popular protocols, such as TCP, are designed and 

implemented for wired networks but  they fail to perform well 

in networks with high error rates since it treats all loss events 

due to congestion such that it  decreases its transmission rate 

when any loss occur. The congestion control algorithm used 

in the TCP/IP protocol suite [1], [2], [3] is a sliding window 

mechanism that uses segment loss as a sign to congestion. The 

TCP sender probes the state of the network by gradually 

increasing the window of segments that are outstanding in the 

network until the network drops segments and become 

congested. Initially, the increase is exponential and this phase 

is called “Slow-start”. This phase is intended to quickly take 

all the available bandwidth. When the window size reaches a 

slowstart threshold (called ssthresh), TCP starts the second 

phase called “Congestion Avoidance” [4], where the increase 

is linear. Clearly, it is desirable to set the threshold to a value 

that approximates the connection’s “fair share”. The optimal 

value for the slowstart threshold is the one that corresponds to 

the number of segments in flight in a pipe when TCP 

transmission rate is equal to the available bandwidth [5], i.e. 

when its transmission window is equal to the available 

bandwidth-delay product. 

The rest of the paper is organized as follows. A brief 

description of TCP congestion control is presented in section 

2. Related research works are discussed in Section 3. A brief 

overview of fuzzy controller is presented in section 4. The 

proposed new TCP Westwood congestion control algorithm is 

presented in Section 5. Detailed performance analysis of the 

proposed algorithm with the help of OMNET++ IDE 

simulator is presented in Section 6. The conclusions of the 

paper with some hints on the future research in this direction 

are discussed in section 7. 

 

2. TCP CONGESTION CONTROL 
When a loss occurs either through triple duplicate 

acknowledgements, or through the expiration of the 

retransmission timer, the connection backs off by shrinking its 

congestion window. 

In TCP Tahoe, an RTO (Retransmission TimeOut) is an 

indication of congestion and enters congestion avoidance 

phase by setting congestion window (cwnd) to 1 and slow 

start threshold (ssthresh) to half of cwnd. Cwnd is increased 

additively till it reaches ssthresh, then it is increased linearly 

until a packet loss is encountered. 

TCP Reno [1] retains the basic principle of Tahoe, but uses 

the logic of triple duplicate acknowledgements (3dupacks) to 

trigger Fast Retransmit. After 3 dupacks, TCP Reno takes it as 

a sign of segment lost and retransmits the packet immediately 

and enters Fast Recovery. In Fast Recovery, ssthresh and 

cwnd is set to half the value of the current cwnd. For each 

subsequent dupack, the cwnd is increased by one and a new 

segment is transmitted if the new value permits it. TCP Reno 

cannot detect multiple packet loss within the same window. 

TCP NewReno [6] is able to detect multiple losses within the 

same window with small modification to Reno. TCP 

NewReno does not exit fast recovery mode until all the data 

that was outstanding at the time it entered Fast Recovery is 

acknowledged. Thus it does not reduce cwnd multiple times. 

The Fast Recovery phase proceeds as in Reno. When a fresh 

ACK is received then there are 2 cases: 

 If it ACKs all the segments which were outstanding 

when entered Fast Recovery, then it exits Fast 

Recovery and sets cwnd and ssthresh and continues 

congestion avoidance as in Tahoe. 

 If the ACK is partial then it deduces that the next 

segment in line was lost and retransmits that 

segment and sets dupacks to 0. It exits Fast 

Recovery when all the data segments in the window 

are acknowledged. 

TCP New Reno suffers from the fact that it takes one RTT to 

detect each packet loss. When the ACK for the first 

retransmitted segment is received, only then it is possible to 

deduce which other segment was lost. 

TCP Westwood (TCPW) [7] improves the performance of 

TCP Reno in wired as well as wireless networks. The 

improvement is most significant in wireless networks with 

lossy links. In fact, TCPW performance is not very sensitive 

to random errors, while TCP Reno is equally sensitive to 

random loss and congestion loss and cannot distinguish 

between them. Hence,  the tendency of TCP Reno to overreact 

to errors. The key innovative idea is to continuously measure 

at the TCP sender side the bandwidth used by the connection 
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via monitoring the rate of returning ACKs. The estimate is 

then used to compute congestion window and slow start 

threshold after congestion detection, that is, after three 

duplicate acknowledgments or after a timeout. This 

mechanism avoids the blind halving of the sending rate of 

TCP Reno after packet losses and enables TCP Westwood to 

select a slow start threshold and a congestion window which 

is consistent with the effective bandwidth used at the time 

congestion is experienced. This mechanism is called faster 

recovery. 

TCP, which was originally designed for wired network, does 

not work efficiently with the increase of error rates. TCP 

assumes packet losses are due to congestion in the path and 

reacts accordingly. However, in erroneous networks the 

packet loss is not always due to congestion. This problem is 

become worse when sporadic losses occur. Random losses are 

losses not caused by congestion at the links. In this case, a lost 

segment is misinterpreted by a TCP sender as a sign of 

congestion, and dealt with by decreasing the sender’s window. 

Such action, clearly, does not handle the random loss 

condition nicely and it merely results in reduced throughput. 

The larger the bandwidth-delay product, the larger the 

performance degradation caused by such action. 

In networks with random error rates, a good percentage of 

timeouts and reception of out of order segments have been 

happened due to the bit error rather than congestion. In such 

cases, reducing transmission rate does not help as this action 

results in under-utilization of network bandwidth. The basic 

TCP congestion control algorithm cannot distinguish between 

congestion and bit error timeouts; as a result it fails to give 

good performance in such networks. 

In this paper, a new TCP Westwood congestion control 

algorithm is proposed, TCP FWestwood, by using a fuzzy 

controller in order to get better performance in wired 

networks. Several counters at the sending host were used in 

order to record the frequencies on retransmission timeout and 

duplicate acknowledgement. This statistics with the help of 

fuzzy controller used to differentiate non-congestion event 

from congestion event and to take appropriate action at a 

specific event. Experimental result shows that the algorithm 

ensures good throughput for connections that incorporate 

erroneous links. 

3. RELATED WORKS 
In [8], Balakrishnan et al. proposed the design and 

implementation of a simple protocol called “Snoop” for the 

scenario where a fixed host is communicating with a mobile 

host with the help of a base station. The network layer code at 

the base station is changed to implement the Snoop protocol. 

The packets sent from the fixed host are buffered at the base 

station before delivering them to the mobile host. When the 

Snoop agent residing at the base station receives a duplicate 

acknowledgement against a lost packet at the mobile host, it 

retransmits the missing packet locally to the mobile host and 

conceals the packet loss events from the sender and hence 

prevents it from reducing its congestion window to maintain a 

good throughput.  

In [9] Cen et al. proposed a hybrid loss discriminator ZBS 

which uses three loss discriminators: ZigZag [9], Biaz [10], 

and Spike [11]. ZBS (the name is taken from the first letters 

of Zigzag, Biaz and Spike) is used at the receiver. ZigZag and 

Biaz are based on the interarrival of the packets at the receiver 

and the number of losses detected. Spike is based on the 

relative one way trip time. ZBS dynamically switches 

between the three losses discriminators according to observed 

network conditions. The accuracy of ZBS discriminator 

depends on the number of flows sharing the bottleneck and 

yields high congestion misclassifications. 

Indirect-TCP (I-TCP) [12] uses TCP splitting approach with 

different flow control and congestion control mechanism on 

the wireless and wired parts of a network. The TCP 

connection is splitted into two connections at the point where 

the wired networks meet, i.e. at the base station. The base 

station keeps one TCP connection with the fixed host, while it 

uses another connection with a protocol specially designed for 

better performance over wireless links for the mobile host. 

The base station acknowledges the segments as soon as it 

receives them. I-TCP provides faster adaptation to mobility 

and wireless link breaks. However, I-TCP breaks end-to-end 

TCP ACKs and puts extra load on the base station. It is not a 

scalable solution. 

El Khayat et al. [13] worked with applying machine learning 

(ML) towards improving TCP over wireless connections. The 

idea is to use data available inside of the state machine as 

variables to feed into a ML algorithm that powers a packet 

loss classifier. By lowering the number of registered LE 

(denote a loss due to a link error) on wireless networks (and 

simultaneously maintaining the correct C (denote a loss due to 

a congestion) for TCP- friendliness on wired networks. 

Wozniak [16] classifies packet losses using Fuzzy system as 

due to congestion or random collision and react only to those 

losses perceived as being caused by network congestion and 

seeks to use environmental variables available to TCP 

implementations to feed a fuzzy inference system(such as 

Delay and InterArrival). Fuzzy inference systems also allow 

problems to be defined in an intuitive way using a 

propositional IF-THEN rule base. 

Liu [17] proposes a distributed traffic management 

framework, in which routers are deployed with intelligent 

Fuzzy controllers to tackle the traffic mass. This fuzzy-logic-

based controller can measure the router queue size directly; 

hence it avoids various potential performance problems 

arising from parameter estimations while reducing much 

consumption of computation and memory resources in 

routers. 

4. FUZZY SYSTEM 
While traditional logic contains only two truth values (true 

and false), fuzzy logic may contain an infinite number of truth 

values on the continuous range [0,1].  

The fuzzy controller [14] is composed of the following four 

elements (fig.1): 

1. A rule-base (a set of If-Then rules), which contains a fuzzy 

logic quantification of the expert’s linguistic description of 

how to achieve good control. 

2. An inference mechanism (also called an “inference engine” 

or “fuzzy inference” module), which emulates the expert’s 

decision making in interpreting and applying knowledge 

about how best to control the plant. 

3. A fuzzification interface, which converts controller inputs 

into information that the inference mechanism can easily use 

to activate and apply rules. 

4. A defuzzification interface, which converts the conclusions 

of the inference mechanism into actual inputs for the process. 
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Fig 1: The Fuzzy Logic Controller structure 

 

The fuzzy system is divided into two main types, Standard 

Fuzzy Systems and Takagi-Sugeno Fuzzy Systems (also 

called functional fuzzy system). 

For the functional fuzzy system, it uses singleton 

fuzzification, and the ith rule has the form : 

 

If ᾶ₁ is Ᾰʲ₁ and ᾶ₂ is Ᾰᵏ₂ and, . . . , and ᾶᵣ is Ᾰᶦᵣ  Then bᵢ = gᵢ(•) 

 

Where ᾶ₁ to ᾶᵣ are the linguistic variable for the input, Ᾰʲ₁ to 
Ᾰᶦᵣ are the fuzzy set, “•” simply represents the argument of the 

function gᵢ and the bᵢ are not output membership function 

centers. 

The consequents of the rules are different, however. Instead of 

a linguistic term with an associated membership function, in 

the consequent a function bᵢ = gᵢ (•) is used (hence the name 

“functional fuzzy system”) which does not have an associated 

membership function. Notice that often the argument of gᵢ 

contains the terms uᵢ, i = 1, 2, . . . , n, but other variables may 

also be used. The choice of the function depends on the 

application being considered. For instance, it may have the 

form: 

bᵢ= gᵢ(•) = aᵢ,₁+ aᵢ,₂(u₁)² + • • • + aᵢ,ᵣ(uᵣ)² ……….. (1)  

More information on fuzzy system can be shown in [15]. 

Fuzzy control systems have been utilized in many areas such 

as the industrial and scientific Projects, in parallel processor 

systems and in networks applications.  

 

5. THE PROPOSED TCP CONGESTION 

CONTROL ALGORITHM 
In this paper, the proposed functional fuzzy system consists of 

three inputs that are represented using triangular membership 

function (Fig. 2), two outputs and nine rules that aggregated in 

a disjunctive manner.  

 

 
Fig 2: triangular membership function 

 

The “center-average” method is used to obtain the 

representative value of the fuzzy set which is: 

 

𝑦 =
 𝑏ᵢ𝜇ᵢ𝑅
𝑖=1

 𝜇ᵢ𝑅
𝑖=1

    …………………… (2)[14] 

 

Where bᵢ is the output function and μi is defined as the Height 

of a fuzzy set or membership function: 

 

μᵢ(u₁,u₂,. ., uᵣ)= μAʲ₁(u₁) ∗ μAᵏ₂(u₂) ∗. .∗ μAᶦᵣ(uᵣ)……. (3)[14] 

 

Where Ᾰʲ₁ to Ᾰᶦᵣ are the fuzzy set, u₁ to uᵣ are the universe of 

discourse, j to l are the linguistic value of the linguistic 

variables u₁ to uᵣ respectively, 1 to r represent the linguistic 

variables and * represent AND operation. 

 

The characteristics of TCP operations were examined in wired 

networks with various error rates and observed two important 

phenomenons that can be used to detect false congestion 

alarm with good precision. The input’s variables are chosen 

from the parameters of the network and they are measured 

with respect to error rates from some experiences that are 

performed separately on random networks and topologies. 

 

5.1 The inputs of fuzzy system 
 

The proposed system structure is shown in Figure 3. 

 
Fig 3: the proposed system structure 

 

 The inputs of the fuzzy controller are: 

5.1.1. Delay or RTT (Round Trip Time) 

This is the first input, it is the time required for a packet to go 

from a source to a destination and then back again in the form 

of acknowledgement. It is compared with RTT_MIN 

(minimum value of RTT) and RTT_MAX (maximum value of 

RTT) to get the state of the network overloaded or has error. 

The value of RTT_MIN and RTT_MAX are read during the 

execution of the program. 

5.1.2 The ratio of the number of timeouts to the 

number of dupacks (ratio) 

This is the second input, if the ratio is very small (in between 

0.01 to 0.2), the observation shows that this event has been 

caused by a bit error event, not by congestion. If the ratio is 

high (e.g. greater than 0.5) then the event is more likely due to 

congestion. This ratio is concluded according to the 

experiences first with respect to error rate and then with 

respect to UDP traffic with error rate =0 as in Table 1 and 

Table 2 respectively. 

Table 1 Ratio with respect to different error rates 

Error Rate 

(%) 

Timeout Count 

(x) 

3Dupack Count 

(y) 

Ratio 

(x/y) 

1 1 14 0.0714 

5 1 13 0.0769 

10 1 12 0.0833 
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Table 2 Ratio with respect to different UDP traffics 

UDP traffic 

(Mbps) 

Timeout 

Count (x) 

3Dupack 

Count (y) 

Ratio 

(x/y) 

0.75 3600 1215 2.963 

1 3643 1214 3 

2 3643 1214 3 

 

5.1.3 The ratio of the time difference between two 

consecutive timeouts to the current estimate of 

retransmission timer’s timeout interval (diff.ratio) 

This is the last input of the Fuzzy controller. It is measured in 

the same experiences for the above two inputs. 

 If the ratio is small (in between 0.01 to 0.1), the observation 

shows that this event has been caused by a bit error event, not 

by the congestion. If the ratio is high (e.g. greater than 0.25) 

then the event is more likely due to congestion. 

 

5.2 Rules of Fuzzy System 
The proposal algorithm includes 9 rules that are aggregated in 

a disjunctive manner, as in the table below. 

 

Table 3 Rules of the Fuzzy System 

Delay Ratio Diff_Ratio 

Small Small Small 

Small Medium Medium 

Small High High 

Medium Small Small 

Medium Medium Medium 

Medium High High 

High Small Small 

High Medium Medium 

High High High 

 

5.3 Outputs of the Fuzzy System 
As mentioned before, Takagi-Sugeno Fuzzy System is used 

which its output represented by a function Instead of a 

linguistic variable. In this paper, there are two outputs 

ssthresh (slow start threshold) and cwnd (congestion window) 

which specify the new phase of TCP to trigger after the packet 

loss event. 

5.4 Algorithm Steps 
The proposed algorithm is shown in Figure 4. TCP with 

Fuzzy algorithm begins working just when a packet loss 

occurs and as follow: 

 

 

 
Fig 4: TCP Fuzzy System Algorithm 

 

1. When a packet loss occurs, the algorithm start with 

checking whether this loss is the first loss or not, if it is the 

first loss then Start checking the cause of this loss(due to 

timeout or 3dupack)  

a. If it a timeout event, then start slow start phase 

which performed by set ssthresh to half (or 2 

segments size whichever is the minimum) of the 

current congestion window and cwnd to one 

maximum segment size (MSS). 

b. If it a 3dupack event, then start congestion 

avoidance phase which performed by set ssthresh to 

one-half of the current window size and cwnd to 

ssthresh. 

2. If it is not the first packet loss, then the TCP with Fuzzy 

algorithm starts. This begins with collecting the values 

required as inputs for the Fuzzy System (delay, the ratio of the 

number of timeout to the number of 3dupack and the ratio of 

the difference between the last 2 consecutive times to the 

current retransmission timeout) then checking the rules of the 

Fuzzy system to conclude which rule is on. 

3. As soon as the rule that is on is found, the values of 

ssthresh and cwnd are set according to this rule. Based on the 

rules mentioned in Table 3, the equation of the two outputs is 

one of the following: 

a. TCP starts slow start phase which is performed by 

setting 

Ssthresh = max {(BW[k] * RTT_min)/seg_size, 2*mss)}..(4) 

Cwnd = 1* mss………….(5) 

Where seg_size is the segment size and BW[k] is the 

estimated bandwidth and can be measured by: 

BW[k] = β • BW [k − 1] + (1−β /2) (sample_BW[k] + 

sample_BW[k − 1]) ……..(6) 
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Where β=19/21, BW [k − 1] is the previous estimated 

bandwidth, sample_BW[k] and sample_BW[k − 1]) 

are the last two bandwidth samples used by a 

connection [7]. 

b. TCP starts congestion avoidance phase which is 

performed by setting 

Ssthresh = max {(BW * RTT_min)/seg_size, 2*mss)}….(4) 

Cwnd = ssthresh ….(7) 

c. TCP remains on same state such that ssthresh and 

cwnd keep the same values. 

 

6. PERFORMANCE EVALUATION OF 

TCP FWESTWOOD 
OMNET++ simulation IDE [18], [19], [20] has been used to 

evaluate TCP algorithm on the following network (Figure 5). 

The scenario has been built to compare TCP proposal with 

various kinds of TCP as TCP Reno, TCP Tahoe and TCP 

Westwood. 

 

As shown in figure 5, the nodes starting with “w” connected 

with router1 through an individual link has delay = 0.02s and 

data rate = 1Mbps. Router2 is connected with the nodes 

starting with “n” by a link that has delay = 0.02s and data rate 

= 1.5Mbps. Finally, the link between router1 and router2 has 

data rate=10Mbps. 

Fig 5: Simulation setup of wired network 

 

The following traffics are generated: 

 A TCP connection between 𝑤1 and 𝑛2  

 A TCP connection between 𝑤2 and 𝑛1  

 A TCP connection between 𝑤3 and 𝑛3  

 A UDP connection between 𝑤1 and 𝑛2  

 A UDP connection between w3 and 𝑛1 

UDP connections have been used to generate constant bit rate 

traffics and create congestion in the network. In order to 

evaluate the performance of different TCP implementations 

the number of unique segments transmitted by the sender is 

used as a comparison parameter. If these values of the TCP 

are larger in one TCP implementation than that are in another 

TCP implementation, the former denotes the superiority over 

the later. 

The simulation is run for TCP Tahoe, TCP Reno, TCP 

Westwood and TCP FWestwood. All the runs have been 

continued for 250 seconds. When a single TCP connection is 

concerned; TCP connection between nodes is used to analyze 

how TCP FWestwood behaves when it does not have to 

compete with other concurrent TCP connections. 

6.1 Simulation Results and Analysis 
Figure 6 shows simulation results obtained after running a 

single TCP connection without any UDP traffic for different 

TCP variants and TCP FWestwood. From the figure, it is 

clearly evident that FWestwood outperforms all other TCP 

variants with increasing error rate, even TCP Westwood 

which relies on consistent supply of acknowledgement 

segments from the receiver to estimate the available 

bandwidth of the network. TCPWestwood’s performance 

depends highly on the precision of the above estimation. In 

the presence of bit errors, the nodes will fail to successfully 

transmit acknowledgement segments to their respective peers. 

So the presence of random bit errors refrain TCP Westwood 

from having an accurate estimate of available network 

bandwidth. 

The performance improvement of FWestwood can be 

attributed to its less conservative reaction during segment 

losses due to random bit errors. Whenever FWestwood detects 

a possible non-congestion event it does not reduce its 

transmission rate too much rather continues to transmit at a 

good rate i.e. delivers more segments. On the other hand, 

other TCP variants (Tahoe, Reno and Westwood) drastically 

reduce the congestion window whenever a segment loss is 

detected, i.e. they fail to achieve a good throughput. In case of 

Reno, fast retransmission and fast recovery are capable of 

ensuring a good throughput when one segment is dropped 

from the window. 

 

 

Fig 6: Performance comparison of single TCP connection 

without UDP traffic 
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Fig 7: Performance comparison of single TCP connection 

with UDP traffic 

However, if segment drops are sporadic in nature, consecutive 

reception of 3-dupacks will continue the halving of the 

congestion window even though the segments are dropped 

due to bit error. FWestwood detects segment losses due to bit 

error with better precision and keeps a steady flow of   

segments towards the destination to ensure a good throughput. 

Again in real congestion, FWestwood does not behave 

aggressively and hence do not worsen the congestion in the 

network. This behavior is very much significant where two 

concurrent TCP connections are used. 

Figure 7 shows the performance of single TCP connection in 

the presence of UDP traffic for different TCP variants. Even 

in the presence of UDP traffic, FWestwood performs better 

than both TCP Reno and TCP Westwood. 

Table 4 shows the simulation results obtained from two 

concurrent TCP connections. Here, the average number of 

unique segments sent by the two connections has been 

recorded. UDP traffics were kept present during these 

simulation runs. 

Table 4 Performance comparison by the number of 

transmitted segments with error rate 

Error Rate % Reno Westwood FWestwood 

0 17468 17469 17480 

1 10004 7985 10179 

5 1329 1322 5058 

 

From the above data, it is clearly evident that FWestwood 

successfully injects more unique segments into the network 

compared to TCP Reno and TCP Westwood. These 

observations confirm that TCP FWestwood does not suffer 

with concurrent TCP connections. If TCP FWestwood were 

too much aggressive then it would have adversely affected the 

other TCP connections, who are sharing the same bottleneck 

link. In such case, a large number of segments will be dropped 

at the congested node during network overload time. Both the 

moderate and the aggressive connections will experience 

more timeout events and hence will throttle their rate of 

transmission. Moreover, TCP FWestwood does not reduce 

cwnd and/or ssthresh too much until it is sure about the fact 

that the timeout or 3-dupack event has been occurred due to 

real congestion related event. All the simulation results 

presented above have also shown that the gain of the TCP 

FWestwood increases with the increase in the error rate in the 

network, which is a desired property of a TCP algorithm that 

is designed to overcome the bit error problem. 

7. CONCLUSIONS 
A new congestion control algorithm is proposed that can be 

incorporated with any existing TCP variant and is capable of 

performing well in erroneous wired networks. This feature 

makes it suitable for deploying in real life scenario and does 

not impose any burden on the internal network. With the help 

of some newly introduced variables and decision blocks, it is 

able to determine whether segments are getting dropped in 

congested routers or are being damaged due to random bit 

errors. In case of real congestion, it simply behaves as original 

TCP Reno algorithm. However, after detecting a probable 

non-congestion event, unlike TCP Reno, it does not throttle its 

transmission rate too much. It continues to transmit at a good 

pace so that the network capacity does not remain unutilized 

at the presence of random bit errors. The proposed algorithm 

was compared with other major TCP variants using omnet++ 

and found that it performs better than all of them. Changes in 

the estimated round-trip time (RTT) of a TCP connection 

which enters as one of the parameters gives a good overview 

on the current network load. Therefore, the record keeping of 

previous RTT values and compare it with RTT_MIN and 

RTT_MAX and decisions based on those records give a great 

benefit toward improve TCP’s performance in erroneous 

wired networks. 
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