
International Journal of Computer Applications (0975 8887)
Volume 89 - No. 3, March 2014

A Load Balancer for a Multi-Stage Router Architecture

Shadi Atalla, Andrea Bianco
Dip. di Elettronica.

Politecnico di Torino, Italy

Robert Birke, Luca Giraudo
Dip. di Elettronica.

Politecnico di Torino, Italy

ABSTRACT
Multi-stage software router architectures permit to overcome sev-
eral limitations inherent to single stage software routers. One of
the key elements of the multi-stage architecture under study are the
load balancers, which are used to distribute the load among back-
end routers. However, using a PC (Personal Computer) as a load
balancer could create a performance bottleneck in the overall ar-
chitecture. Since the operations performed by the load balancer are
simple, we explore the possibility of an hardware-based implemen-
tation of load balancing functionality with the goal of improving
its performance. In this paper, we describe the architecture of an
FPGA-based load balancer and we present some performance re-
sults of its prototype implementation.

1. INTRODUCTION
Software routers (SRs) based on open-source software and PC-
architecture are a valid alternative to expensive commercial routers
because of their extensibility, flexibility and low cost. Today, soft-
ware routers implement a set of functionalities comparable to those
of commercial routers. However, they are not yet able to keep up
with routing performance and interface scalability of commercial
routers based on Application-Specific Integrated Circuits (ASIC),
mainly due to the general purpose PC-architecture.
For these reasons, the research community has proposed many im-
provements for software routers through software and hardware op-
timization [13, 15, 14, 5] or through aggregation to increase SRs
scalability [18, 16, 23]. A multi-stage router architecture was pre-
sented in [11, 12, 10, 8, 19, 9], based on the idea of building a
router through aggregation of multiple software routers. More pre-
cisely, the multi-stage architecture considered in this paper (shown
in Fig. 1) is organized in three stages:

—Front-end stage: PC-based (or FPGA-based) layer 2 load bal-
ancers (LBs) are used to balance the incoming data traffic among
back-end routers;

—Back-end stage: PC-based routers which implement the for-
warding/routing/management functions;

—Interconnection stage: one or more Ethernet switches used to
interconnect the above two stages.

The existing prototype of the multi-stage router is software-based
only and it relays on well-known technologies like Linux, Click
Modular Router and XORP (or Quagga). It supports multiple LBs
and routers as presented in [10, 8, 19, 9] and it features the
DIST control plane running in a logically centralized entity named
Virtual-CP. The Virtual-CP is responsible mainly for i) internal el-
ement identification, ii) router management, iii) LB configuration,

Front-end Back-end

Virtual-CP

SwitchE
x
te
rn
a
l
P
o
rt
s

In
te
rn
a
l
P
o
rt
s

LB_2

LB_1

LB_3

R_1

R_2

Fig. 1. Multi-stage router architecture.

iv) automatic fault recovery mechanism management for resilience,
v) route distribution among back-end routers.
Whereas a software-only solution is most suitable for fast develop-
ment and deployment of new features, it may provide poor packet
forwarding performance due to single element limitations (routers
and LBs). On the one hand, recent advances in research [5] show
that the routing performance of single software routers can be in-
creased up to 4.4 Gigabit/s (considering minimum size packets) by
kernel optimization. On the LBs side, being most of the required
functionalities relatively simple to implement, an hardware based
approach may help in scaling performance. Furthermore, layer 2
software based forwarding performance are often surprisingly un-
satisfactory [20]. Finally, the presented hardware solution based on
a FPGA permits to extend the open-source approach to the hard-
ware domain [2], without incurring in the classical drawbacks
of custom hardware development, such as high cost, lack of re-
programmability and flexibility.
Thus, we explore the possibility of an hardware-only LB solution
with the main goal of improving performance while maintaining
extensibility and flexibility. In this paper, we present a FPGA-based
implementation of load-balancer functionalities for the multi-stage
router architecture. The project is based on the NetFPGA platform
[4], a development PCI board equipped with four Ethernet 1Gbit/s
ports and a Xilinx FPGA (Field Programmable Gate Array) used to
deploy a custom-made forwarding logic.
It is worth emphasizing that it is possible to support even higher
line rates by switching to faster hardware. As far as the last point

1

International Journal of Computer Applications (0975 8887)
Volume 89 - No. 3, March 2014

is concerned, Application-Specific Integrated Circuits (ASICs) are
usually 4 times faster than FPGA (with a 30 times smaller area)
[21, 7, 6].
The main contributions of this paper are: i) design, implementation
and test of advanced low-level packet manipulation mechanisms,
ii) integration of an hardware solution into an existing distributed
router architecture obtaining performance improvements and iii)
identification of a design issue in the NetFPGA board (e.g. limited
access bandwidth to the external SRAM).

2. RELATED WORKS
The NetFPGA [4] was developed by Stanford University as a plat-
form for both research and network experimentation. It consists
of a single Xilinx Virtex-II Pro 50 FPGA, two 2 MB (512kx36)
SRAMs, a quad-port Gigabit Phy, on a PCI card, with the PCI in-
terface implemented in a Spartan II FPGA.
The availability of powerful programmable logic permits to ex-
tend the open software paradigm to the hardware domain. The
logic circuitry developed for FPGAs can be made public, reused
and improved by the research community. This open hardware ap-
proach can open the door to low-cost hardware implementations of
performance-critical functional blocks. In this paper, we present a
detailed description of a Hardware loadbalancer based on a FPGA
implementation, whose performance is partly assessed in this pa-
per. An important motivation to develop the core is providing the
research community with an open-source VHDL core implement-
ing the fast loadbalancer capable of communicating with all back-
routers and VC. However, due to the clear needs of performance,
we concentrate on using hardware based loadbalancer for Software
Router. Particularly, we propose a reconfigurable architecture for
load balancing of high-speed networks, and implement this design
using FPGAs. By making use of the inherent parallelism of FPGA
hardware, we are able to speed up our application by a considerable
amount as compared to an equivalent software implementation. Our
architecture is pipelined to achieve a high throughput, making it
suitable for multi-gigabit networks.
It is common for a large web sites to balance load over many HTTP
servers, and there exist commercial products to do this [1, 3]. Load-
balancing may be oblivious (e.g.,spreading the requests equally
over all servers, without regard for their load), or stateful (e.g.,
sending requests to the least-loaded server). In a data-center or a
dedicated web-hosting service, the HTTP servers are connected by
a regular, over-provisioned network; the load-balancer usually does
not consider the network state when load-balancing across servers.
Authors in [17] demonstrates a NetFPGA based load-balancer,
called Plug-n-Serve, that load-balances over arbitrary unstructured
networks, and tries to minimize the average response time. The sys-
tem allows operators to increase the capacity of the web service by
simply plugging in computing resources and switches in an arbi-
trary manner. Unlike the Plug-n-Serve, the proposed loadbalancer
cannot precisely route individual connections, only hash-based or
round robin aggregates of connections to balance flows and prevent
congesting any of the back end routers.

3. ARCHITECTURE OVERVIEW
Load Balancers in the Front-end stage of the multistage router are
responsible for forwarding each packet in two possible directions
of data flow.
The main task of the LB in the multi-stage architecture is to balance
the load among back-end routers to obtain a larger forwarding rate
than in a single SR thanks to data traffic distribution.

MAC Rx

Queue 1

INPUT ARBITER

MAC Rx

Queue 2

MAC Rx

Queue 3

MAC Rx

Queue 4

PACKET PROCESSOR

OUTPUT ARBITER

MAC Tx

Queue 1

MAC Tx

Queue 2

MAC Tx

Queue 3

MAC Tx

Queue 4

INPUT STAGE

OUTPUT STAGE

PORTS

PORTS

Fig. 2. LB architecture overview.

The balancing function is done by addressing data packets at the
MAC layer to specific back-end routers without considering up-
per layer protocol headers. More precisely, at every packet recep-
tion from an external host the LB chooses an internal destination
back-end router from a balancing table according to two different
schemes: Weighted Round Robin or Hash-based balancing. In the
first case, the balancing table is explored sequentially, meanwhile
in the second case a hash function (computed on packet headers) is
used to access the table. The hash based approach avoids packet re-
ordering by sending all packets belonging to the same IP flow along
the same internal path. In both cases weights are simulated in the
balancing table by repeating each entry proportionally to its weight
(e.g. MAC destination address to forward the packet to and output
port).
The load balancer is not only a packet forwarder, but it imple-
ments also filtering, classification and modification functions. Fur-
thermore, the LB acts as an interface among the internal multi-stage
router elements, the internal network, and the external devices, the
external network. This implies that packets received from the two
different types of networks must be managed using different for-
warding rules: for instance, data packets must be balanced only if
coming from the external network. Some special packets (e.g. ARP,
routing protocols) may not be balanced, but managed in a peculiar
way (more details are given in Sec. 4). Finally, physical ports of the
LB may be connected to external or internal networks: thus, the LB
must be able to detect autonomously the physical configuration (by
sensing DIST control plane packets) to correctly apply forwarding
rules. Since the NetFPGA platform hosts four ports, the allowed
port configurations are 1ext-3int, 2ext-2int and 3ext-1int.

2

International Journal of Computer Applications (0975 8887)
Volume 89 - No. 3, March 2014

CLASSIFIER

INT ARP VIRTUAL CP BALANCE INT-TO-EXT HELLO DIST
ARP

req

ARP

gen

EXT ARP

Fig. 3. Packet processor module architecture. Two types of elements are
used: filters (boxes) and receivers/transmitters (circles). The EXT ARP
module is composed of two elements, because a new ARP reply packet
is generated when an ARP request is received from the external network.

The logical structure of the LB is modular and based on an in-
put stage, composed of input queues and an input arbiter, a packet
processor and an output stage, composed of an output arbiter and
output queues, as reported in Fig. 2. The role of the input and of
the output arbiter is to guarantee fairness among ports and to sup-
port dynamic assignment of ports to internal or external networks,
because they decouple the central packet processing module from
input and output queues allowing the maximum flexibility. The cen-
tral packet processor implements all forwarding rules, as explained
in details in Sec. 4.
Internal components are connected using buses (64-bit wide, at 125
MHz for a peak rate of 8 Gbit/s) able to sustain the maximum load
of all four ports (which sums up to 4 Gbit/s in both directions). For
this reason we do not use a complex switching fabric (e.g. crossbar,
Clos network, etc.) among input and output queues. Furthermore,
the shared bus is simpler to implement and occupies less resources
in the FPGA, leaving room for the implementation of more for-
warding rules.

4. PACKET PROCESSOR STAGE
Internal congestion is handled using a back pressure mechanism
among all the internal stages (packets are pushed forward only if
the receiving module is ready) to avoid packet losses in this stage.
From a performance point of view the packet processor is the most
critical element because it receives the aggregated traffic from all
the input ports. In the worst case, with minimum size packets (64
bytes, 8 words, 1 clock cycle per word), it receives a packet every
16 cycles. However, we experimentally verified that the current im-
plementation is able to deal with this worst-case data rate. Thus,
the packet processor stage is not a bottleneck even in the worst
case, showing that NetFPGA internal resources are well designed
to support wire-rate loads.
The packet processor stage consists of a classifier module and sev-
eral processing modules, as shown in Fig. 3. A shared bus connects
the classifier with the processing modules because the available
bandwidth is enough to support the aggregated traffic from all four
input ports, as previously explained. The output of the processing
modules are queued and then multiplexed toward the output arbiter.

Table 1. Rules for packet classification
Traffic Type Input Port Processed by Output Port
ARP request ext Ext ARP same port
ARP response ext Int ARP default int
Routing protocols ext VirtualCP default int
Management protocols ext VirtualCP default int
Data ext Balance int
DIST messages int DIST none
ARP request int Int ARP VLAN id
Non DIST messages int Int-to-ext VLAN id

4.1 Classifier module
The Classifier module receives packets from any LB interface. All
incoming packets are analyzed and sent to the corresponding pro-
cessing module according to classification rules.
The classification rules have specific priorities: thus, if two or more
classification rules match the same packet, the rule with the highest
priority only is applied, and the packet is forwarded to the corre-
sponding module only. The highest priority is assigned to the more
specific rule. For instance, an incoming OSPF packet is both con-
sidered as a data packet to be balanced (being based on the IP proto-
col) and a control message to be forwarded to the Virtual-CP only;
the second rule, being more specific, has a higher priority. If no rule
is matched, the packet is dropped.
The classifier distinguishes between data (IP packets), ARP, man-
agement (e.g. SNMP) and control (e.g. RIP, OSPF, BGP) traffic.
Tab. 4.1 summarizes all classification rules and the corresponding
destination module: messages received from external networks and
directed to the virtual CP only are forwarded to a specific internal
port, named default int. To speed up the classification process, ev-
ery incoming packet is analyzed in parallel by different FSMs (Fi-
nite State Machines), each implementing a different classification
rule.

4.2 External ARP Module
The External ARP module (Ext ARP) receives ARP request mes-
sages from external networks and it replies autonomously to any
request involving its external interfaces (IP configuration is done
by the Virtual CP using DIST messages). Using this solution we
are able to maintain as simple as possible the implementation and
to solve two potential issues:

—reply storm: if ARP requests are sent to the internal network in
broadcast, all back-end routers would reply to the external de-
vices generating a large number of replies to be filtered eventu-
ally by the LB.

—reverse path selection: a LB with multiple external interfaces
would be unable to forward the reply to the correct external in-
terface unless analyzing the ARP message and comparing it to
the IP configuration of external interfaces. This operation may
be complex to implement, so our solution simplifies the imple-
mentation.

4.3 Internal ARP Module
The Internal ARP (Int ARP) module is used to manage ARP re-
quests generated by back-end routers to external networks and the
corresponding ARP replies coming back from external networks.
ARP requests sent by back-end routers are updated with the source
MAC address of the LB external port and forwarded. Then, any
ARP reply received from external ports is forwarded to the default
internal port and it is sent in broadcast to all back-end routers. This

3

International Journal of Computer Applications (0975 8887)
Volume 89 - No. 3, March 2014

process is needed because the incoming ARP replies are sent in uni-
cast to the MAC address of the external interface, thus the packet
does not contain any information on which back-end router issued
the ARP request. This solution implies a little overhead in control
traffic, but it avoids a more complex stateful design. Broadcast ARP
replies are acceptable, according to RFC 826 [22], even if they are
not common in practice.

4.4 Virtual-CP module
The task of the Virtual-CP is to mask the internal architecture of
the multi-stage router and let it appear as a single entity to external
devices. This Virtual-CP module redirects control messages to the
centralized control module (Virtual-CP) which executes the config-
uration tasks. Therefore control packets belonging to routing pro-
tocols (e.g. OSPF, RIP and BGP) and management packets (e.g.
SNMP) are sent directly to the Virtual-CP. These packets are iden-
tified by simple filters on well-known TCP/UDP ports and on the
management IP address representing the router itself. The current
implementation provides filters for SNMP, BGP, OSPF and RIP.
The virtual-CP module simply overwrites the packet destination
MAC address with the MAC address of the back-end router where
the Virtual-CP is currently hosted.

4.5 Int-to-ext module
This module handles the communication from the back-end routers
to the external network. Since a LB may have more than one exter-
nal port, when a packet is received from the internal network, the
LB must forward the packet to the proper output port. This problem
is solved assigning to each external port a unique VLAN id. When-
ever a back-end router wants to send a packet to an external host,
it adds to the packet a VLAN tag corresponding to the correct ex-
ternal port. This implies creating on each back-end router a virtual
interface with the same VLAN tag as the one used for each external
port of the multi-stage router and with the same IP configuration of
the corresponding LB interface. This process is coordinated by the
Virtual-CP. When the LB receives a VLAN tagged packet on an in-
ternal port, it removes the VLAN tag and forwards the packet to the
proper external port while overwriting the source MAC address.

4.6 DIST and Hello module
The DIST module manages all the control messages of the DIST
protocol related to the LB. It must decode: i) port configuration
messages, ii) balancing table configuration messages, sent by the
virtual CP, and iii) hello messages sent by all internal elements.
The latter are required by the DIST protocol to advertise periodi-
cally the presence of an internal element as a distributed heart beat
mechanism. The hello module is responsible for sending periodic
hello messages using the default internal port (configurable). The
hello packet is also used to advertise the current configuration and
statistics of the LB ports. For each port, the following information
is sent:

—Interface parameters: MAC and IP addresses, IP netmask, type
(internal or external) and link speed;

—Traffic statistics: transmitted/received byte and packet counters.

4.7 Balance Module
This module performs the layer 2 balancing function on the incom-
ing data traffic from the external ports. A balancing table is used
to select the proper back-end router. The packet destination MAC
address of the LB interface is replaced by the MAC address of one

of the back-end routers. Since a LB may have more than one inter-
nal port, the balancing table stores both the back-end router MAC
address and the internal port on which to forward the packet. Cur-
rently, the load balancing scheme can be weighted round-robin- or
hash-based:

—Weighted round-robin is designed to handle back-end routers
with different forwarding capacities. Each back-end router can
be assigned a weight proportional to its capacity by the Virtual-
CP, receiving a proportional amount of load. A pure round-
robin balancing is obtained using equal weights for all back-end
routers.

—Hash assigns packets to back-end routers by evaluating a simple
hashing function on a set of defined protocol fields to index the
table contents.

Weighted round-robin is the easiest solution to implement but it has
three drawbacks: i) the granularity of the weights as well as bal-
ancing accuracy is limited because the size of the balancing table is
finite; ii) packets from the same flow may be processed by different
back-end routers (out-of-order delivery); iii) entries related to the
same back end-router may be placed in successive locations inside
the table, thus packet bursts may be directed to the same bakc-end
router disrupting the balancing mechanism on short time period.
On the other hand, hashing is more complex but it allows to over-
come the packet reordering problem, because packets with the same
header fields are sent to the same back-end router. However, hash-
ing can not guarantee a balanced traffic distribution among back-
end routers, because the function outcome depends on input packet
headers distribution leading to potential performance problems too.
The load-balancing table is computed by the Virtual-CP, which has
a global view of the multi-stage router, and it is sent to LBs by using
the table update DIST message, composed of the standard DIST
header [8], an additional header (number of entries and Flush flag)
and a list of table entries. Each entry comprises a back-end router
MAC address, a LB output port and an integer weightw which indi-
cates the number of repetitions of the entry in the final table. Upon
reception of the table update message, the LB reconstructs the final
table adding each entry w-times. The table is stored in the FPGA
memory, being it faster than the on-board SRAM. Furthermore, this
choice avoids contentions for the SRAM, which is already used to
store queued packets. The table contains up to 1000 entries. The
flush flag, if set, instructs the LB to overwrite the existing table in-
stead of updating it.
Table entries are removed based on timeouts. Each time a DIST
hello message is received all table entries related to the sending de-
vice are refreshed (using a binary flag). The LB scans periodically
the table to delete out-of-date entries. Using a per-table timeout
permits to significantly reduce the timer handling complexity. Fur-
thermore, using local timeouts permits to shorten the detection time
of unavailable back-end routers, reducing the possibility of losing
packets due to balancing toward a back-end router which is not ac-
tive any more.

5. PACKET FORWARDING EXAMPLE
To give major insight on how the LB balancer works, we describe
the step-by-step operations performed to route a packet between
two external hosts A and B residing on different networks (NET A
and NET B) interconnected by the multistage router. A and B have
respectively as next hop EIP A and EIP B (the router external in-
terfaces). To be able to work properly, all the external interfaces are
mirrored on each back-end router using logical network interfaces.

4

International Journal of Computer Applications (0975 8887)
Volume 89 - No. 3, March 2014

Table 2. Routing table of back-end routers
Destination Gateway Output Interface VLAN ID

MGMT - eth0 None
NET A - eth0.1 VID A
NET B - eth0.2 VID B

The routing table of each back-end router is shown in Table 2. Fi-
nally we assume that the ARP tables are initially empty. Figure 4
summarizes the scenario.
A initiates the communication sending an ARP request in broad-
cast, asking for EIP A. LB A checks if EIP A corresponds to one of
its external IP addresses and answers with an ARP reply containing
EIP A and EMAC A. A then sends the data packet to EMAC A.
LB A receives the packet and sends it to R1 by changing the des-
tination MAC from EMAC A to MAC R1 (the choice of the MAC
depends on the load balancing scheduler). R1 receives the packet
and computes the next hop, which is B located on NET B. B is con-
nected to the external interface having VLAN tag VID B. R1 asks
for the MAC address of B by sending an ARP request using VLAN
tag VID B. Based on the VLAN tag, the packet is sent to LB B and
out from interface EVID B. When the packet is sent out, the LB
overwrites the MAC address MAC R1 with EMAC B. B receives
the ARP request and answers with an ARP reply sent to EMAC B,
subsequently received by LB B. Unfortunately at this point there is
no way looking at the packet to determine who among the back-end
routers sent the ARP request. Therefore, the ARP reply is sent in
broadcast to the internal network to reach all the back-end routers.
Since this frame does not contain any VLAN tag, it is discarded
by the other LB preventing this spurious ARP reply to propagate
to the external subnets. The data packet is sent out using VLAN
tag VID B and destination address MAC B through LB B which
overwrites the source MAC address. Finally, B receives the packet
with the correct destination MAC address and the source MAC ad-
dress of the LB. External devices only detect the external interface
addresses and no internal host information is exposed.

6. TESTBED DESCRIPTION
Each test is based on synthetic traffic generated using an Agilent
N2X router tester equipped with Gigabit Ethernet modules. The LB
is inserted into a PCI slot of the host PC, which is needed only to
power up the board. Board configuration is done emulating config-
uration packets directly sent from the router tester itself. We set the
timeout to values large enough to avoid timeout expiration during
the experiment. Thus, no further configuration messages are sent
during measurements. Results are averaged over three runs lasting
30 seconds each. In all experiments the variance between different
runs is small, thus no error bars are reported in the plots.
Among the two currently available NetFPGA platforms, we use
the Gigabit version, which is a PCI board equipped with four Eth-
ernet ports, 4.5 Mbytes of SRAM and 64 Mbytes of DRAM. The
main FPGA is a Xilinx Virtex2-Pro 50 running at 125 MHz and
offering about 50K logic elements. This FPGA holds all the user-
defined logic, as well as the MAC part of the Gigabit ports (the
PHY part resides on a dedicated chip). The DRAM uses both edges
of a 200 MHz 32-bit bus to transfer data to/from the FPGA, while
the SRAM is connected by a 36-bit bus running synchronously with
the main FPGA.
The NetFPGA proved to be well-suited for our project since less
than 50% of FPGA logic resources are exploited leaving room for
future improvements (e.g. bigger tables, more filtering rules, etc.).

7. PERFORMANCE EVALUATION
We assess the performance achieved by the LB in different con-
figurations. We measure both throughput and latency in both the
ext-to-int and int-to-ext directions (unidirectional and bidirectional)
for different frame sizes, ranging from the minimum of 64 bytes to
the maximum of 1518 bytes. In the int-to-ext path, packet sizes are
increased by four bytes, because the VLAN header needed by our
internal forwarding scheme is added.

7.1 2-port Load Balancer
Tab. 5 shows the offered load OL, throughput T and latency L for
a LB with one external and one internal port. In the ext-to-int case,
the LB is always able to process the offered load. In the int-to-ext
case, as well as in the bidirectional case, a small discrepancy (e.g.
up to 6% in the worst case) between input and output throughput is
visible. This is not due to an overload of the LB, but to the removal
of the VLAN tag which is used only internally and accounts for an
amount of bandwidth depending on the average packet rate. At the
same input load, the smaller the frame size, the larger the packet
rate, thus the throughput drop (4 bytes lost per packet). We only
report the latency at the maximum input load, being the latency
constant with respect to the offered load. This means that internal
queues are almost empty and that the LB works at wire-speed. In-
deed, the latency is low (few µs) and it only depends on the frame
size, due to the store and forward operation.

7.2 3-port Load Balancer
We add a third port to the previous scenario to test the load bal-
ancing and VLAN tagging functionalities. We start configuring the
third port as internal and send different balancing table configu-
rations to the LB. The relative normalized theoretical throughput
towards back-end router i can be computed using:

Ti =
wi∑n

k=1
wk

where Ti is the percentage of traffic handled by router i having
weight wi, and n is the total number of entries in the table. The LB
is always able to match the theoretical throughputs with no losses
in all the considered scenarios.
Next we use the same 3-port scenario to test VLAN-based out-
put port selection needed on the int-to-ext path, as explained in
Sec. 4.5. In this case, the LB is configured with two external ports
and one internal port. The router tester generates two flows with
different VLAN tags and sends them to the internal port. Our tests
show that the LB is able to untag the packets and to forward them
to the correct external interface at wire speed.

7.3 4-port Load Balancer
When using four ports and unidirectional traffic, the LB is still able
to process the full wire speed. However with bidirectional traffic
(i.e. 2 Gbit/s from ext-to-int and 2 Gbit/s from int-to-ext) the LB is
overloaded, as shown in Fig. 5 and 6. Notice that in the ext-to-int
case we are not able to match the input load, while in the int-to-
ext case with small packets the input load is matched. In this case,
the LB takes advantage of the small reduction in traffic due to the
4-byte VLAN tag removal. The bottleneck seems to reside in the
access speed (4 Gbit/s) to the on-board SRAM, which is used to
implement the queues to store packets to solve contentions. Indeed,
if we remove the packet processor (Fig. 2) and we connect directly

5

International Journal of Computer Applications (0975 8887)
Volume 89 - No. 3, March 2014

Fig. 4. Map of elements (and their addresses) involved in the packet forwarding example)

Table 3. 2-port LB performance
Frame Size Unidirectional Bidirectional

[Bytes] Ext-to-Int Int-to-Ext Aggregate
OL [Mbit/s] T [Mbit/s] L [µs] OL [Mbit/s] T [Mbit/s] L [µs] OL [Mbit/s] T [Mbit/s] L [µs]

64 (68) 753 753 3.46 764 719 3.42 1517 1472 3.5
128 (132) 859 859 4.11 862 836 4.10 1721 1695 4.26
256 (260) 924 924 5.85 925 911 5.46 1849 1835 6.37
512 (516) 960 960 7.84 960 953 8.24 1920 1913 8.38

1518 (1522) 986 986 17.86 986 984 18.50 1972 1970 23.19

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 1400 1500 1600 1700 1800 1900 2000

R
x

M
bp

s

Tx Mbps

 64
128
256
512

1518

Fig. 5. Aggregate throughput for two ext-to-int flows. 4 port configuration
scenario and bidirectional flows.

the queues, we still observe the same performance limit. This is the
only limitation we detected in the NetFPGA board.

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 1400 1500 1600 1700 1800 1900 2000

R
x

M
bp

s

Tx Mbps

 68
132
260
516

1522

Fig. 6. Aggregate throughput for two int-to-ext flows. 4 port configuration
scenario and bidirectional flows.

8. CONCLUSIONS
We described a FPGA-based implementation of load balancing
functionality, in the framework of a previously developed multi-

6

International Journal of Computer Applications (0975 8887)
Volume 89 - No. 3, March 2014

stage router architecture, with the goal of overcoming the perfor-
mance bottleneck experienced on a software-only solution based on
Click Modular Router. The performance goal was achieved, since
the full-feature NetFPGA implementation reaches near to wire-
speed performance. The NetFPGA proved to be generally well-
suited for our project (e.g. less than 50% of FPGA logic resources
are exploited), but we identified as an hardware bottleneck the ac-
cess bandwidth to external SRAM, which should be improved to
fully support processing and forwarding needs at wire speed.

9. REFERENCES
[1] Foundry serveriron load balancer.
[2] Hardware Load Balancer for Multi-Stage Software Router.

http://opencores.org/project,loadbalancer.
[3] Microsofts network load balancing. http://

www.foundrynet.com/products/webswitches/
serveriron/.

[4] NetFPGA. http://www.netfpga.org/.
[5] Katerina Argyraki, Salman Baset, Byung-Gon Chun, Kevin

Fall, Gianluca Iannaccone, Allan Knies, Eddie Kohler, Maziar
Manesh, Sergiu Nedevschi, and Sylvia Ratnasamy. Can soft-
ware routers scale? In PRESTO, Seattle, USA, Aug. 2008.

[6] Shadi Atalla, Andrea Bianco, Robert Birke, and Luca Gi-
raudo. NetFPGA-based load balancer for a Multi-Stage router
architecture. In International Conference on Computer In-
formation Systems 2014 (ICCIS-2014), Hammamet, Tunisia,
January 2014.

[7] Shadi Atalla, Davide Cuda, Paolo Giaccone, and Marco
Pretti. Belief-propagation-assisted scheduling in input-
queued switches. IEEE Transactions on Computers,
62(10):2101–2107, 2013.

[8] A. Bianco, R. Birke, J. M. Finochietto, L. Giraudo,
F. Marenco, M. Mellia, A. Khan, and D. Manjunath. Con-
trol and management plane in a multi-stage software router
architecture. In HPSR, Shanghai, China, May 2008.

[9] A. Bianco, J.M. Finochietto, G. Galante, M. Mellia,
D. Mazzucchi, and F. Neri. Scalable layer-2/layer-3 multi-
stage switching architectures for software routers. In IEEE
GLOBECOM, San Francisco, USA, Dec. 2006.

[10] A. Bianco, J.M. Finochietto, M. Mellia, F. Neri, and
G. Galante. Multistage switching architectures for software
routers. IEEE Network, 21(4):15–21, Jul.-Aug. 2007.

[11] Andrea Bianco, Robert Birke, Fikru Getachew Debele, and
Luca Giraudo. Snmp management in a distributed software
router architecture. In Communications (ICC), 2011 IEEE In-
ternational Conference on, pages 1–5. IEEE, 2011.

[12] Andrea Bianco, Robert Birke, Luca Giraudo, and Nanfang
Li. Multistage software routers in a virtual environment.
In Global Telecommunications Conference (GLOBECOM
2010), 2010 IEEE, pages 1–5. IEEE, 2010.

[13] Raffaele Bolla and Roberto Bruschi. RFC 2544 performance
evaluation and internal measurements for a Linux-based open
router. In HPSR, Poznan, Poland, Jun. 2006.

[14] Raffaele Bolla and Roberto Bruschi. An effective forward-
ing architecture for SMP Linux routers. In IT-NEWS, Venice,
Italy, Feb. 2008.

[15] Raffaele Bolla and Roberto Bruschi. PC-based software
routers: High performance and application service support. In
PRESTO, Seattle, USA, Aug. 2008.

[16] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon
Chun, Kevin Fall, Gianluca Iannaccone, Allan Knies, Maziar
Manesh, and Sylvia Ratnasamy. RouteBricks: exploiting par-
allelism to scale software routers. In SOSP, Big Sky, USA,
Oct. 2009.

[17] Nikhil Handigol, Srinivasan Seetharaman, Nick McKeown,
and Ramesh Johari. Plug-n-serve: Load-balancing web traf-
fic using openflow, 2009.

[18] IETF. Forwarding and control element separation working
group (ForCES). http://tools.ietf.org/wg/forces/.

[19] A.J. Khan, R. Birke, D. Manjunath, A. Sahoo, and A. Bianco.
Distributed PC based routers: bottleneck analysis and archi-
tecture proposal. In HPSR, Shanghai, China, May 2008.

[20] Marc Körner, Herbert Almus, Hagen Woesner, and Tobias
Jungel. Metrics and measurement tools in openflow and the
ofelia testbed. In Measurement Methodology and Tools, pages
127–138. Springer, 2013.

[21] Ian Kuon, Russell Tessier, and Jonathan Rose. Fpga archi-
tecture: Survey and challenges. Foundations and Trends R© in
Electronic Design Automation, 2(2):135–253, 2008.

[22] David C. Plummer. RFC 826, ethernet address resolution pro-
tocol, Nov. 1982. http://www.ietf.org/rfc/rfc0826.
txt.

[23] Q Xu, H Rastegarfar, Y Ben M’Sallem, A Leon-Garcia,
S LaRochelle, and LA Rusch. Analysis of large-scale multi-
stage all-optical packet switching routers. Optical Commu-
nications and Networking, IEEE/OSA Journal of, 4(5):412–
425, 2012.

7

http://opencores.org/project,loadbalancer
http://www.foundrynet.com/products/webswitches/serveriron/
http://www.foundrynet.com/products/webswitches/serveriron/
http://www.foundrynet.com/products/webswitches/serveriron/
http://www.netfpga.org/
http://tools.ietf.org/wg/forces/
http://www.ietf.org/rfc/rfc0826.txt
http://www.ietf.org/rfc/rfc0826.txt

	Introduction
	Related works
	Architecture overview
	Packet Processor Stage
	Classifier module
	External ARP Module
	Internal ARP Module
	Virtual-CP module
	Int-to-ext module
	DIST and Hello module
	Balance Module

	Packet Forwarding Example
	Testbed description
	Performance Evaluation
	2-port Load Balancer
	3-port Load Balancer
	4-port Load Balancer

	Conclusions
	References

