
International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No 20, March 2014 

32 

Towards Solving the Google CAPTCHA 

 
Akriti Mehta 

Student, G D Goenka World Institute 
Sohna, Gurgaon 12202, Haryana, India 

 

Deepak Sharma 
Lecturer, G D Goenka World Institute 

Sohna, Gurgaon 122002, Haryana, India

 

ABSTRACT 
CAPTCHA is now a technology which is used all over the 

internet to protect websites from program bots. One of the 

major issues which CAPTCHA provides a solution to is, 

stopping spammers for creating unlimited accounts and 

sending emails to millions of people spam mails. In this paper, 

we are proposing our algorithm for solving the Google 

CAPTCHA. Being able to solve the Google CAPTCHA using 

a program would mean that there are some security issues 

which need to be considered at the earliest and this would 

assist us develop a better CAPTCHA. 

General Terms 

Security, Artificial Intelligence, CAPTCHA  

Keywords 

CAPTCHA, Google, Completely Automated Public Turing 

test to tell Computers and Humans Apart 

1. INTRODUCTION 
Completely Automated Public Turing Test to Tell Computer 

and Humans Apart (CAPTCHA) is a test in which a human 

friendly task is given to the users to make sure that they are 

Humans and not computers. It can be seen anywhere on the 

internet, it is very hard to find a sign up page where 

CAPTCHA isn’t found. There are many different kinds of 

CAPTCHAs found like voice recognition, image recognition 

to character recognition. The most common CAPTCHAs are 

the text based CAPTCHAs and require the user to recognize 

the text in a distorted image, something that supposedly can’t 

be done by computers.  

There are numerous aspects which are to be looked into while 

evaluating CAPTCHAs. According to Kurt Alfred Kluver and 

Richard Zanibbi there are four properties which are desirable 

for a CAPTCHA, [1,2]namely: 

 Automated 

 Open 

 Usable 

 Secure 

These properties make sure that the CAPTCHAs are user 

friendly but not program bot friendly and securing the system.   

What makes the text CAPTCHAs so robust is locating the 

characters, locating and dividing characters in the correct 

order and lastly recognizing them correctly. But, “Computers 

beat humans at single character recognition in reading-based 

Human Interaction Proofs” [3]. Therefore, the primary 

strength of CAPTCHAs is that it hard dividing them into 

individual character rather than to recognize those characters 

(which is relatively an easier job for the computer). Figure 1 

shows some of the Google CAPTCHAs. 

 

Figure 1: Examples of Google CAPTCHAs exhibiting 

resistance to division 

There have been many websites which have used this 

technique of crowding the characters together in the past 

including Google, Microsoft, Yahoo, and Megaupload [4]  

this can be seen in figure 1.  

2. RELATED WORK 
A lot of research and effort has been put in solving the 

different types of CAPTCHAs. It comes as no surprise that 

none of them have achieved a 100% success rate.  

The authors of the paper “Robustness of Google CAPTCHAs” 

[4] have prepared a novel attack on Google CAPTCHA. 

Although Google CAPTCHA uses different styles and font 

typefaces, applies CCT, and uses heavy distortion; there is 

one thing that remains invariant: shape pattern in some 

characters. This attack impacts a success rate equal to 95% for 

individual segmented characters and for an average 5.5 

characters in Google CAPTCHA, the attack achieves a 

success rate of 46.75%. 

The paper “A low-cost Attack on a Microsoft CAPTCHA” [5] 

discusses the attack on MSN CAPTCHAs. The author 

mentions that this attack yields an efficiency rate of 12% for 

the Google CAPTCHAs. The potential issue of the whole 

program being solvable are acknowledged and looked into. 

An attack can be defeated, or, it can be said that a CAPTCHA 

can be made more robust by making it division(segmentation) 

resistant. The Google scheme of CAPTCHAs appears to 

provide better security because of Crowding Characters 

Together algorithm and the increased level of distortion. 

 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No 20, March 2014 

33 

“Algorithm to break visual CAPTCHA” [6] ponders on other 

important things, along with discussing about the algorithm to 

break the CAPTCHA, i.e., it also talks about the design. The 

basic algorithm presented by the author is based on pattern 

matching. Division of the characters is done by checking for 

continuous black pixels and color change. 

Table 1: Success rates of some of the attacks on 

CAPTCHAs  

Paper Success Rate 

“Robustness of Google 

CAPTCHAs” [4] 

46.75% 

“A low-cost Attack on a 

Microsoft CAPTCHA” [5] 

12% (for Google 

CAPTCHA) 

“Algorithm to break visual 

CAPTCHA” [6] 

80% 

“CAPTCHA Security: a 

case study” [7] 

36% 

. 

3. STUDYING THE GOOGLE 

CAPTCHA 
Whenever an algorithm is applied there is a set pattern that is 

being followed as ultimately is the computer which is 

following human instructions and logic.  

After observing Google CAPTCHAs few patterns can be 

recognized which can be used to our advantage. These 

patterns are as follows: 

 The characters are crowded together 

 The background is always white 

 The text color is either red, blue or green 

 The width of the characters is random  

 The characters may/may not be italic and/or bold 

 

4. PROPOSED WORK 
As mentioned in [4], all the character can be on the basis of 

pattern, there are mainly four types of patterns namely: loop, 

dot, cross and S shaped. All the characters can be classified 

according to these four patterns. 

 Loop shape- “a”, “b”, “c”, “d”, “e”, “g”, “o”, “p”, 

“q”. 

  Dot shape - “i” and “j”.   

  Cross shape – “t’ and “f”.  

  S shaped – “s” and “z”.  

In the proposed method there would be four stages. The first 

stage would be of preparing the image, in the second character 

patterns are searched for proceeded by the division process in 

the third stage. And finally the fourth stage would be of 

recognizing the characters.  

While preparing the image some image processing techniques 

are applied on the image which helps not onlu in increasing 

the efficiency and effectiveness, but also in reducing the time 

complexity of the procedure. In the next stage the characters 

based on the patterns are recognized, i.e. which shaped 

characters are present in the image. In the third stage, on the 

basis of the character shapes recognized the image in divided 

to get individual characters which are easy to recognize by a 

computer [1]. And lastly, these individual characters are read 

using the OCR.  

5. METHODOLOGIES 
In the proposed method there would be four stages as shown 

in Figure 2.  

Stage 1: Pre-processing the image by up-scaling, binarizing 

and skeletonization. 

Stage 2: Identifying the character pattern. 

Stage 3: Dividing the image into individual characters. 

Stage 4: Recognizing the character. 

 

 

 

 

 

 

Start 

A 



International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No 20, March 2014 

34 

 

 

 

 

 

 

 

 

Figure 2: Flow of methodology 

The below sections describe the detailed explanation of each 

phase of proposed methodology. 

5.1 Preparing the image 
 

 
Figure 3: Sample Google CAPTCHA 

First step is to scale the image. Scaling increases the pixel 

density of the image. Hence, smoothening the image and 

making it easier to find the patterns. The higher the factor of 

scaling, the smoother the image is but more expensive is the 

operation. The image’s height is scaled to a fixed size to 

maintain constancy in the algorithm. A balance is maintained 

between speed and accuracy by up scaling the image to 3 

times [4] 

Once the image is scaled, it is binarized, i.e. all the pixels are 

either converted into black or white depending on whether 

they are above or below a particular threshold value. In case 

of Google CAPTCHAs, the pixels in the background are kept 

white and the text/characters in the image are converted into 

black. 

 
Figure 4: Binarized Image 

The next step is skeletonization. An image is skeletonized to 

get rid of the different character thickness by converting the 

whole image to 1 pixel width. As discussed in the beginning, 

the width of the characters in the image are varied, 

skeletonizing the image solves this problem. Also, apart from 

this reason, thinning the image reduced the pixels and thus the 

complexity needs to be dealt with.  It can be clearly observed 

that the image is not changed, the shape of the characters and 

the connections are as it is in the original image.  

 
Figure 5: Skeletonized Image 

5.2 Character Patterns 
The Color Filling Segmentation (CFS) algorithm is widely 

used while categorizing the characters into the shapes 

aforementioned.  The generic idea behind this algorithm is to 

call any connected component of an image as a chunk. For eg. 

in the above example, q makes one chunk and rest of the 

characters the other.  CFS is the process in which each 

connected component is separated, which is essentially like 

filling each connected component with a different color, 

hence the name. [5] 

Dot shaped characters: From CFS it is obvious that “dot” 

will be of different color because it certainly is not connected 

to a large chunk of characters. Thus, it can be that the 

component having small number of pixels will most likely be 

a dot shaped character.  

Loop Shaped Characters: For this pattern an algorithm 

different from the one used in [4] is proposed although, it is 

derived from the same fundamental principles. First, fill all 

the holes in the skeletonized image. Then, subtract the 

original image from this new image. Again perform CFS on 

the foreground components and select the loops which are 

large enough to belong to a character. Loops can be classified 

into two categories: 

i. Character loops: These are the loops which belong 

to the characters  

ii. Connection loops: These are the loops that are 

created due to overlapping of characters.  

Clearly, connection loops need to be removed from the loops 

we have found. These connection loops have the following 

properties which help to identify and remove them from the 

detected loop shaped. Firstly, the connection loops vertically 

overlap with other loop shapes. Secondly, they have a 

relatively large pixel count. All loops which satisfy both these 

properties can be removed and store the remaining loops.  

Cross Shaped Characters: The basic algorithm is an 

extension of the one described in [4]. The unique 

characteristic of the cross shape that is being exploited here is 

that it has four sides, the top side, the left side, the right side 

and the bottom side. On drawing an imaginary box around 

such a cross shape, the shape will intersect the box exactly 

once at each of the four sides of the box.  So on traversing the 

foreground components one by one with an imaginary box, 

and cross shapes that intersect the box as mentioned above 

can be found out. Then apply the three conditions to discard 

the invalid shapes discovered. Each shape discovered must 

satisfy all of the following to qualify as a valid cross shape: 

 The cross shape must be in the top part of the 

foreground component being traversed. 

 All the pixels within the imaginary box must be 

connected to each other. 

 The cross shape must not vertically overlap with a 

loop shape.  

A 

Division 

End 

Recognizing the characters 



International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No 20, March 2014 

35 

S Shaped Characters: The algorithm used here is exactly the 

same as used in [4]. The unique shape characteristics 

exploited here are that the S shaped characters; also referred 

to as at S Vertical Histogram shape had three vertically 

overlapping strokes. The process is as follows. First map the 

image against a vertical histogram that gives us the number of 

pixels in each column of the array. From this histogram the X 

values of all other patterns/shapes can found to avoid 

confusion with other patterns/shapes. Then, traverse this 

histogram to find spans of consecutive columns that have 

three or more pixels. All the spans that have a width larger 

than specified threshold are recorded as an S Shaped 

Character.  

Other Characters: Once all the above characters’ patterns 

are detected, find the XValues remaining in the skeletonized 

image (after increasing the widths of the patterns detected so 

that parts of these characters do not appear in the segmented 

“Other Characters”), hence obtaining the remaining regions in 

the image. Now, segment may be done within these regions. 

In each region, separate the elements separated by an empty 

column of width>= 1 pixel, and store their locations.  

According to [4], the dot shape has a unique shape and its 

detection method has only 1% false positive. Hence, it is 

detected first. The loop shape is detected next. Valid cross 

shapes shouldn’t vertically overlap with loop shapes, hence 

they need to be detected after loop shapes. The reason for this 

is that sometimes, the connections between characters look 

like cross shapes.  The S shaped characters require us to 

remove all the other patterns’ XValues from the vertical 

histogram, and therefore needs to be detected last. Otherwise, 

vertically overlapping of characters occurs simultaneously, 

which occurs commonly due to italic characters. And for 

obvious reason, other characters are detected last. 

5.3 Dividing the Image  
Once each pattern shape is detected, each type of characters 

needs to be divided and cut according to their width. The 

cutting distance from the pattern is different for each character 

which depends on the unique properties of each pattern. 

For cross pattern containing characters, the characters are very 

thin. So the cutting distance must be kept low.  

For the dot shaped characters, which are practically 

recognized only by the dots, the cutting distance must be kept 

high as the dot need not necessarily be above the character i.e. 

“i” or “j”. 

Similarly, for the loop shaped characters, the cutting distance 

must be kept relatively high, as the loop shape is actually 

inside the character. So, to segment the whole character we 

need to cut from a larger distance. Cutting distance for S 

shaped characters follows a similar reasoning.  

5.4 Recognizing the characters 
Once the characters are divided and cut, they can individually 

be sent to an Optical character Recognizer (OCR) which gives 

good results for recognizing these individual characters. 

6. CONCLUSION 
Cracking the CAPTCHA has been a challenge to AI Research 

community, and till date there has been no system that has 

been able to achieve a 100% accuracy and efficiency rate.  

Therefore, CAPTCHAs represent a win-win situation in the 

world of Artificial Intelligence in particular and Computer 

Science in general. The insolvability of CAPTCHAs by 

computers has allowed us to propose new methodologies to 

solve the Google CAPTCHA.  On implementing these 

methodologies, if we find a way to break the CAPTCHA 

system, it would mean that we have solved a difficult AI 

problem and have found a loop hole in the current CAPTCHA 

technology used by the Google; which, in turn would help us 

create our own, more robust CAPTCHA. 

7. REFERENCES 
[1] Kurt Alfred Kluever. Evaluating the Usability and 

Security of a Video CAPTCHA. Master’s thesis, 

Rochester Institute of Technology, Rochester, NY, 

August 2008 

[2] G. W. Hart. To Decode Short Cryptograms. 

Communications of the ACM 37, 9 (1994), 102–

108 

[3] K Chellapilla, K Larson, P Simard and M 

Czerwinski, “Computers beat humans at single 

character recognition in reading-based Human 

Interaction Proofs”, 2nd Conference on Email and 

Anti-Spam (CEAS), 2005 

[4] Ahmed S. El Ahmad, Jeff Yan and Mohamad 

Tayara, Robustness of Google CAPTCHAs, 

Newcastle, 2011 

[5] Ahmed S. El Ahmad and Jeff Yan, A low-cost 

attack on a Microsoft CAPTCHA, Proc. Of 15th 

ACM Conference on Computer and 

Communications Security, 2008 

[6] Chandavale A. Anjali, Sapkal A., and Jalnekar R., 

Algorithm to break visual CAPTCHA, 2009, 

ICETET Proceedings of the 2009 Second 

International Conference on Emerging Trends in 

Engineering and Technology, 258-262 

[7] Ahmed S El Ahmad and Jeff Yan,2009, 

“CAPTCHA security: A case study”, IEEE Security 

and Privacy 

[8] Kun Fang, Zhan Bu and Zhen Y. Xia, A projection-

based segmentation algorithm for breaking MSN 

and YAHOO CAPTCHAs, Artificial Intelligence 

and Computational Intelligence, 2012 Lecture Notes 

in Computer Science, 7530, 735-743 

 

 

IJCATM : www.ijcaonline.org 


