
International Journal of Computer Applications (0975 – 8887)  

Volume 89– No.19, March 2014 

21 

Performance Improvement of EZW Encoding through 

Parallelization  

 
Pradeep Ch 

Computer Engineering Department 
Indian Institute of Technology (BHU), Varanasi 

Ravi Shankar Singh, Ph.D 
Computer Engineering Department 

Indian Institute of Technology (BHU), Varanasi 

 

 

ABSTRACT 

During the past few decades the wavelet transform is more 

and more widely used in image and video compression. One 

of the well known progressive encodings in image 

compression is the “Embedded Zerotree wavelet” (EZW) 

encoding, which involves the wavelet transform. As of today 

the parallelization of the wavelet transform is abundantly 

investigated, So this work deals with the parallelization of the 

encoding part itself. The OPENMP programming model is 

used for implementing the parallel version. Both the 

sequential and parallel versions of EZW encoding are 

presented along with their performance.  

General Terms 

Progressive encoding, EZW, zerotree, parallelization 

Keywords 

EZW parallelization, bitplane coding, progressive encoding, 

zerotree, dominant pass 

1. MOTIVATION 
Today multiple-core processors have become very common. 

Even handheld devises also have multiple-cores. This 

hardware will be best utilized by programs amenable to 

parallel computing. For some algorithms it is not possible to 

parallelize entire algorithm. For those types of algorithms we 

can only parallelize fraction of the algorithm. But if that 

fraction includes the heavy computation then parallelizing the 

fraction also produces good results. Here efforts have been 

made to parallelize the Dominant pass, which is part of the 

embedded zerotree wavelet encoding. 

2. INTRODUCTION 
EZW [1] is a progressive encoding technique used in wavelet 

based image compression schemes. It was originally designed 

to operate on images or 2D-signals but it can also be operated 

on other dimensional signals. The EZW encoding involves 

three steps. First step involves reading an input image which 

is nothing but a two dimensional matrix containing pixel 

values. Typically pixel values are integer values. In first step 

image undergoes wavelet transformation [2]. The output of it 

is a transformed image, which is a matrix containing different 

sub-bands. Now the transformed matrix contains real values 

or integer values depending on the wavelet filters used for 

transformation. If CDF 9/7 [3] filters are used in wavelet 

transformation, then the output would be of real values (the 

precision of the value depends on the system architecture). If 

CDF 5/3 [4] filters are used then output would be of integer 

values [5,6]. The second step involves quantization of 

transformed matrix. Quantization is used to reduce the 

number of bits used to represent the values in the matrix. The 

output of this step is an integer valued matrix. Quantization is 

optional for lossless wavelet transformation [6], i.e. in case of 

integer valued wavelet transformation. Quantization is an 

irreversible step, so information loss may occur in this step. 

From this point the integer values produced from quantization 

step are called as coefficients. The third step involves 

progressive encoding of the coefficients using Embedded 

Zerotree wavelet (EZW) algorithm. The typical structure of 

EZW encoding and decoding are given in figure-1. 

 

 

 

 

 

 

 

Figure-1: The typical structure of an EZW encoding and 

decoding 

3. EMBEDDED ZEROTREES OF 

WAVELET TRANSFORMS 

3.1 EZW Encoding 
The coefficients are of two types - approximation coefficients 

and wavelet coefficients [7]. Approximation coefficients give 

low resolution of the image. Next higher resolution of the 

image can be produced using wavelet coefficients of same 

scale as that of approximation coefficients. From this 

produced image another next higher resolution image is 

generated using next low scale wavelet coefficients. Wavelet 

coefficients add details to the lower resolution image, to get 

higher resolution image [7]. Low valued coefficients don’t 

have much importance as they add very little to the human 

perception of the image. But high valued coefficients are very 

important as they identify the boundaries or edges in higher 

resolution image [8]. 

EZW is progressive encoding. Like any progressive encoding 

it includes multiple scans over the transformed image. Each 

scan consists of two passes. First pass is called dominant pass 

and the second pass is called subordinate pass. The dominant 

pass identifies the coefficients which are, in absolute value, 

greater than the certain threshold value. These coefficients are 

known as significant coefficients. The absolute value of these 

significant coefficients will be added to the subordinate list 

and their values are replaced by zero in the transformed 

image. This will prevent them from being encoded again. If 

the dominant pass follows a scan order, then just using a very 

Wavelet 

transformation 

Input 

image 

Quantization 

EZW 

encoding 

Out.ezw 

file 

EZW 

decoding 

Inverse 

quantization 

Inverse wavelet 

transformation 

Output 

image 



International Journal of Computer Applications (0975 – 8887)  

Volume 89– No.19, March 2014 

22 

few bits it can specify which coefficients are significant [1, 9]. 

The scanning order that was followed in this process is shown 

in figure-2. 

 

Figure-2: The scanning order of coefficients 

 By using following observations, the EZW compresses the 

data. Most of the lower scale sub-band coefficients are zero or 

closer to zero. Another important observation is the energy in 

the sub-bands decreases as the scale decreases. So the wavelet 

coefficients will have smaller value in the low scale sub-bands 

than in high scale sub-bands. 

A coefficient in high scale sub-band is spatially related to four 

descendant coefficients in next lower scale sub-band. As 

shown in the figure-3. Every root coefficient has four 

coefficients as its leaves. 

 

Figure-3: Relation of coefficient with other lower scale 

sub-band coefficients 

A zero tree is a quad-tree of which all coefficients are equal to 

or smaller than the root. The tree is encoded with a single 

symbol and reconstructed by the decoder as a quad-tree filled 

with zeroes. To clutter this definition, also add that the root 

has to be smaller than the threshold against which the wavelet 

coefficients are currently being measured.  In that case, it is 

efficient to encode all of the coefficients with a single symbol. 

For example, a single zero tree symbol in HH3 encodes 21 

coefficients ( 1(HH3) + 4(HH2) + 16(HH1) ). So in the 

dominant pass, if the coefficient is larger than the threshold a 

P (positive) is coded, if the coefficient is smaller than the 

negative of the threshold, a N (negative) is coded. If the 

coefficient is the root of a Zerotree, a T is coded and finally, if 

the coefficient is smaller than the threshold but it is not the 

root of a Zerotree, a Z (isolated zero) is coded. 

The subordinate pass scans over the subordinate list, 

populated by dominant pass and generates a symbol for each 

coefficient in the list specifying roughly what the coefficient 

value is instead of exactly what the coefficient value is. 

To fully reconstruct the image the scan is repeated several 

times, each time with a threshold value lower than the 

previous threshold value. If this sequence is a sequence of 

power of two, it is called bitplane coding since the threshold 

in this case corresponds to the bits in the binary representation 

of the coefficients. If bit plane coding was employed then in 

subordinate pass, it all comes down to outputting the next 

most significant bit of values in the subordinate list, and initial 

threshold t0 will be t0 = 2floor (log 
2
(MAX ( |ᴽ(X,Y)| ) ) ) . Here MAX(.) 

means the maximum coefficient value in the image and  

ᴽ(X,Y)denotes the coefficient. A detail presentation on EZW 

was given in [1,9,10]. 

3.2 EZW Algorithm 
//EZW encoding 

threshold = initial_threshold; 

do { 

   dominant_pass(image); 

   subordinate_pass(image); 

   threshold = threshold/2; 

}while (threshold > minimum_threshold) 

 

//Dominant pass 

initialize_fifo(); 

while (fifo_not_empty){ 

   get_coded_coefficient_from_fifo(); 

   if coefficient was coded as P, N or Z then { 

      code_next_scan_coefficient(); 

      put_coded_coefficient_in_fifo(); 

      if coefficient was coded as P or N then { 

     add abs(coefficient) to subordinate list; 

            set coefficient value to zero; 

} 

 } 

} 

 

//Subordinate pass 

subordinate_threshold = current_threshold/2; 

for all elements on subordinate list do{ 

   if (coefficient > subordinate_threshold) { 

         output a one; 

      coefficient = coefficient -subordinate_threshold; 

} 

   else output a zero; 

} 

Here FIFO is used to keep track of the identified Zerotrees. 

Before entering dominant pass loop, FIFO has to be initialized 

by adding the first quad-tree root coefficients code. 

4. PARALLELIZATION OF EZW 

ENCODING 

4.1 Scope of Parallelization 
For each component EZW encoding is done independently. 

One way of parallelizing is assigning one processing element 

(PE) to encode each component. The problem with this 

approach is that it isn’t scalable. i.e., if there are three 



International Journal of Computer Applications (0975 – 8887)  

Volume 89– No.19, March 2014 

23 

components (RGB) and four PEs then fourth PE isn’t of any 

use. As the EZW encoding involves several scans with 

various threshold values the other approach is to assign a PE 

to every scan and run them in parallel. The problems with this 

approach are scalability and algorithm modification. The 

maximum number of scans is equal to the number of bits used 

to represent the coefficients. So it is not scalable beyond that. 

Every scan has a sequential dependency on the scans before it. 

And final option is parallelizing the dominant and subordinate 

passes. The majority of the time is spent in the dominant pass 

among the both passes.  

The main constraint of the dominant pass is that it should 

follow a scan order while producing codes for coefficients. 

Calculations of codes for coefficients in same sub-band are 

independent of each other. Using this fact, we can parallelize 

the dominant pass. The list used in the subordinate pass grows 

dynamically, so Parallelizing subordinate pass doesn’t give 

any better result. 

4.2 Parallelization of Dominant pass 
In sequential execution, one FIFO and one LIST are used. For 

parallel execution, if N PEs are available then 6N-FIFOs and 

(N+1)-LISTs will be used. Each PE is assigned with 6 FIFOs 

and 1 LIST. Let’s name these six FIFOs with the each PE as 

N1, N2, N3, N11, N21 and N31. Each PE distributes its 

FIFOs to the sub-bands as shown in figure-4. These FIFOs are 

used to hold the codes of the coefficients of the corresponding 

sub-band. The LIST is used to temporarily store the 

significant coefficients which will be added to the 

subordinate’s list (MAIN LIST) after the scanning of each 

sub-band. 

 

Figure-4: 6-FIFOs distribution to various sub-bands 

By observing it is easy to find out that all coefficients in the 

HL3, LH3, and HH3 have to be scanned. Assignment of these 

coefficients to processing elements is important because of the 

scanning order that the dominant pass has to follow. If HL3, 

LH3, and HH3 have R rows each and assuming PEs are 

numbered from 1 to N, then first PE calculates codes (P, N, Z, 

T) of first R/N row’s coefficients and stores them in the 

corresponding FIFO. Similarly next PE (PE-2) calculates for 

next R/N row’s coefficients.  Distributions of coefficients of 

the HL3 are shown in the figure-5. In the next higher scale 

sub-bands only those coefficients are scanned whose parents 

are not Zero tree. After scanning the high scale sub-bands 

(HL3, LH3, and HH3). Each PE’s N1, N2, and N3 are 

populated. While passing through these FIFOs if we 

encounter a coefficient which is not zerotree then their child 

coefficients are add to the FIFO of the corresponding child’s 

sub-band. For example, if there is a Non-Zerotree coefficient 

in N1, then its child coefficients are added to N11. While 

passing through a FIFO all the significant coefficients will be 

added to the LIST associated with the PE. After scanning a 

sub-band, all the codes and the LISTs with each PE have to be 

merged. LISTs are appended to the main List associated with 

the subordinate pass. 

 
Figure-5: Distributions of coefficients of the HL3  

sub-band 

4.3 Merging the Codes 
Significance map (binary representation of codes) associated 

with PEs are merged and written to the file, i.e. first PE’s 

significance map is flushed to the file followed by the second 

PE’s significance map then followed by third PE. Similarly 

we flush the entire significance map to the file. Unit length of 

file input/output is byte length but our significance map’s unit 

length is bit. So merging the significance map induces extra 

work which has to be done sequentially. 

For example if PE-1’s significance map is: 

1  1  0 1 1  0  0  0  1  1  -  -   -   -   -  - 

And PE-2 ‘s significance map is: 

0  0  0 0 1 1  0  1  1  0  1  0  1  1  - - 

So after merging both PEs significance map we should write 

to the file in following order: 

1  1  0  1  1  0  0  0 1  1  0  0  0  0  1  1 

 0  1  1  0  1  0  1  1 

5. RESULT 
Implementation is done using OPENMP and two test images. 

Results are shown below.Table-1 and Figure-6 show 

Speedups of the parallel EZW encoding when used with 

different number of PEs. Table-2 lists the time taken by 

parallel EZW encoding when used with different number of 

PEs. 

Table-1: Speedup Vs #PE 

 

#PE Image-1 

Speedup 

Image-2 

Speedup 

2-PE 1.255 1.22 

3-PE 1.42 1.43 

4-PE 1.53 1.57 



International Journal of Computer Applications (0975 – 8887)  

Volume 89– No.19, March 2014 

24 

 
Figure-6: Speedup Vs #PE Plot 

Table-2: Time taken Vs #PE 

#PE Image-1 

(seconds) 

Image-2 

(seconds) 

sequential 20.593 24.5 

2-PE 17.383 20 

3- PE 15.358 17.2 

4- PE 14.17 15.8 

 

Image specifications and system configurations are given 

below in Table-3 and Table-4. 

Table-3: Test images specification 

 

Table-4: System configuration 

Processor Intel i3-CPU 

Speed 2.4GHz 

Ram 4GB 

Word Size 64-Bit 

OS UBUNTU 

 

6. CONCLUSION 
This work presents a new way to improve the encoding time 

of Embedded Zerotree Wavelet (EZW) Coding by reducing 

the execution time of the dominant pass in the algorithm 

through parallelization. Since no changes in the subordinate 

pass have been made, the contribution of subordinate passes 

remains the same. The speed up observed is not linear. This is 

because of two reasons. First, because of a little extra work 

induced in dominant pass for merging the significance map 

associated with each PE, and second, due to sequential 

execution of subordinate pass. But still reasonable speedups 

are possible with higher number of processing elements. It is 

evident from this work, how parallelizing the fraction of the 

algorithm can also produce good result. The future scope of 

the proposed work lies in the improvement of video codecs 

such as MPEG-4 based on EZW and other wavelet transforms 

based video codecs. Reduced execution time of EZW will 

directly have an effect on video codecs and video streaming. 

7. REFERENCES 
[1] Shapiro, J. M. R. B., 1993, “Embedded Image Coding 

Using Zerotrees of Wavelet Coefficients”, IEEE 

Transactions on Signal Processing, vol. 41, no. 12. 

[2] Fowler, J. E. (5/2003). Embedded Wavelet-Based Image 

Compression: State of the Art. Retrieved October 2, 2004 

from the World Wide Web: 

http://www.extenzaeps.com/extenza/loadPDFInit?objectI

Dvalue:22708 

[3] M. Antonini, M. Barlaud, P. Mathieu, I.Daubechies, 

Image coding using wavelet transform, IEEE Trans. 

Image Process. 1 (2) (April 1992) 205–220. 

[4] D. Le Gall, A. Tabatabai, Subband coding of digital 

images using symmetric kernel filters and arithmetic 

coding techniques, in: Proceedings of the International 

Conference on Acoustics, Speech Signal Processing, 

New York, USA, April 1988, pp. 761–764. 

[5] R.C. Calderbank, I. Daubechies, W. Sweldens, B.-L. 

Yeo, Wavelet transforms that map integers to integers, 

Appl. Comput. Harmon. Anal. 5 (3) (1998) 332–369. 

[6] M.D. Adams, F. Kossentini, Reversible integer-to-integer 

wavelet transforms for image compression: performance 

evaluation and analysis, IEEE Trans. Image Process. 9 

(6) (June 2000) 1010–1024. 

[7] Akansu, Ali N.; Haddad, Richard A. (1992), 

Multiresolution signal decomposition: transforms, 

subbands, and wavelets, Boston, MA: Academic Press, 

ISBN 978-0-12-047141-6 

[8] M. Albanesi, S. Bertoluzza, Human vision model and 

wavelets for high-quality image compression, in: 

Proceedings of the Fifth International Conference in 

Image Processing and its Applications, Edinburgh, UK, 

July 1995, Vol. 410, pp. 311–315. 

[9] Algazi, V. R. and R.R. Estes. Analysis  based coding of 

image transform and sub-band coefficients. Proceedings 

of the SPIE, Vol. 2564 (1995), p. 11-21. 

[10] Creusere, C. D. A new method of robust image 

compression based on the embedded zerotree wavelet 

algorithm. IEEE Transactions on Image Processing, Vol. 

6, No. 10 (1997),p. 1436-1442.   

 

Attributes Image-1 Image-2 

Dimensions 3264 X 2448 3072 X 2304 

Size 7.62MB 6.7MB 

Color RGB RGB 

Bit depth 24 bits 24 bits 

IJCATM : www.ijcaonline.org 

http://www.extenzaeps.com/extenza/loadPDFInit?objectIDvalue:22708
http://www.extenzaeps.com/extenza/loadPDFInit?objectIDvalue:22708

