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ABSTRACT 
The present paper introduces destructive neural network 

learning techniques and presents the analysis of the 

convergence rate of the error in a neural network with and 

without threshold. Also, a constructive algorithm for rule 

extraction based on a trained neural network using Gene 

Expression Programming (GEP) is proposed. The rules are 

not an easy task due to the large number of examples entered 

to the input layer. Thus, we can use GEP to encode the rules 

in the form of logic expression. Finally, the proposed model is 

evaluated on different public-domain datasets and compared 

with standard learning models from WEKA, and then the 

results accentuate that the set of rules extraction from the 

proposed method is more accurate and brief compared with 

those achieved by the other models. 
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1. INTRODUCTION 
Large databases are regularly being collected in science, 

medicines and business. The goal of Knowledge-discovery in 

databases is to extract usable knowledge from a large amount 

of data. To produce models that provide vision into data, it 

draws upon methods in statistics, signal processing, pattern 

recognition, information theory, machine learning, and neural 

networks. Such models are expected to be accurate and 

comprehensible to experts in the field. Although artificial 

neural network (ANN) usually reaches high classification 

accuracy, the obtained results sometimes may be 

incomprehensible. This fact is causing a serious problem in 

data mining applications. Various methods have been 

improved to extract rules that are resulted from ANN and 

needed to be formed to solve this problem. There are several 

black-box rule extraction algorithms using evolutionary 

approaches. In essence, a population consists of candidate 

solutions and the fitness function reflects the chosen 

optimization criterion. Most often, the fitness is based on 

fidelity, but may also include terms clearly targeting improved 

comprehensibility or accuracy. Comprehensibility is generally 

controlled by using a length consequence, while accuracy can 

be targeted by including training instances not used when 

building the opaque model. Therefore, in this paper a study on 

rule extraction from trained ANNs for classification problems 

is carried out. The proposed approach makes use of particle 

geneexpression algorithm to transform the behaviors of 

trained ANNs into accurate and comprehensible classification 

rules. 

This paper is organized as follows. An Overview of Rule 

Extraction is presented in section 2. Gene expression 

programming is introduced in section 3. The Architectures of 

the networks is shown in Section 4, the analysis of the 

convergence rate in a destructive neural network without and 

with thresholds in the output layer has been presented in 

Sections 5 and 6, respectively. In Section 7, we will discuss 

how to use GEP to extract rules from trained artificial neural 

network. 

The experimental results and the dataset used are introduced 

in section 8. The result and discussion are reported in section 

9. Finally, the conclusion is presented in section 10 

2. OVERVIEW OF RULE EXTRACTION 
In data mining research, rule extraction has become a 

progressively important topic, and ANNs is applied for 

machine learning in a variety of real world applications via an 

increasing number of researchers and practitioners [1, 2, 3, 4, 

5]. An inherit imperfection of ANNs is that the learned 

knowledge is disguised in a large amount of connections, 

which leads to the poor explanation ability and poor limpidity 

of knowledge [6]. To compensate this imperfection, 

developing algorithms to extract emblematic rules from 

trained neural networks has been a significant topic in recent 

years. 

Rule extraction techniques can characterize extracted model in 

form of M of N rules, If-Then rules, decision table, decision 

tree, etc. Opaque models like ANN and SVM shows improved 

accuracy performance in comparison to white box or apparent 

model like decision tree [7, 8, 9]. Rule extraction is the task of 

making an opaque model apparent and expectantly 

comprehensible [10]. Comprehensibility is essential in many 

application areas and to make neural networks more 

comprehensible we need rule extraction from neural network. 

Rule extraction techniques from neural network are gathered 

into three approaches pedagogical, decompositional and 

eclectic. The pedagogical method deals with the ANN as a 

black-box and produces a knowledge representation that has 

the same input-output mapping, ignoring the specific 

architecture of the network. Input-output pairs are produced 
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using the trained network, and rules are extracted from this 

new database. The decompositional techniques study the 

hidden unit activations and connection weights for improved 

understanding of network configurations. Finally, eclectic 

approaches integrate components of both pedagogical and 

decompositional techniques [11]. The first decompositional 

rule extraction technique is the KT algorithm developed by 

LiMin. Fu [12]. The KT algorithm creates rules for each 

concept consistent to a hidden or output unit whose summed 

weights exceed the threshold of the unit. The same idea is 

involved in the Subset algorithm developed by Towell and 

Shavlik [13]. This algorithm checks each subset and tries to 

find out if any of these links exceed the bias. If exceeded, then 

these weights are rephrased as rules. The REFANN algorithm 

extracts rules from trained ANN for non-linear function 

approximation or regression was developed by Setiono [14]. 

Krishnan had projected an optimization minimizes the search 

space by sorting the weights [15]. Towell et al. defined a 

method named KBANN which is used to progress existing 

rules [16]. Its main idea is to encode the existing domain 

knowledge inside the network structure, then train such an 

initialized network, and finally extract new and improved 

rules. Validity Interval Analysis (VIA) [17], TREPAN [18], 

Decision Tree Extractor (Dectext) [19], etcare contained in 

representatives of the pedagogical techniques category. A 

general purpose rule extraction procedure that extracting 

characteristic knowledge from network designed in VIA 

algorithm. Craven developed the TREPAN procedure which 

treats the network as an oracle used to statistically verify the 

significance and correctness of the generated rules. Dectext 

was designed to trained network and extract a classical 

decision tree from the network. REFNE algorithm was 

developed by Zhou et al. [20], by using an assembly neural 

network to generate new data instances, and then extract 

emblematic rules from these instances. A method to extract 

rules from a neural network was developed by Garcez et al. 

[21], by first defining a partial ordering on the set of input 

vectors. Then, eclectic techniques merge the elements of the 

decompositional and the pedagogical approaches. They 

analyze an ANN at the individual unit level but also extract 

rules at the comprehensive level. The DEDEC algorithm is an 

example of this approach [22], which extracts if-then rules 

from MLP networks trained with the back-propagation 

algorithm. Characteristic rules are extracted by DEDEC 

efficiently from a set of individual cases. It arranges the cases 

to be examined in order of importance. Using the magnitude 

of the weight vectors in the trained ANN to order the input 

units according to the relative share of their donation to the 

output units achieves that target. The emphasis is on 

extracting rules from those cases that occupy what are 

considered to be the most important input units. 

3. GENE EXPRESSION 

PROGRAMMING 
Evolutionary approaches are using for several black-box rule 

extraction algorithms. The most recent technique of 

evolutionary algorithms is Gene expression programming 

[23]. 

Gene expression programming (GEP) is, like genetic 

programming (GP) and genetic algorithms (GAs), a genetic 

algorithm as it uses populations of individuals, selects them 

based on fitness, and introduces genetic disparity using one or 

more genetic operators [24]. The important difference 

between the three algorithms exists in the nature of the 

individuals, the individuals are nonlinear entities of different 

shapes and sizes in GP, the individuals are linear strings of 

fixed length in GAs, and the individuals are encrypted as 

linear strings of fixed length which are subsequently 

expressed as nonlinear entities of different shapes and sizes in 

GEP. 

The interaction of expression trees and chromosomes in GEP 

denotes an evident translation system for translating the 

language of chromosomes into the language of expression 

trees (ETs). In this work, the structural organization of GEP 

chromosomes is presented; allows a truly functional 

genotype/phenotype relationship, as any modification made in 

the genome always results in syntactically correct ETs or 

programs. Certainly, the diverse set of genetic operators 

developed to introduce genetic diversity in GEP populations 

always produces valid ETs. So, GEP is an artificial life 

system, well recognized beyond the replicator threshold, able 

to evolution and adaptation. 

The advantages of a system like GEP are clear from nature, 

but the most important should be emphasized. First, the 

chromosomes are simple entities: relatively small, linear, easy 

to manipulate genetically (replicate, mutate, recombine, 

transpose, etc.), compact. Second, the ETs are exclusively the 

expression of their individual chromosomes; they are selected 

to reproduce with modification according to fitness and, they 

are the entities upon which selection acts. The chromosomes 

of the individuals, not the ETs, are reproduced with 

modification and transmitted to the next generation during 

reproduction. 

Based on these characteristics, GEP is tremendously flexible 

and significantly exceeds the existing evolutionary 

techniques. Actually, in the most complex problem, the 

evolution of cellular automata rules for the density-

classification task, GEP exceeds GP by more than four orders 

of magnitude. 

The gene expression algorithms can be apportioned into two 

categories: unsupervised and supervised. 

The common task is predicting the state of gene expression 

samples for supervised methods, for example, cancer against 

normal. A lot of classification models are developed, for their 

huge application abilities. There are three typical main 

categorical methods for this task: statistical based methods, 

traditional machine learning methods, and association rule-

based classifiers. The high graded genes and, the relation 

among genes is not fully explored are usually selected by The 

statistical-based methods [25,26,27,28]. Most of machine 

learning methods are black box and hard to construe, although 

they take the relation between the genes into consideration. 

For example, although SVM [29] achieves very high 

classification accuracy, it remains hard to construe the results. 

In the unsupervised methods, association rules are used to find 

interesting gene expression patterns [28,31,32,33], clustering 

[30] is commonly used to find structured genes or similar 

samples, reconstruct gene regulatory network [34,35], and 

discover functional modules [36]. 
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4. NEURAL NETWORK 

ARCHITECTURE 
We consider an ANN that consists of an input layer with n+ 1 

node, a hidden layer with h units, and an output layer with l 

units 

𝑦𝑖 = 𝑔   𝑤𝑖𝑗

𝑕

𝑗 =1

𝑓   𝑣𝑗𝑘 𝑥𝑘

𝑛+1

𝑘=1

   ,   𝑖 = 1, 2, … , 𝑙,        1  

where 𝑥𝑘  indicates the 𝑘-th input value, 𝑦𝑖  the 𝑖-th output 

value, 𝑣𝑗𝑘  a weight connecting the 𝑘-th input node with the 𝑗-

th hidden unit, and 𝑤𝑖𝑗  a weight between the 𝑗-th hidden unit 

and the 𝑖-th output unit. The functions 𝑓(𝑡)and 𝑔(𝑡) are given 

by 

                           𝑓 𝑡 =  
1 − 𝑒−𝑡

1 +  𝑒−𝑡  ,                                     (2) 

                          𝑔 𝑡 =  
1

1 + 𝑒−𝑡  ,                                       3  

 

respectively. We write (1) as 

                        𝑦 = 𝑔  𝑊𝑓 𝑉𝑥   ,                                     (4) 

 

Where we set 𝑥 =  𝑥1 , 𝑥2 , . . . , 𝑥𝐼  , 𝑥𝐼+1 
𝑡with 𝑥𝐼+1 =  −1, 𝑦 =

 𝑦1 , 𝑦2 , . . . , 𝑦𝑙 
𝑡 ,𝑉 =  𝑣𝑗𝑘  and 𝑊 =

(𝑤𝑖𝑗 ).Moreover, 𝑓 𝑉𝑥 means 

 𝑓 𝑉1 . 𝑥 , 𝑓 𝑉2. 𝑥 , … , 𝑓 𝑉𝑕 . 𝑥  
𝑡
and 𝑔 𝑊𝑓 𝑉𝑥  indicates

 𝑔 𝑊1 . 𝑓 𝑉𝑥  , 𝑔 𝑊2. 𝑓 𝑉𝑥  , … , 𝑔 𝑊𝑙 . 𝑓 𝑉𝑥   
𝑡
, where

  𝑉𝑗 =  𝑣𝑗1 , 𝑣𝑗2 , … , 𝑣𝑗 ,𝑛+1 
𝑡
and 𝑊𝑖 =  𝑤𝑖1 , 𝑤𝑖2, … , 𝑤𝑖𝑕 𝑡 . This 

network is shown in fig 1 Let 𝑥𝑣 , 𝑦𝑣 , 𝑣 = 1,2, … , 𝑚, be the 

training data for the network. We define an output error 

between the outputs of the network for the inputs 𝑥𝑣 and the 

relevant outputs 𝑦𝑣by 

   𝐽 𝑉, 𝑊 =   𝑔−1 𝑦𝑣 − 𝑊𝑓 𝑉𝑥𝑣  2,                  (5)

𝑚

𝑣=1

 

 
 

Fig 1: Neural network before removing one unit in the 

hidden layer. 

 

where𝑔−1 𝑦𝑣 =  𝑔−1 𝑦1
𝑣 , 𝑔−1 𝑦2

𝑣 , … , 𝑔−1 𝑦𝑙
𝑣  

𝑡
is the 

inverse of the function, and  .  stands for the Euclidean norm. 

To determine 𝑉and 𝑊, we need to minimize the error function 

(5). 

5. CONVERGENCE RATE IN A 

DESTRUCTIVE NEURAL NETWORK 

WITHOUT THRESHOLDS IN THE 

OUTPUT LAYER 
In this section we will present the analysis of the convergence 

of the error in destructive neural network. 

Let 𝑣 denote a connection weight vector between the (𝑕 + 1)-

th hidden unit and the input layer, and let w be a weight vector 

connecting the (𝑕 +  1)-th hidden unit with the output layer. 

The ANN after removing the (𝑕 +  1)-th hidden unit is 

shown in Fig 2. We denote the weight matrices (𝑉, 𝑣) and 

(𝑊, 𝑤) by 𝑉 and 𝑊 , respectively.  

Then we can rewrite (5) as  

𝐽 𝑉, 𝑊 =   𝑔−1 𝑦𝑣 − 𝑊 𝑓 𝑉𝑥𝑣 − 𝑤𝑓 𝑣. 𝑥𝑣  
2

𝑚

𝑣=1

 

Where 

𝑊𝑓 𝑉𝑥𝑣 = 𝑊 𝑓 𝑉𝑥𝑣 + 𝑤𝑓 𝑣. 𝑥𝑣 and𝑤 is the removing 

weight vector. 

 

The function can be written as follows: 

  𝐽 𝑉, 𝑊 = 𝐽 𝑉 , 𝑊  − 2 𝑑 ,  𝑤 + 𝑎 𝑤 2 6  

 
Fig 2: Neural network after removing one unit in the 

hidden layer. 

 

in which 𝑑and 𝑎denote 

𝑑 =  𝑓 𝑣. 𝑥𝑣 𝑐𝑣

𝑚

𝑣=1

 

and 

𝑎 =  𝑓2 𝑣. 𝑥𝑣 ,

𝑚

𝑣=1

 

Where 𝑐𝑣 = 𝑔−1 𝑦𝑣 − 𝑊𝑓(𝑉𝑥𝑣) and the symbol 

 . ,   .  indicates an inner product in 𝑅𝑙 . When the vector 𝑣 is 

fixed, the vector 𝑤 which minimizes the error function by 

𝑤 =
𝑑

𝑎
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So the error after removing a hidden unit can be expressed as 

𝑐 𝑣   = 𝑔−1 𝑦𝑣 − 𝑊 𝑓 𝑉 𝑥𝑣  

                                  = 𝑔−1 𝑦𝑣 − 𝑊𝑓 𝑉𝑥𝑣 + 𝑤𝑓 𝑣𝑥𝑣  

 = 𝑐𝑣 +
𝑑

𝑎
𝑓 𝑣. 𝑥𝑣 . 

Furthermore, using the symbols𝐶 𝑖
𝑡 = (𝑐𝑖

1 , 𝑐𝑖
2 , … , 𝑐𝑖

𝑚 ), 

𝐶𝑖
𝑡 =  𝑐𝑖

1 , 𝑐𝑖
2, … , 𝑐𝑖

𝑚 and 𝑆𝑡 =  𝑆1, 𝑆2, … , 𝑆𝑚  with𝑠𝑣 =

𝑓(𝑣. 𝑥𝑣), we have 

𝐶 𝑖
𝑡 = 𝐶𝑖

𝑡 +
1

𝑎
𝐶𝑖

𝑡𝑆𝑆𝑡 .                                            (7) 

Moreover we can rewrite (7) as 

𝐶 𝑖
𝑡 = 𝐶𝑖

𝑡  𝐼𝑚 +
1

𝑎
𝑆𝑆𝑡  = 𝐶𝑖

𝑡𝛤1 𝑣 , 

where𝐼𝑚 is the unit matrix and 

𝛤1 𝑣 = 𝐼𝑚 +
𝑆𝑆𝑡

𝑎
. 

It is easy to show that the matrix 𝛤1 𝑣 satisfies  

1 ≤
 𝛤1 𝑣 𝑈,  𝑈 

 𝑈 2 ≤ 2 

for arbitrary vector 𝑈. 

This shows that the error after determining the weight w 

between the hidden and output layers is not convergent. In 

addition, the eigenvalues of this matrix can be obtained as 

follows: 

One propriety of the matrix 𝛤1 𝑣  is 

 𝛤1 𝑣 𝑈,  𝑈 =  𝑈 2 +
1

𝑎
 𝑆 ,  𝑈 2 

                   ≤  𝑈 2 +
1

𝑎
 𝑆 2 𝑈 2 = 2                             (8) 

since 𝑎 =  𝑆 2, and the other is 

 𝛤1 𝑣 𝑈,  𝑈 =  𝑈 2 +
1

𝑎
 𝑆 ,  𝑈 2 ≥  𝑈 2                       (9) 

From (8) and (9) we get 

1 ≤
 𝛤1 𝑣 𝑈,  𝑈 

 𝑈 2
≤ 2 

which implies 

1 ≤ 𝑚𝑎𝑥 𝜆𝑣 ≤ 2 

Where  𝜆𝑣 , 𝑣 = 1, … , 𝑚 are the eigenvalues of the matrix 

𝛤1 𝑣 . 

Next, we calculate the eigenvalues of the matrix 𝛤1 𝑣 to 

examine the Convergence rate of the error in more detail. The 

matrix 𝛤1 𝑣 can be written as 

𝛤1 𝑣 =

 

 

    𝑧11   −𝑧12   … −𝑧1𝑚

−𝑧21    𝑧22
  … −𝑧2𝑚

  …………………………
−𝑧𝑚1 −𝑧𝑚2 … 𝑧𝑚𝑚  

 , 

Where 𝑧𝑖𝑖 = 1 + 𝑠𝑖
2 𝑎 , 𝑧𝑖𝑗 = −𝑠𝑖𝑠𝑗 𝑎 , and 𝑧𝑖𝑗 = 𝑧𝑗𝑖 . The 

characteristic equation of this matrix is 

𝛾1 𝜆 =   

𝜆 − 𝑧11   𝑧12   … 𝑧1𝑚

𝑧21  𝜆 − 𝑧22   … 𝑧2𝑚

  ………………………… . ……………

         𝑧𝑚1 𝑧𝑚2 … 𝜆 − 𝑧𝑚𝑚

  = 0. 

By putting 𝜂𝑖 = (1 − 𝜆) 𝑎 𝑠𝑖
2 , we can reform γ1(𝜆)as 

follows: 

γ1 𝜆 =
− 𝑠𝑖

2𝑚
𝑖=1

𝑎𝑚 𝐿1 𝜆 = 0, 

where 

𝐿1 𝜆 =   

𝜂1 + 1 1 … 1
1 𝜂2 + 1 … 1

  ……… . . …………… . . ……

    1        1     …  𝜂𝑚 + 1

  . 

The determinant 𝐿1 𝜆 can be transformed by Laplace theorem 

as 

𝐿1 𝜆 =  𝜂𝑣 +   𝜂𝑣

𝑖−1

𝑣=1

𝑚

𝑖=1

𝑚

𝑣=1

 𝜂𝑣

𝑚

𝑣=𝑖+1

 

=  𝜂𝑣

𝑚

𝑣=1

+  
 𝜂𝑣

𝑚
𝑣=1

𝜂𝑖

𝑚

𝑖=1

. 

Thus, we have 

γ1 𝜆 =
− 𝑠𝑖

2𝑚
𝑖=1

𝑎𝑚   𝜂𝑣

𝑚

𝑣=1

+  
 𝜂𝑣

𝑚
𝑣=1

𝜂𝑖

𝑚

𝑖=1

  

 =  2 − 𝜆  1 − 𝜆 𝑚−1 = 0.          
Hence the eigenvalues of this matrix are given by 

𝜆 = 2, 1, … ,1,1. 
This shows that the error after determining the weight w 

between the hidden and output layers is not convergent. 

6. CONVERGENCE RATE IN A 

DESTRUCTIVE NEURAL NETWORK 

WITH THRESHOLDS IN THE OUTPUT 

LAYER 
We consider the network with thresholds 𝜃𝑖 , 𝑖 = 1, 2, … , 𝑙,in 

its output layer before removing one unit in the hidden layer. 

In this case, we can write 

𝑦𝑖 = 𝑔   𝑤𝑖𝑗

𝑕

𝑗 =1

𝑓   𝑣𝑗𝑘 𝑥𝑘

𝑛+1

𝑘=1

 − 𝜃𝑖 , 𝑖 = 1, 2, … , 𝑙 

whose simple form is 

𝑦 = 𝑔  𝑊𝑓 𝑉𝑥 − 𝜃 ,where𝜃 = (𝜃1 , 𝜃2 , … , 𝜃𝑙) 

and𝑔  𝑊𝑓 𝑉𝑥 − 𝜃 = (𝑔  𝑊1 . 𝑓 𝑉𝑥 − 𝜃1 ,
𝑔  𝑊2 . 𝑓 𝑉𝑥 − 𝜃2 , … , 𝑔  𝑊𝑙 . 𝑓 𝑉𝑥 − 𝜃𝑙 ).  

The error function that related to the present network takes the 

following form 

            𝐽 𝑉, 𝑊, 𝜃 =   𝑔−1 𝑦𝑣 − 𝑊𝑓 𝑉𝑥𝑣 + 𝜃 2 .

𝑚

𝑣=1

 

We remove one unit from the hidden layer and represent 

removed weight vectors again by 𝑣and 𝑤. By removing one 

hidden unit, we can write the threshold vector θ as 𝜃 = 𝜃 +
∆𝜃.  

The error function related to this network can be expressed as 

𝐽 𝑉 , 𝑊 , 𝜃  =   𝑔−1 𝑦𝑣 − 𝑊 𝑓 𝑉 𝑥𝑣 + 𝜃  
2

,

𝑚

𝑣=1

 

where we have used again the symbols 𝑉 = (𝑉, 𝑣) and 

𝑊 = (𝑊, 𝑤). The same procedure as in the previous section 

will be applied in order to determine 𝑤 and ∆𝜃 so that  

𝐽 𝑉 , 𝑊 , 𝜃   is minimum. Since 𝑊𝑓 𝑉𝑥𝑣 = 𝑊 𝑓 𝑉𝑥𝑣 +

𝑤𝑓 𝑣. 𝑥𝑣 and 𝜃 = 𝜃 + ∆𝜃, we can decompose the error 

function 𝐽 𝑉 , 𝑊 , 𝜃   as 

𝐽 𝑉 , 𝑊 , 𝜃  = 𝐽 𝑉, 𝑊, 𝜃 + 2  𝑓 𝑣. 𝑥𝜈  𝑞𝜈 +  ∆𝜃, 𝑤 

𝑚

𝜈=1

 

   −  𝑓2(𝑣.

𝑚

𝜈=1

𝑥𝜈) 𝑤 2 − 2   ∆𝜃 ,  𝑞𝑣 −   ∆𝜃 2,

𝑚

𝜈=1

𝑚

𝜈=1
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where 

𝑞𝜈 = 𝑔−1 𝑦𝑣 − 𝑊𝑓 𝑉𝑥𝑣 + 𝜃. 

By minimizing this error function, we can easily determine 𝑤 

and ∆𝜃 as 

                                   𝑤 =
𝑚𝑑1 − 𝑎2𝑑2

𝑏
,                                (10) 

                                 ∆𝜃 =
𝑎2𝑑1 − 𝑎1𝑑2

𝑏
,                              (11) 

where 

𝑎1 =  𝑓2 𝑣. 𝑥𝜈 

𝑚

𝜈=1

, 

𝑎2 =  𝑓 𝑣. 𝑥𝜈 

𝑚

𝜈=1

, 

     𝑑1 =  𝑓 𝑣. 𝑥𝜈 

𝑚

𝜈=1

𝑞𝜈 , 

𝑑2 =  𝑞𝜈

𝑚

𝜈=1

,                  

𝑏 = 𝑚𝑎1 − 𝑎2
2.               

 

Now we consider the convergence rate of the error as in the 

previous section. 

Since 

 

 𝑞 𝜈 = 𝑔−1 𝑦𝑣 − 𝑊 𝑓 𝑉 𝑥𝑣 + 𝜃  

                    = 𝑔−1 𝑦𝑣 − 𝑊𝑓 𝑉𝑥𝑣 + 𝑤𝑓 𝑣. 𝑥𝑣 + 𝜃 − ∆𝜃 

= 𝑞𝜈 + 𝑤𝑓 𝑣. 𝑥𝑣 − ∆𝜃,                          

we can write the error at i-th component in the output layer as 

𝑞 𝑖
𝜈 = 𝑞𝑖

𝜈 + 𝑤𝑖𝑓 𝑣. 𝑥𝑣 − ∆𝜃𝑖 .                      (12) 

From (10), the i-th component of w can be written as 

𝑤𝑖 =
𝑚

𝑏
𝑑1𝑖 −

𝑎2

𝑏
𝑑2𝑖  

                     =
𝑚

𝑏
 𝑠𝜈𝑞𝑖

𝜈

𝑚

𝜈=1

−
𝑎2

𝑏
 𝑞𝑖

𝜈

𝑚

𝜈=1

 

             =
𝑚

𝑏
𝑄𝑖

𝑡 𝑆 −
𝑎2

𝑏
𝑄𝑖

𝑡 1 

         = 𝑄𝑖
𝑡  

𝑚

𝑏
𝑆 −

𝑎2

𝑏
1  . 

Similarly from (11), we can also write  ∆𝜃𝑖as 

∆𝜃𝑖 = 𝑄𝑖
𝑡  

𝑎2

𝑏
𝑆 −

𝑎2

𝑏
1 , 

Where 𝑄 𝑖
𝑡 =  𝑞 𝑖

1 , 𝑞 𝑖
2 , … , 𝑞 𝑖

𝑚 , 𝑄𝑖
𝑡 =  𝑞𝑖

1 ,  𝑞𝑖
2 , … , 𝑞𝑖

𝑚 , 𝑆𝑡 =

 𝑠1 ,  𝑠2, … , 𝑠𝑚  , and 1𝑡 =  1, 1, … , 1  with 𝑠𝜈 =
𝑓 𝑣. 𝑥𝜈 .Hence, (12) can be rewritten as 

𝑞 𝑖
𝜈 = 𝑞𝑖

𝜈 +
𝑚

𝑏
𝑄𝑖

𝑡 𝑆𝑠𝜈 −
𝑎2

𝑏
𝑄𝑖

𝑡 1𝑠𝜈 −
𝑎2

𝑏
𝑄𝑖

𝑡 𝑆 +
𝑎1

𝑏
𝑄𝑖

𝑡 1 

or, 

𝑄 𝑖
𝑡 = 𝑄𝑖

𝑡  𝐼𝑚 +
𝑚

𝑏
𝑆 𝑆𝑡 −

𝑎2

𝑏
𝑆1 𝑆𝑡 −

𝑎2

𝑏
1𝑡 +

𝑎1

𝑏
1 1𝑡  

= 𝑄𝑖
𝑡 𝛤2 𝑣 , 

where 

𝛤2 𝑣 = 𝐼𝑚 +
𝑚

𝑏
𝑆 𝑆𝑡 −

𝑎2

𝑏
𝑆1 𝑆𝑡 −

𝑎2

𝑏
1𝑡 +

𝑎1

𝑏
1 1𝑡 . 

We will show that the matrix 𝛤2 𝑣 satisfies the stability 

condition 

1 ≤
 𝛤2 𝑣 𝑈,  𝑈 

 𝑈 2 ≤ 2 

 

for arbitrary vector 𝑈. 

One propriety of the matrix 𝛤2 𝑣  is 

 𝛤2 𝑣 𝑈,  𝑈 =  𝑈 2 +
𝑚

𝑏
 𝑆,  𝑈 2 −

2𝑎2

𝑏
 𝑆,  𝑈  1,  𝑈 

+
𝑎1

𝑏
 1,  𝑈 2 

≤  𝑈 2 +
𝑚

𝑏
 𝑆 2 𝑈 2 

                            ≤ 2 𝑈 2.                                                  13  

 

and the other is 

 𝛤2 𝑣 𝑈,  𝑈 ≥  𝑈 2 +
𝑚

𝑏
  𝑆,  𝑈 −

𝑎2

𝑚
 1,  𝑈  

2

     

+
1

𝑚
 1 2 𝑈 2 

                      =
𝑚

𝑏
  𝑆,  𝑈 −

𝑎2

𝑚
 1,  𝑈  

2

+
𝑚

𝑏
  𝑆 −

𝑎2

𝑚
1,  𝑈  

2

 

≥ 
𝑚

𝑏
 𝑆 −

𝑎2

𝑚
1 

2

 𝑈 2 

                                  =  𝑈 2.                                             (14) 
 

From (13) and (14) we get 

1 ≤ 𝑚𝑎𝑥 𝜆𝑣 ≤ 2, 
Where  𝜆𝑣 , 𝑣 = 1, … , 𝑚 are the eigenvalues of the 

matrix 𝛤2 𝑣 . 

Next, we calculate the eigenvalues of the matrix 𝛤2 𝑣 to 

examine the Convergence rate of the error in more detail. The 

matrix 𝛤2 𝑣 can be written as 

𝛤2 𝑣 =

 

 

𝑧11   𝑧12   … 𝑧1𝑚

𝑧21    𝑧22
  … 𝑧2𝑚

  …………………………
𝑧𝑚1 𝑧𝑚2 … 𝑧𝑚𝑚  

 , 

Where𝑧𝑖𝑖 = 1 +
𝑚𝑠𝑖

2

𝑏
−

2𝑎2𝑠𝑖

𝑏
+

𝑎1

𝑏
,𝑧𝑖𝑗 =

𝑚𝑠𝑖𝑠𝑗

𝑏
−

𝑎2 𝑠𝑖+𝑠𝑗  

𝑏
+

𝑎1

𝑏
, 

and 𝑧𝑖𝑗 = 𝑧𝑗𝑖 .The characteristic equation of this matrix is 

 

 

𝛾2 𝜆  = 

𝜆 − 𝑧11  −𝑧12  … −𝑧12  

−𝑧21  𝜆 − 𝑧11  … −𝑧2𝑚  

…...……………………………............ 

−𝑧𝑚1 −𝑧𝑚2 … 𝜆 − 𝑧𝑚𝑚  

 

       = 

𝜆 − 1 + 𝑝11 𝑝12  … 𝑝1𝑚  

𝑝21 𝜆 − 1 + 𝑝22  … 𝑝2𝑚  

….....……………………….………............. 

𝑝𝑚1 𝑝𝑚2 … 𝜆 − 1 + 𝑝𝑚𝑚  

 
 
 
 
 
Where 

𝑝𝑖𝑖 = −𝑚𝑢𝑖
2 𝑏 − 1 𝑚 , and𝑝𝑖𝑗 = −𝑚𝑢𝑖𝑢𝑗 𝑏 − 1 𝑚 , with 

𝑢𝑖 = 𝑠𝑖 − 𝑎2 𝑚. By putting 𝑡𝑣 = 𝑏(1 − 𝜆)  𝑚𝑢𝑣
2 − 1,  we 

can reform 𝛾2 𝜆  as follows: 

𝛾2 𝜆 =
 𝑢𝑖

2𝑚
𝑖=1

𝑚
 
𝑚

𝑏
 
𝑚−1

𝐿2 𝜆  

 

 

 

 

= 

𝜆 − 1 + 𝑝11 𝑝12 … 𝑝1𝑚  1 

= 0, 
𝑝21  𝜆 − 1 + 𝑝22 … 𝑝2𝑚  1 

…………………………………………………. 

𝑝𝑚1 𝑝𝑚2 … 𝜆 − 1 + 𝑝𝑚𝑚  1 

0 0 … 0 1 
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with 

𝐿2 𝜆 = 

𝑡1 1 1 … 1 1 
1

𝑢1
 

1 𝑡2 1 … 1 1 
1

𝑢2
 

……………………………………………….. 

1 1 1 … 𝑡𝑚−1 1 
1

𝑢𝑚−1
 

1 1 1 … 1 𝑡𝑚  
1

𝑢𝑚
 

1

𝑢1
 

1

𝑢2
 

1

𝑢3
 … 

1

𝑢𝑚−1
 

1

𝑢𝑚
 

−𝑚2

𝑏
 

Using the Laplace theorem, we get 

 𝛾2 𝜆 =
 𝑢𝑖

2𝑚
𝑖=1

𝑚
 
𝑚

𝑏
 
𝑚−1

 −
𝑚2

𝑏
𝐴 + 𝐵 ,            (15) 

where 

𝐴 = 

𝑡1 1 … 1 

1 𝑡2 … 1 

…………………………. 

1 1 … 𝑡𝑚  

and 

𝐵 = − 
1

𝑢𝑖
2 𝑇𝑖 +   

1

𝑢𝑖𝑢𝑗
𝑇𝑖𝑗

𝑚

𝑗 =1
𝑗≠𝑖

𝑚

𝑖=1

𝑚

𝑖=1

 

with 

 

𝑇𝑖 = 

𝑡1 1 … 0 … 1 

, 

1 𝑡2 … 0 … 1 

……..………….. 

0 0 … 1 … 0 

………………… 

1 1 … 0 … 𝑡𝑚  
 

 

 

Generally, we have  

=  (𝑡𝑣 − 𝑎)

𝑚

𝑣=1

+ 𝑎   (𝑡𝑣 − 𝑎)

𝑖−1

𝑣=1

𝑚

𝑖=1

  𝑡𝑣 − 𝑎 .

𝑚

𝑣=𝑖+1

 

According to the above result we can reform A,𝑇𝑖 ,and𝑇𝑖as 

follows: 

𝐴 =  (𝑡𝑣 − 1)

𝑚

𝑣=1

+   (𝑡𝑣 − 1)

𝑖−1

𝑣=1

𝑚

𝑖=1

  𝑡𝑣 − 1 ,

𝑚

𝑣=𝑖+1

 

𝑇𝑖 =
 (𝑡𝑣 − 1)𝑚

𝑣=1

(𝑡𝑖 − 1)
+  

 (𝑡𝑣 − 1)𝑚
𝑣=1

(𝑡𝑗 − 1)(𝑡𝑖 − 1)

𝑚

𝑗=1
𝑗≠𝑖

, 

and 

𝑇𝑖𝑗 =
 (𝑡𝑣 − 1)𝑚

𝑣=1

(𝑡𝑖 − 1)(𝑡𝑗 − 1)
. 

But we have 𝑡𝑣 = 𝑏(1 − 𝜆)  𝑚𝑢𝑣
2 − 1  and so it follows that 

          𝐴 = (2 − 𝜆) 1 − 𝜆 𝑚−1  
𝑏

𝑚
 
𝑚

 
1

𝑢𝑣
2

𝑚

𝑣−1

       (16) 

and 

        𝐵 = − 
1

𝑢𝑖
2

  𝑡𝑣 − 1 𝑚
𝑣=1

 𝑡𝑖 − 1 

𝑚

𝑖=1

−  
1

𝑢𝑖
2  

  𝑡𝑣 − 1 𝑚
𝑣=1

 𝑡𝑗 − 1  𝑡𝑖 − 1 

𝑚

𝑗 =1
𝑗≠𝑖

𝑚

𝑖=1

 

+   
1

𝑢𝑖𝑢𝑗

  𝑡𝑣 − 1 𝑚
𝑣=1

 𝑡𝑗 − 1  𝑡𝑖 − 1 

𝑚

𝑗=1
𝑗≠1

𝑚

𝑖=1

 

          =  
1

𝑢𝑣
2

𝑚

𝑣=1

(
𝑏

𝑚
 1 − 𝜆 )𝑚−2

 
 
 
 
 

−𝑚 1 − 𝜆 
𝑏

𝑚
−   𝑢𝑗

2

𝑚

𝑗=1
𝑗≠𝑖

𝑚

𝑖=1

+   𝑢𝑖𝑢𝑗

𝑚

𝑗=1
𝑗≠1

𝑚

𝑖=1
 
 

= 𝐾  − 1 − 𝜆 𝑏 − 𝑏 +
𝑏

𝑚
−

𝑏

𝑚
  

            = −𝑏𝐾(2 − 𝜆),              (17) 

where 

𝐾 =  
𝑏

𝑚
 1 − 𝜆  

𝑚−2

 
1

𝑢𝑣
2 .

𝑚

𝑣=1

 

By substituting (16) and (17) into (15), we have 

𝛾2 𝜆 = −𝐾(2 − 𝜆)2  
𝑚

𝑏
 
𝑚−2 1

𝑚
 𝑢𝑖

2 = 0

𝑚

𝑖=1

 

which implies 

(2 − 𝜆)2 1 − 𝜆 𝑚−2 = 0, 

and finally we obtain 

𝜆 = 2, 2,1,1 … , 1. 

This theorem shows that the error after determining the 

weight w and the correction ∆𝜃 between the hidden and 

output layers is not convergent.   

Thus, we can conclude from the previous two sections that it 

is difficult to remove unit from the hidden layer after learning. 

On the other hand we can learn the neural networks by 

constructive learning, the description of this algorithm will be 

in the following section. 

 

 

 

 

𝑇𝑖𝑗 = 

𝑡1 1 … 0 … 1 … 1 

1 𝑡2 … 0 … 1 … 1 

………………………………………… 

0 0 … 1 … 0 … 0 

……………………………………….. 

1 1 … 0 … 1 … 1 

………………………………………… 

1 1 … 0 … 1 … 𝑡𝑚  

𝑡1 a … a a 

= 

𝑡1−𝑎  0 … 0 a 

a 𝑡2 … a a 
𝑎
− 𝑡2 

𝑡2

− 𝑎 
… 0 a 

…………………………

…… 

……………………………………

………….. 

a a … 𝑡𝑚−1 a 0 0 … 
𝑡𝑚−1

− 𝑎 
a 

a a  a 𝑡𝑚  0 0 … 
𝑎
− 𝑡𝑚  

𝑡𝑚  
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7. RULE EXTRACTION FROM 

TRAINED NEURAL NETWORK USING 

GENE EXPRESSION PROGRAMMING 
A method to extract comprehensible rules from trained 

artificial neural network using gene expression algorithm will 

be described in this section. 

A constructive learning algorithm of three layered 

feedforward neural network [37,38,39] is described to train 

the network by supervised learning of the output layer and 

consequence conditions of the connections between the layers. 

Then GEP is carrying to obtain the rules which are bimodal 

with consistency. These consistencies can be described 

theoretically or observably. Consequently, the rule is the 

knowledge frame in system consistencies. Hence, the bimodal 

relation between rule and consistency is reversed in the form 

of relation between meaning and function. The technique 

described here uses GEP algorithms to generate rule patterns 

that progress into a set of suitable rules which clarify the 

reasons behind the classifications which neural networks 

make given different inputs. A Variety number of experiments 

by using different datasets will execute, and the obtained rules 

compared with those consequent from an illustrative package 

of data mining on the same datasets. 

This technique is proposed to improve the unambiguousness 

of trained neural network that achieve classification tasks. It 

employ the trained neural networks to generate a set of 

instances their class label, and then extracts symbolic rules 

from those instances by GEP. Experiments with variety 

configurations show that, it can extract rules with high 

reliability that will describe the main function of trained 

neural network, or rules with powerful generalization ability 

that are even better than that are extracted from the trained 

neural network in prediction. 

8. EXPERIMENTAL RESULT 
To evaluate our rule extraction algorithm, we used data sets 

such as: 

8.1 Monk’s Task 
In Monk's Task, an instance is characterized by six attributes 

𝑎1 , … . , 𝑎6 which have two, three, or four discrete possible 

values. Itmeans, for our learning algorithms we encoded the 

problems into a17 dimensional Boolean vector. 

Monk #1: An example is mapped to a class "1" if and only if 
 𝑎1 = 𝑎2 or (𝑎5 = 1). In this problem, the training set 

contains 124 patterns for training and all 432 possible patterns 

are used to calculate the classification accuracy of the 

network. 

The number of inputs of the network for Monk's problems is 

17 binary inputs. Since the hidden units have a threshold, so 

we add another input represented by 1. Therefore the total 

inputs to the network under training are 18. We start the 

training of the network with one unit in the hidden layer. 

While the optimal weights of the network are obtained after 

adding another two hidden units. Hence the total number of 

the hidden units after training is 3. 

The classification accuracy of the network is still the same as 

the original one.  

The rules can be acquired by applying GEP to instances and 

the corresponding classes as classification problem. Before 

running GEP system, some parameters must be considered, 

the function set and terminal set for GEP are determined 

according to users knowledge for each problem. In this 

experiment, the function set is the logical operators And, Or., 

Not, The terminal set consists of the attribute names, 

relational operators ( =, #), and attribute values of the data set 

being mined. 

The obtained rules from running GEP are: 

Rule1: if  A1 = 1  A2 = 1  then Class1 

Rule2: if A5 = 1 then Class1 

Rule3: if  A1 = 3  A2 = 3 then Class1 

Rule4: if  A2 = 2  A1 = 2 then Class 1 

default class #2 

9. RESULTS & DISCUSSION 
To evaluate the performance of the learning algorithm we will 

use the commonly measures Accuracy, Precision, Sensitivity 

and Specificity [37]. The Accuracy is the number of correctly 

classified instances compared to the total number of instances 

presented to the system. It is defined as follows: 

 

                       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
              (18) 

 

Precision is the percentage of true positives compared to the 

total number of instances classified as positive events; one can 

define the precision as: 

                    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                      (19) 

The sensitivity measure (also called recall rate) is the 

percentage of positive labeled instances that were predicted as 

positive. It is defined by: 

                   𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                    (20) 

The specificity is the percentage of negative labeled instances 

that were predicted as negative and it can be defined as: 

specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                   (21) 

where 

TP (True Positives): is the number of instances covered by the 
rule which have the same class label as the rule.  

FP (False Positives): is the number of instances covered by 
the rule which have a different class label from the rule.  

FN (False Negatives): is the number of instances which are 

not covered by the rule but have the same class label as the 
rule.  

TN (True Negatives): is the number of instances which are not 

covered by the rule and do not have the same class label as the 
rule. 

The performance evaluation of our model is compared with 

other learning models presented by Waikato Environment for 

Knowledge Analysis (WEKA). WEKA [40] is an open source 
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software which consists of a collection of machine learning 

algorithms for data mining tasks such as REP Tree, Bayesian 

Networks, Radial Basis Function (RBF) Networks, and Single 

Conjunctive Rule Learner. 

Table 1. The performance measures of various models for 

Monk 1. 

Models 
Accuracy 

(%) 

Precision 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Nave 

Bayesian 
79.83 69.35 87.75 74.66 

RBF 

Network 
83.06 77.41 87.27 79.71 

REP 

Tree 
95.96 95.16 96.72 95.23 

Bagging 100 100 100 100 

Our 

Model 
100 100 100 100 

The accuracy rate of the discovered rules was 100% for the 

problem, larger than the accuracy rate of the neural network 

and C4.5. In addition, neural networks via genetic algorithms 

have been used to extract rules [41] and the accuracy rate was 

99.77% for monk1 problem. In the context of data mining this 

minor reduction in accuracy rate is a small price to pay for the 

large gain in the comprehensibility of the discovered 
knowledge. 

10. CONCLUSION 
Research work in the area of extracting rules from trained 

neural networks has witnessed much activity recently. 

However, the knowledge obtained by ANNs is generally 

incomprehensible for humans. 

In this paper we have introduced a method to extract accurate 

and comprehensible rules from a neural network and gene 

expression programming (GEP). 

In the first part, we use ANNs that achieve high classification 

accuracy which was trained by constructive learning 

algorithm. 

In the second part, an approach has been used for a gene 

expression algorithm to extract comprehensible rules from 

trained neural network for classification problems. From the 

features of instances and the labels of their classes we can use 

GEP to encode the rules in the form of logic expression. The 

system has been evaluated on some public domain data sets. 

The computational results have shown that the system 

extracted a very compact, comprehensible rule set without 

overly reducing the accuracy rate, in comparison with the 

accuracy rate of the rule set discovered by other methods. 

Widespread experiments have been carried out in this study to 

evaluate how well the proposed model performed on three 

benchmark classification problems in comparison with the 

other models. Finally, the results indicate that the proposed 

model is the superior compared with other model. 
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