
International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 17, March 2014

18

Destructive Learning Analysis and Constructive

Algorithm for Rule Extraction based on a Trained Neural

Network using Gene Expression Programming

Marghny H. Mohamed
Professor of Computer Science

Faculty of Computer and
Information

Assiut University

Yasmeen T. Mahmoud
Faculty of Science

Department of Computer
Science

Assiut University

Saad Z. Rida
Professor of Mathematics
 Faculty of Science

 South Valley University

ABSTRACT
The present paper introduces destructive neural network

learning techniques and presents the analysis of the

convergence rate of the error in a neural network with and

without threshold. Also, a constructive algorithm for rule

extraction based on a trained neural network using Gene

Expression Programming (GEP) is proposed. The rules are

not an easy task due to the large number of examples entered

to the input layer. Thus, we can use GEP to encode the rules

in the form of logic expression. Finally, the proposed model is

evaluated on different public-domain datasets and compared

with standard learning models from WEKA, and then the

results accentuate that the set of rules extraction from the

proposed method is more accurate and brief compared with

those achieved by the other models.

General Terms

Neural network, Destructive learning, Rule Extraction, Gene

expression programming.

Keywords
Neural Network, Destructive Learning, Constructive

Learning, Pruning, Rule Extraction, Classification Rules,

Gene Expression Programming.

1. INTRODUCTION
Large databases are regularly being collected in science,

medicines and business. The goal of Knowledge-discovery in

databases is to extract usable knowledge from a large amount

of data. To produce models that provide vision into data, it

draws upon methods in statistics, signal processing, pattern

recognition, information theory, machine learning, and neural

networks. Such models are expected to be accurate and

comprehensible to experts in the field. Although artificial

neural network (ANN) usually reaches high classification

accuracy, the obtained results sometimes may be

incomprehensible. This fact is causing a serious problem in

data mining applications. Various methods have been

improved to extract rules that are resulted from ANN and

needed to be formed to solve this problem. There are several

black-box rule extraction algorithms using evolutionary

approaches. In essence, a population consists of candidate

solutions and the fitness function reflects the chosen

optimization criterion. Most often, the fitness is based on

fidelity, but may also include terms clearly targeting improved

comprehensibility or accuracy. Comprehensibility is generally

controlled by using a length consequence, while accuracy can

be targeted by including training instances not used when

building the opaque model. Therefore, in this paper a study on

rule extraction from trained ANNs for classification problems

is carried out. The proposed approach makes use of particle

geneexpression algorithm to transform the behaviors of

trained ANNs into accurate and comprehensible classification

rules.

This paper is organized as follows. An Overview of Rule

Extraction is presented in section 2. Gene expression

programming is introduced in section 3. The Architectures of

the networks is shown in Section 4, the analysis of the

convergence rate in a destructive neural network without and

with thresholds in the output layer has been presented in

Sections 5 and 6, respectively. In Section 7, we will discuss

how to use GEP to extract rules from trained artificial neural

network.

The experimental results and the dataset used are introduced

in section 8. The result and discussion are reported in section

9. Finally, the conclusion is presented in section 10

2. OVERVIEW OF RULE EXTRACTION
In data mining research, rule extraction has become a

progressively important topic, and ANNs is applied for

machine learning in a variety of real world applications via an

increasing number of researchers and practitioners [1, 2, 3, 4,

5]. An inherit imperfection of ANNs is that the learned

knowledge is disguised in a large amount of connections,

which leads to the poor explanation ability and poor limpidity

of knowledge [6]. To compensate this imperfection,

developing algorithms to extract emblematic rules from

trained neural networks has been a significant topic in recent

years.

Rule extraction techniques can characterize extracted model in

form of M of N rules, If-Then rules, decision table, decision

tree, etc. Opaque models like ANN and SVM shows improved

accuracy performance in comparison to white box or apparent

model like decision tree [7, 8, 9]. Rule extraction is the task of

making an opaque model apparent and expectantly

comprehensible [10]. Comprehensibility is essential in many

application areas and to make neural networks more

comprehensible we need rule extraction from neural network.

Rule extraction techniques from neural network are gathered

into three approaches pedagogical, decompositional and

eclectic. The pedagogical method deals with the ANN as a

black-box and produces a knowledge representation that has

the same input-output mapping, ignoring the specific

architecture of the network. Input-output pairs are produced

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 17, March 2014

19

using the trained network, and rules are extracted from this

new database. The decompositional techniques study the

hidden unit activations and connection weights for improved

understanding of network configurations. Finally, eclectic

approaches integrate components of both pedagogical and

decompositional techniques [11]. The first decompositional

rule extraction technique is the KT algorithm developed by

LiMin. Fu [12]. The KT algorithm creates rules for each

concept consistent to a hidden or output unit whose summed

weights exceed the threshold of the unit. The same idea is

involved in the Subset algorithm developed by Towell and

Shavlik [13]. This algorithm checks each subset and tries to

find out if any of these links exceed the bias. If exceeded, then

these weights are rephrased as rules. The REFANN algorithm

extracts rules from trained ANN for non-linear function

approximation or regression was developed by Setiono [14].

Krishnan had projected an optimization minimizes the search

space by sorting the weights [15]. Towell et al. defined a

method named KBANN which is used to progress existing

rules [16]. Its main idea is to encode the existing domain

knowledge inside the network structure, then train such an

initialized network, and finally extract new and improved

rules. Validity Interval Analysis (VIA) [17], TREPAN [18],

Decision Tree Extractor (Dectext) [19], etcare contained in

representatives of the pedagogical techniques category. A

general purpose rule extraction procedure that extracting

characteristic knowledge from network designed in VIA

algorithm. Craven developed the TREPAN procedure which

treats the network as an oracle used to statistically verify the

significance and correctness of the generated rules. Dectext

was designed to trained network and extract a classical

decision tree from the network. REFNE algorithm was

developed by Zhou et al. [20], by using an assembly neural

network to generate new data instances, and then extract

emblematic rules from these instances. A method to extract

rules from a neural network was developed by Garcez et al.

[21], by first defining a partial ordering on the set of input

vectors. Then, eclectic techniques merge the elements of the

decompositional and the pedagogical approaches. They

analyze an ANN at the individual unit level but also extract

rules at the comprehensive level. The DEDEC algorithm is an

example of this approach [22], which extracts if-then rules

from MLP networks trained with the back-propagation

algorithm. Characteristic rules are extracted by DEDEC

efficiently from a set of individual cases. It arranges the cases

to be examined in order of importance. Using the magnitude

of the weight vectors in the trained ANN to order the input

units according to the relative share of their donation to the

output units achieves that target. The emphasis is on

extracting rules from those cases that occupy what are

considered to be the most important input units.

3. GENE EXPRESSION

PROGRAMMING
Evolutionary approaches are using for several black-box rule

extraction algorithms. The most recent technique of

evolutionary algorithms is Gene expression programming

[23].

Gene expression programming (GEP) is, like genetic

programming (GP) and genetic algorithms (GAs), a genetic

algorithm as it uses populations of individuals, selects them

based on fitness, and introduces genetic disparity using one or

more genetic operators [24]. The important difference

between the three algorithms exists in the nature of the

individuals, the individuals are nonlinear entities of different

shapes and sizes in GP, the individuals are linear strings of

fixed length in GAs, and the individuals are encrypted as

linear strings of fixed length which are subsequently

expressed as nonlinear entities of different shapes and sizes in

GEP.

The interaction of expression trees and chromosomes in GEP

denotes an evident translation system for translating the

language of chromosomes into the language of expression

trees (ETs). In this work, the structural organization of GEP

chromosomes is presented; allows a truly functional

genotype/phenotype relationship, as any modification made in

the genome always results in syntactically correct ETs or

programs. Certainly, the diverse set of genetic operators

developed to introduce genetic diversity in GEP populations

always produces valid ETs. So, GEP is an artificial life

system, well recognized beyond the replicator threshold, able

to evolution and adaptation.

The advantages of a system like GEP are clear from nature,

but the most important should be emphasized. First, the

chromosomes are simple entities: relatively small, linear, easy

to manipulate genetically (replicate, mutate, recombine,

transpose, etc.), compact. Second, the ETs are exclusively the

expression of their individual chromosomes; they are selected

to reproduce with modification according to fitness and, they

are the entities upon which selection acts. The chromosomes

of the individuals, not the ETs, are reproduced with

modification and transmitted to the next generation during

reproduction.

Based on these characteristics, GEP is tremendously flexible

and significantly exceeds the existing evolutionary

techniques. Actually, in the most complex problem, the

evolution of cellular automata rules for the density-

classification task, GEP exceeds GP by more than four orders

of magnitude.

The gene expression algorithms can be apportioned into two

categories: unsupervised and supervised.

The common task is predicting the state of gene expression

samples for supervised methods, for example, cancer against

normal. A lot of classification models are developed, for their

huge application abilities. There are three typical main

categorical methods for this task: statistical based methods,

traditional machine learning methods, and association rule-

based classifiers. The high graded genes and, the relation

among genes is not fully explored are usually selected by The

statistical-based methods [25,26,27,28]. Most of machine

learning methods are black box and hard to construe, although

they take the relation between the genes into consideration.

For example, although SVM [29] achieves very high

classification accuracy, it remains hard to construe the results.

In the unsupervised methods, association rules are used to find

interesting gene expression patterns [28,31,32,33], clustering

[30] is commonly used to find structured genes or similar

samples, reconstruct gene regulatory network [34,35], and

discover functional modules [36].

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 17, March 2014

20

4. NEURAL NETWORK

ARCHITECTURE
We consider an ANN that consists of an input layer with n+ 1

node, a hidden layer with h units, and an output layer with l

units

𝑦𝑖 = 𝑔 𝑤𝑖𝑗

𝑕

𝑗 =1

𝑓 𝑣𝑗𝑘 𝑥𝑘

𝑛+1

𝑘=1

 , 𝑖 = 1, 2, … , 𝑙, 1

where 𝑥𝑘 indicates the 𝑘-th input value, 𝑦𝑖 the 𝑖-th output

value, 𝑣𝑗𝑘 a weight connecting the 𝑘-th input node with the 𝑗-

th hidden unit, and 𝑤𝑖𝑗 a weight between the 𝑗-th hidden unit

and the 𝑖-th output unit. The functions 𝑓(𝑡)and 𝑔(𝑡) are given

by

 𝑓 𝑡 =
1 − 𝑒−𝑡

1 + 𝑒−𝑡 , (2)

 𝑔 𝑡 =
1

1 + 𝑒−𝑡 , 3

respectively. We write (1) as

 𝑦 = 𝑔 𝑊𝑓 𝑉𝑥 , (4)

Where we set 𝑥 = 𝑥1 , 𝑥2 , . . . , 𝑥𝐼 , 𝑥𝐼+1
𝑡with 𝑥𝐼+1 = −1, 𝑦 =

 𝑦1 , 𝑦2 , . . . , 𝑦𝑙
𝑡 ,𝑉 = 𝑣𝑗𝑘 and 𝑊 =

(𝑤𝑖𝑗).Moreover, 𝑓 𝑉𝑥 means

 𝑓 𝑉1 . 𝑥 , 𝑓 𝑉2. 𝑥 , … , 𝑓 𝑉𝑕 . 𝑥
𝑡
and 𝑔 𝑊𝑓 𝑉𝑥 indicates

 𝑔 𝑊1 . 𝑓 𝑉𝑥 , 𝑔 𝑊2. 𝑓 𝑉𝑥 , … , 𝑔 𝑊𝑙 . 𝑓 𝑉𝑥
𝑡
, where

 𝑉𝑗 = 𝑣𝑗1 , 𝑣𝑗2 , … , 𝑣𝑗 ,𝑛+1
𝑡
and 𝑊𝑖 = 𝑤𝑖1 , 𝑤𝑖2, … , 𝑤𝑖𝑕 𝑡 . This

network is shown in fig 1 Let 𝑥𝑣 , 𝑦𝑣 , 𝑣 = 1,2, … , 𝑚, be the

training data for the network. We define an output error

between the outputs of the network for the inputs 𝑥𝑣 and the

relevant outputs 𝑦𝑣by

 𝐽 𝑉, 𝑊 = 𝑔−1 𝑦𝑣 − 𝑊𝑓 𝑉𝑥𝑣 2, (5)

𝑚

𝑣=1

Fig 1: Neural network before removing one unit in the

hidden layer.

where𝑔−1 𝑦𝑣 = 𝑔−1 𝑦1
𝑣 , 𝑔−1 𝑦2

𝑣 , … , 𝑔−1 𝑦𝑙
𝑣

𝑡
is the

inverse of the function, and . stands for the Euclidean norm.

To determine 𝑉and 𝑊, we need to minimize the error function

(5).

5. CONVERGENCE RATE IN A

DESTRUCTIVE NEURAL NETWORK

WITHOUT THRESHOLDS IN THE

OUTPUT LAYER
In this section we will present the analysis of the convergence

of the error in destructive neural network.

Let 𝑣 denote a connection weight vector between the (𝑕 + 1)-

th hidden unit and the input layer, and let w be a weight vector

connecting the (𝑕 + 1)-th hidden unit with the output layer.

The ANN after removing the (𝑕 + 1)-th hidden unit is

shown in Fig 2. We denote the weight matrices (𝑉, 𝑣) and

(𝑊, 𝑤) by 𝑉 and 𝑊 , respectively.

Then we can rewrite (5) as

𝐽 𝑉, 𝑊 = 𝑔−1 𝑦𝑣 − 𝑊 𝑓 𝑉𝑥𝑣 − 𝑤𝑓 𝑣. 𝑥𝑣
2

𝑚

𝑣=1

Where

𝑊𝑓 𝑉𝑥𝑣 = 𝑊 𝑓 𝑉𝑥𝑣 + 𝑤𝑓 𝑣. 𝑥𝑣 and𝑤 is the removing

weight vector.

The function can be written as follows:

 𝐽 𝑉, 𝑊 = 𝐽 𝑉 , 𝑊 − 2 𝑑 , 𝑤 + 𝑎 𝑤 2 6

Fig 2: Neural network after removing one unit in the

hidden layer.

in which 𝑑and 𝑎denote

𝑑 = 𝑓 𝑣. 𝑥𝑣 𝑐𝑣

𝑚

𝑣=1

and

𝑎 = 𝑓2 𝑣. 𝑥𝑣 ,

𝑚

𝑣=1

Where 𝑐𝑣 = 𝑔−1 𝑦𝑣 − 𝑊𝑓(𝑉𝑥𝑣) and the symbol

 . , . indicates an inner product in 𝑅𝑙 . When the vector 𝑣 is

fixed, the vector 𝑤 which minimizes the error function by

𝑤 =
𝑑

𝑎

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 17, March 2014

21

So the error after removing a hidden unit can be expressed as

𝑐 𝑣 = 𝑔−1 𝑦𝑣 − 𝑊 𝑓 𝑉 𝑥𝑣

 = 𝑔−1 𝑦𝑣 − 𝑊𝑓 𝑉𝑥𝑣 + 𝑤𝑓 𝑣𝑥𝑣

 = 𝑐𝑣 +
𝑑

𝑎
𝑓 𝑣. 𝑥𝑣 .

Furthermore, using the symbols𝐶 𝑖
𝑡 = (𝑐𝑖

1 , 𝑐𝑖
2 , … , 𝑐𝑖

𝑚),

𝐶𝑖
𝑡 = 𝑐𝑖

1 , 𝑐𝑖
2, … , 𝑐𝑖

𝑚 and 𝑆𝑡 = 𝑆1, 𝑆2, … , 𝑆𝑚 with𝑠𝑣 =

𝑓(𝑣. 𝑥𝑣), we have

𝐶 𝑖
𝑡 = 𝐶𝑖

𝑡 +
1

𝑎
𝐶𝑖

𝑡𝑆𝑆𝑡 . (7)

Moreover we can rewrite (7) as

𝐶 𝑖
𝑡 = 𝐶𝑖

𝑡 𝐼𝑚 +
1

𝑎
𝑆𝑆𝑡 = 𝐶𝑖

𝑡𝛤1 𝑣 ,

where𝐼𝑚 is the unit matrix and

𝛤1 𝑣 = 𝐼𝑚 +
𝑆𝑆𝑡

𝑎
.

It is easy to show that the matrix 𝛤1 𝑣 satisfies

1 ≤
 𝛤1 𝑣 𝑈, 𝑈

 𝑈 2 ≤ 2

for arbitrary vector 𝑈.

This shows that the error after determining the weight w

between the hidden and output layers is not convergent. In

addition, the eigenvalues of this matrix can be obtained as

follows:

One propriety of the matrix 𝛤1 𝑣 is

 𝛤1 𝑣 𝑈, 𝑈 = 𝑈 2 +
1

𝑎
 𝑆 , 𝑈 2

 ≤ 𝑈 2 +
1

𝑎
 𝑆 2 𝑈 2 = 2 (8)

since 𝑎 = 𝑆 2, and the other is

 𝛤1 𝑣 𝑈, 𝑈 = 𝑈 2 +
1

𝑎
 𝑆 , 𝑈 2 ≥ 𝑈 2 (9)

From (8) and (9) we get

1 ≤
 𝛤1 𝑣 𝑈, 𝑈

 𝑈 2
≤ 2

which implies

1 ≤ 𝑚𝑎𝑥 𝜆𝑣 ≤ 2

Where 𝜆𝑣 , 𝑣 = 1, … , 𝑚 are the eigenvalues of the matrix

𝛤1 𝑣 .

Next, we calculate the eigenvalues of the matrix 𝛤1 𝑣 to

examine the Convergence rate of the error in more detail. The

matrix 𝛤1 𝑣 can be written as

𝛤1 𝑣 =

 𝑧11 −𝑧12 … −𝑧1𝑚

−𝑧21 𝑧22
 … −𝑧2𝑚

 …………………………
−𝑧𝑚1 −𝑧𝑚2 … 𝑧𝑚𝑚

 ,

Where 𝑧𝑖𝑖 = 1 + 𝑠𝑖
2 𝑎 , 𝑧𝑖𝑗 = −𝑠𝑖𝑠𝑗 𝑎 , and 𝑧𝑖𝑗 = 𝑧𝑗𝑖 . The

characteristic equation of this matrix is

𝛾1 𝜆 =

𝜆 − 𝑧11 𝑧12 … 𝑧1𝑚

𝑧21 𝜆 − 𝑧22 … 𝑧2𝑚

 ………………………… . ……………

 𝑧𝑚1 𝑧𝑚2 … 𝜆 − 𝑧𝑚𝑚

 = 0.

By putting 𝜂𝑖 = (1 − 𝜆) 𝑎 𝑠𝑖
2 , we can reform γ1(𝜆)as

follows:

γ1 𝜆 =
− 𝑠𝑖

2𝑚
𝑖=1

𝑎𝑚 𝐿1 𝜆 = 0,

where

𝐿1 𝜆 =

𝜂1 + 1 1 … 1
1 𝜂2 + 1 … 1

 ……… . . …………… . . ……

 1 1 … 𝜂𝑚 + 1

 .

The determinant 𝐿1 𝜆 can be transformed by Laplace theorem

as

𝐿1 𝜆 = 𝜂𝑣 + 𝜂𝑣

𝑖−1

𝑣=1

𝑚

𝑖=1

𝑚

𝑣=1

 𝜂𝑣

𝑚

𝑣=𝑖+1

= 𝜂𝑣

𝑚

𝑣=1

+
 𝜂𝑣

𝑚
𝑣=1

𝜂𝑖

𝑚

𝑖=1

.

Thus, we have

γ1 𝜆 =
− 𝑠𝑖

2𝑚
𝑖=1

𝑎𝑚 𝜂𝑣

𝑚

𝑣=1

+
 𝜂𝑣

𝑚
𝑣=1

𝜂𝑖

𝑚

𝑖=1

 = 2 − 𝜆 1 − 𝜆 𝑚−1 = 0.
Hence the eigenvalues of this matrix are given by

𝜆 = 2, 1, … ,1,1.
This shows that the error after determining the weight w

between the hidden and output layers is not convergent.

6. CONVERGENCE RATE IN A

DESTRUCTIVE NEURAL NETWORK

WITH THRESHOLDS IN THE OUTPUT

LAYER
We consider the network with thresholds 𝜃𝑖 , 𝑖 = 1, 2, … , 𝑙,in

its output layer before removing one unit in the hidden layer.

In this case, we can write

𝑦𝑖 = 𝑔 𝑤𝑖𝑗

𝑕

𝑗 =1

𝑓 𝑣𝑗𝑘 𝑥𝑘

𝑛+1

𝑘=1

 − 𝜃𝑖 , 𝑖 = 1, 2, … , 𝑙

whose simple form is

𝑦 = 𝑔 𝑊𝑓 𝑉𝑥 − 𝜃 ,where𝜃 = (𝜃1 , 𝜃2 , … , 𝜃𝑙)

and𝑔 𝑊𝑓 𝑉𝑥 − 𝜃 = (𝑔 𝑊1 . 𝑓 𝑉𝑥 − 𝜃1 ,
𝑔 𝑊2 . 𝑓 𝑉𝑥 − 𝜃2 , … , 𝑔 𝑊𝑙 . 𝑓 𝑉𝑥 − 𝜃𝑙).

The error function that related to the present network takes the

following form

 𝐽 𝑉, 𝑊, 𝜃 = 𝑔−1 𝑦𝑣 − 𝑊𝑓 𝑉𝑥𝑣 + 𝜃 2 .

𝑚

𝑣=1

We remove one unit from the hidden layer and represent

removed weight vectors again by 𝑣and 𝑤. By removing one

hidden unit, we can write the threshold vector θ as 𝜃 = 𝜃 +
∆𝜃.

The error function related to this network can be expressed as

𝐽 𝑉 , 𝑊 , 𝜃 = 𝑔−1 𝑦𝑣 − 𝑊 𝑓 𝑉 𝑥𝑣 + 𝜃
2

,

𝑚

𝑣=1

where we have used again the symbols 𝑉 = (𝑉, 𝑣) and

𝑊 = (𝑊, 𝑤). The same procedure as in the previous section

will be applied in order to determine 𝑤 and ∆𝜃 so that

𝐽 𝑉 , 𝑊 , 𝜃 is minimum. Since 𝑊𝑓 𝑉𝑥𝑣 = 𝑊 𝑓 𝑉𝑥𝑣 +

𝑤𝑓 𝑣. 𝑥𝑣 and 𝜃 = 𝜃 + ∆𝜃, we can decompose the error

function 𝐽 𝑉 , 𝑊 , 𝜃 as

𝐽 𝑉 , 𝑊 , 𝜃 = 𝐽 𝑉, 𝑊, 𝜃 + 2 𝑓 𝑣. 𝑥𝜈 𝑞𝜈 + ∆𝜃, 𝑤

𝑚

𝜈=1

 − 𝑓2(𝑣.

𝑚

𝜈=1

𝑥𝜈) 𝑤 2 − 2 ∆𝜃 , 𝑞𝑣 − ∆𝜃 2,

𝑚

𝜈=1

𝑚

𝜈=1

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 17, March 2014

22

where

𝑞𝜈 = 𝑔−1 𝑦𝑣 − 𝑊𝑓 𝑉𝑥𝑣 + 𝜃.

By minimizing this error function, we can easily determine 𝑤

and ∆𝜃 as

 𝑤 =
𝑚𝑑1 − 𝑎2𝑑2

𝑏
, (10)

 ∆𝜃 =
𝑎2𝑑1 − 𝑎1𝑑2

𝑏
, (11)

where

𝑎1 = 𝑓2 𝑣. 𝑥𝜈

𝑚

𝜈=1

,

𝑎2 = 𝑓 𝑣. 𝑥𝜈

𝑚

𝜈=1

,

 𝑑1 = 𝑓 𝑣. 𝑥𝜈

𝑚

𝜈=1

𝑞𝜈 ,

𝑑2 = 𝑞𝜈

𝑚

𝜈=1

,

𝑏 = 𝑚𝑎1 − 𝑎2
2.

Now we consider the convergence rate of the error as in the

previous section.

Since

 𝑞 𝜈 = 𝑔−1 𝑦𝑣 − 𝑊 𝑓 𝑉 𝑥𝑣 + 𝜃

 = 𝑔−1 𝑦𝑣 − 𝑊𝑓 𝑉𝑥𝑣 + 𝑤𝑓 𝑣. 𝑥𝑣 + 𝜃 − ∆𝜃

= 𝑞𝜈 + 𝑤𝑓 𝑣. 𝑥𝑣 − ∆𝜃,

we can write the error at i-th component in the output layer as

𝑞 𝑖
𝜈 = 𝑞𝑖

𝜈 + 𝑤𝑖𝑓 𝑣. 𝑥𝑣 − ∆𝜃𝑖 . (12)

From (10), the i-th component of w can be written as

𝑤𝑖 =
𝑚

𝑏
𝑑1𝑖 −

𝑎2

𝑏
𝑑2𝑖

 =
𝑚

𝑏
 𝑠𝜈𝑞𝑖

𝜈

𝑚

𝜈=1

−
𝑎2

𝑏
 𝑞𝑖

𝜈

𝑚

𝜈=1

 =
𝑚

𝑏
𝑄𝑖

𝑡 𝑆 −
𝑎2

𝑏
𝑄𝑖

𝑡 1

 = 𝑄𝑖
𝑡

𝑚

𝑏
𝑆 −

𝑎2

𝑏
1 .

Similarly from (11), we can also write ∆𝜃𝑖as

∆𝜃𝑖 = 𝑄𝑖
𝑡

𝑎2

𝑏
𝑆 −

𝑎2

𝑏
1 ,

Where 𝑄 𝑖
𝑡 = 𝑞 𝑖

1 , 𝑞 𝑖
2 , … , 𝑞 𝑖

𝑚 , 𝑄𝑖
𝑡 = 𝑞𝑖

1 , 𝑞𝑖
2 , … , 𝑞𝑖

𝑚 , 𝑆𝑡 =

 𝑠1 , 𝑠2, … , 𝑠𝑚 , and 1𝑡 = 1, 1, … , 1 with 𝑠𝜈 =
𝑓 𝑣. 𝑥𝜈 .Hence, (12) can be rewritten as

𝑞 𝑖
𝜈 = 𝑞𝑖

𝜈 +
𝑚

𝑏
𝑄𝑖

𝑡 𝑆𝑠𝜈 −
𝑎2

𝑏
𝑄𝑖

𝑡 1𝑠𝜈 −
𝑎2

𝑏
𝑄𝑖

𝑡 𝑆 +
𝑎1

𝑏
𝑄𝑖

𝑡 1

or,

𝑄 𝑖
𝑡 = 𝑄𝑖

𝑡 𝐼𝑚 +
𝑚

𝑏
𝑆 𝑆𝑡 −

𝑎2

𝑏
𝑆1 𝑆𝑡 −

𝑎2

𝑏
1𝑡 +

𝑎1

𝑏
1 1𝑡

= 𝑄𝑖
𝑡 𝛤2 𝑣 ,

where

𝛤2 𝑣 = 𝐼𝑚 +
𝑚

𝑏
𝑆 𝑆𝑡 −

𝑎2

𝑏
𝑆1 𝑆𝑡 −

𝑎2

𝑏
1𝑡 +

𝑎1

𝑏
1 1𝑡 .

We will show that the matrix 𝛤2 𝑣 satisfies the stability

condition

1 ≤
 𝛤2 𝑣 𝑈, 𝑈

 𝑈 2 ≤ 2

for arbitrary vector 𝑈.

One propriety of the matrix 𝛤2 𝑣 is

 𝛤2 𝑣 𝑈, 𝑈 = 𝑈 2 +
𝑚

𝑏
 𝑆, 𝑈 2 −

2𝑎2

𝑏
 𝑆, 𝑈 1, 𝑈

+
𝑎1

𝑏
 1, 𝑈 2

≤ 𝑈 2 +
𝑚

𝑏
 𝑆 2 𝑈 2

 ≤ 2 𝑈 2. 13

and the other is

 𝛤2 𝑣 𝑈, 𝑈 ≥ 𝑈 2 +
𝑚

𝑏
 𝑆, 𝑈 −

𝑎2

𝑚
 1, 𝑈

2

+
1

𝑚
 1 2 𝑈 2

 =
𝑚

𝑏
 𝑆, 𝑈 −

𝑎2

𝑚
 1, 𝑈

2

+
𝑚

𝑏
 𝑆 −

𝑎2

𝑚
1, 𝑈

2

≥
𝑚

𝑏
 𝑆 −

𝑎2

𝑚
1

2

 𝑈 2

 = 𝑈 2. (14)

From (13) and (14) we get

1 ≤ 𝑚𝑎𝑥 𝜆𝑣 ≤ 2,
Where 𝜆𝑣 , 𝑣 = 1, … , 𝑚 are the eigenvalues of the

matrix 𝛤2 𝑣 .

Next, we calculate the eigenvalues of the matrix 𝛤2 𝑣 to

examine the Convergence rate of the error in more detail. The

matrix 𝛤2 𝑣 can be written as

𝛤2 𝑣 =

𝑧11 𝑧12 … 𝑧1𝑚

𝑧21 𝑧22
 … 𝑧2𝑚

 …………………………
𝑧𝑚1 𝑧𝑚2 … 𝑧𝑚𝑚

 ,

Where𝑧𝑖𝑖 = 1 +
𝑚𝑠𝑖

2

𝑏
−

2𝑎2𝑠𝑖

𝑏
+

𝑎1

𝑏
,𝑧𝑖𝑗 =

𝑚𝑠𝑖𝑠𝑗

𝑏
−

𝑎2 𝑠𝑖+𝑠𝑗

𝑏
+

𝑎1

𝑏
,

and 𝑧𝑖𝑗 = 𝑧𝑗𝑖 .The characteristic equation of this matrix is

𝛾2 𝜆 =

𝜆 − 𝑧11 −𝑧12 … −𝑧12

−𝑧21 𝜆 − 𝑧11 … −𝑧2𝑚

…...……………………………............

−𝑧𝑚1 −𝑧𝑚2 … 𝜆 − 𝑧𝑚𝑚

 =

𝜆 − 1 + 𝑝11 𝑝12 … 𝑝1𝑚

𝑝21 𝜆 − 1 + 𝑝22 … 𝑝2𝑚

….....……………………….……….............

𝑝𝑚1 𝑝𝑚2 … 𝜆 − 1 + 𝑝𝑚𝑚

Where

𝑝𝑖𝑖 = −𝑚𝑢𝑖
2 𝑏 − 1 𝑚 , and𝑝𝑖𝑗 = −𝑚𝑢𝑖𝑢𝑗 𝑏 − 1 𝑚 , with

𝑢𝑖 = 𝑠𝑖 − 𝑎2 𝑚. By putting 𝑡𝑣 = 𝑏(1 − 𝜆) 𝑚𝑢𝑣
2 − 1, we

can reform 𝛾2 𝜆 as follows:

𝛾2 𝜆 =
 𝑢𝑖

2𝑚
𝑖=1

𝑚

𝑚

𝑏

𝑚−1

𝐿2 𝜆

=

𝜆 − 1 + 𝑝11 𝑝12 … 𝑝1𝑚 1

= 0,
𝑝21 𝜆 − 1 + 𝑝22 … 𝑝2𝑚 1

………………………………………………….

𝑝𝑚1 𝑝𝑚2 … 𝜆 − 1 + 𝑝𝑚𝑚 1

0 0 … 0 1

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 17, March 2014

23

with

𝐿2 𝜆 =

𝑡1 1 1 … 1 1
1

𝑢1

1 𝑡2 1 … 1 1
1

𝑢2

………………………………………………..

1 1 1 … 𝑡𝑚−1 1
1

𝑢𝑚−1

1 1 1 … 1 𝑡𝑚
1

𝑢𝑚

1

𝑢1

1

𝑢2

1

𝑢3
 …

1

𝑢𝑚−1

1

𝑢𝑚

−𝑚2

𝑏

Using the Laplace theorem, we get

 𝛾2 𝜆 =
 𝑢𝑖

2𝑚
𝑖=1

𝑚

𝑚

𝑏

𝑚−1

 −
𝑚2

𝑏
𝐴 + 𝐵 , (15)

where

𝐴 =

𝑡1 1 … 1

1 𝑡2 … 1

………………………….

1 1 … 𝑡𝑚

and

𝐵 = −
1

𝑢𝑖
2 𝑇𝑖 +

1

𝑢𝑖𝑢𝑗
𝑇𝑖𝑗

𝑚

𝑗 =1
𝑗≠𝑖

𝑚

𝑖=1

𝑚

𝑖=1

with

𝑇𝑖 =

𝑡1 1 … 0 … 1

,

1 𝑡2 … 0 … 1

……..…………..

0 0 … 1 … 0

…………………

1 1 … 0 … 𝑡𝑚

Generally, we have

= (𝑡𝑣 − 𝑎)

𝑚

𝑣=1

+ 𝑎 (𝑡𝑣 − 𝑎)

𝑖−1

𝑣=1

𝑚

𝑖=1

 𝑡𝑣 − 𝑎 .

𝑚

𝑣=𝑖+1

According to the above result we can reform A,𝑇𝑖 ,and𝑇𝑖as

follows:

𝐴 = (𝑡𝑣 − 1)

𝑚

𝑣=1

+ (𝑡𝑣 − 1)

𝑖−1

𝑣=1

𝑚

𝑖=1

 𝑡𝑣 − 1 ,

𝑚

𝑣=𝑖+1

𝑇𝑖 =
 (𝑡𝑣 − 1)𝑚

𝑣=1

(𝑡𝑖 − 1)
+

 (𝑡𝑣 − 1)𝑚
𝑣=1

(𝑡𝑗 − 1)(𝑡𝑖 − 1)

𝑚

𝑗=1
𝑗≠𝑖

,

and

𝑇𝑖𝑗 =
 (𝑡𝑣 − 1)𝑚

𝑣=1

(𝑡𝑖 − 1)(𝑡𝑗 − 1)
.

But we have 𝑡𝑣 = 𝑏(1 − 𝜆) 𝑚𝑢𝑣
2 − 1 and so it follows that

 𝐴 = (2 − 𝜆) 1 − 𝜆 𝑚−1
𝑏

𝑚

𝑚

1

𝑢𝑣
2

𝑚

𝑣−1

 (16)

and

 𝐵 = −
1

𝑢𝑖
2

 𝑡𝑣 − 1 𝑚
𝑣=1

 𝑡𝑖 − 1

𝑚

𝑖=1

−
1

𝑢𝑖
2

 𝑡𝑣 − 1 𝑚
𝑣=1

 𝑡𝑗 − 1 𝑡𝑖 − 1

𝑚

𝑗 =1
𝑗≠𝑖

𝑚

𝑖=1

+
1

𝑢𝑖𝑢𝑗

 𝑡𝑣 − 1 𝑚
𝑣=1

 𝑡𝑗 − 1 𝑡𝑖 − 1

𝑚

𝑗=1
𝑗≠1

𝑚

𝑖=1

 =
1

𝑢𝑣
2

𝑚

𝑣=1

(
𝑏

𝑚
 1 − 𝜆)𝑚−2

−𝑚 1 − 𝜆
𝑏

𝑚
− 𝑢𝑗

2

𝑚

𝑗=1
𝑗≠𝑖

𝑚

𝑖=1

+ 𝑢𝑖𝑢𝑗

𝑚

𝑗=1
𝑗≠1

𝑚

𝑖=1

= 𝐾 − 1 − 𝜆 𝑏 − 𝑏 +
𝑏

𝑚
−

𝑏

𝑚

 = −𝑏𝐾(2 − 𝜆), (17)

where

𝐾 =
𝑏

𝑚
 1 − 𝜆

𝑚−2

1

𝑢𝑣
2 .

𝑚

𝑣=1

By substituting (16) and (17) into (15), we have

𝛾2 𝜆 = −𝐾(2 − 𝜆)2
𝑚

𝑏

𝑚−2 1

𝑚
 𝑢𝑖

2 = 0

𝑚

𝑖=1

which implies

(2 − 𝜆)2 1 − 𝜆 𝑚−2 = 0,

and finally we obtain

𝜆 = 2, 2,1,1 … , 1.

This theorem shows that the error after determining the

weight w and the correction ∆𝜃 between the hidden and

output layers is not convergent.

Thus, we can conclude from the previous two sections that it

is difficult to remove unit from the hidden layer after learning.

On the other hand we can learn the neural networks by

constructive learning, the description of this algorithm will be

in the following section.

𝑇𝑖𝑗 =

𝑡1 1 … 0 … 1 … 1

1 𝑡2 … 0 … 1 … 1

…………………………………………

0 0 … 1 … 0 … 0

………………………………………..

1 1 … 0 … 1 … 1

…………………………………………

1 1 … 0 … 1 … 𝑡𝑚

𝑡1 a … a a

=

𝑡1−𝑎 0 … 0 a

a 𝑡2 … a a
𝑎
− 𝑡2

𝑡2

− 𝑎
… 0 a

…………………………

……

……………………………………

…………..

a a … 𝑡𝑚−1 a 0 0 …
𝑡𝑚−1

− 𝑎
a

a a a 𝑡𝑚 0 0 …
𝑎
− 𝑡𝑚

𝑡𝑚

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 17, March 2014

24

7. RULE EXTRACTION FROM

TRAINED NEURAL NETWORK USING

GENE EXPRESSION PROGRAMMING
A method to extract comprehensible rules from trained

artificial neural network using gene expression algorithm will

be described in this section.

A constructive learning algorithm of three layered

feedforward neural network [37,38,39] is described to train

the network by supervised learning of the output layer and

consequence conditions of the connections between the layers.

Then GEP is carrying to obtain the rules which are bimodal

with consistency. These consistencies can be described

theoretically or observably. Consequently, the rule is the

knowledge frame in system consistencies. Hence, the bimodal

relation between rule and consistency is reversed in the form

of relation between meaning and function. The technique

described here uses GEP algorithms to generate rule patterns

that progress into a set of suitable rules which clarify the

reasons behind the classifications which neural networks

make given different inputs. A Variety number of experiments

by using different datasets will execute, and the obtained rules

compared with those consequent from an illustrative package

of data mining on the same datasets.

This technique is proposed to improve the unambiguousness

of trained neural network that achieve classification tasks. It

employ the trained neural networks to generate a set of

instances their class label, and then extracts symbolic rules

from those instances by GEP. Experiments with variety

configurations show that, it can extract rules with high

reliability that will describe the main function of trained

neural network, or rules with powerful generalization ability

that are even better than that are extracted from the trained

neural network in prediction.

8. EXPERIMENTAL RESULT
To evaluate our rule extraction algorithm, we used data sets

such as:

8.1 Monk’s Task
In Monk's Task, an instance is characterized by six attributes

𝑎1 , … . , 𝑎6 which have two, three, or four discrete possible

values. Itmeans, for our learning algorithms we encoded the

problems into a17 dimensional Boolean vector.

Monk #1: An example is mapped to a class "1" if and only if
 𝑎1 = 𝑎2 or (𝑎5 = 1). In this problem, the training set

contains 124 patterns for training and all 432 possible patterns

are used to calculate the classification accuracy of the

network.

The number of inputs of the network for Monk's problems is

17 binary inputs. Since the hidden units have a threshold, so

we add another input represented by 1. Therefore the total

inputs to the network under training are 18. We start the

training of the network with one unit in the hidden layer.

While the optimal weights of the network are obtained after

adding another two hidden units. Hence the total number of

the hidden units after training is 3.

The classification accuracy of the network is still the same as

the original one.

The rules can be acquired by applying GEP to instances and

the corresponding classes as classification problem. Before

running GEP system, some parameters must be considered,

the function set and terminal set for GEP are determined

according to users knowledge for each problem. In this

experiment, the function set is the logical operators And, Or.,

Not, The terminal set consists of the attribute names,

relational operators (=, #), and attribute values of the data set

being mined.

The obtained rules from running GEP are:

Rule1: if A1 = 1 A2 = 1 then Class1

Rule2: if A5 = 1 then Class1

Rule3: if A1 = 3 A2 = 3 then Class1

Rule4: if A2 = 2 A1 = 2 then Class 1

default class #2

9. RESULTS & DISCUSSION
To evaluate the performance of the learning algorithm we will

use the commonly measures Accuracy, Precision, Sensitivity

and Specificity [37]. The Accuracy is the number of correctly

classified instances compared to the total number of instances

presented to the system. It is defined as follows:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (18)

Precision is the percentage of true positives compared to the

total number of instances classified as positive events; one can

define the precision as:

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (19)

The sensitivity measure (also called recall rate) is the

percentage of positive labeled instances that were predicted as

positive. It is defined by:

 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (20)

The specificity is the percentage of negative labeled instances

that were predicted as negative and it can be defined as:

specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (21)

where

TP (True Positives): is the number of instances covered by the
rule which have the same class label as the rule.

FP (False Positives): is the number of instances covered by
the rule which have a different class label from the rule.

FN (False Negatives): is the number of instances which are

not covered by the rule but have the same class label as the
rule.

TN (True Negatives): is the number of instances which are not

covered by the rule and do not have the same class label as the
rule.

The performance evaluation of our model is compared with

other learning models presented by Waikato Environment for

Knowledge Analysis (WEKA). WEKA [40] is an open source

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 17, March 2014

25

software which consists of a collection of machine learning

algorithms for data mining tasks such as REP Tree, Bayesian

Networks, Radial Basis Function (RBF) Networks, and Single

Conjunctive Rule Learner.

Table 1. The performance measures of various models for

Monk 1.

Models
Accuracy

(%)

Precision

(%)

Sensitivity

(%)

Specificity

(%)

Nave

Bayesian
79.83 69.35 87.75 74.66

RBF

Network
83.06 77.41 87.27 79.71

REP

Tree
95.96 95.16 96.72 95.23

Bagging 100 100 100 100

Our

Model
100 100 100 100

The accuracy rate of the discovered rules was 100% for the

problem, larger than the accuracy rate of the neural network

and C4.5. In addition, neural networks via genetic algorithms

have been used to extract rules [41] and the accuracy rate was

99.77% for monk1 problem. In the context of data mining this

minor reduction in accuracy rate is a small price to pay for the

large gain in the comprehensibility of the discovered
knowledge.

10. CONCLUSION
Research work in the area of extracting rules from trained

neural networks has witnessed much activity recently.

However, the knowledge obtained by ANNs is generally

incomprehensible for humans.

In this paper we have introduced a method to extract accurate

and comprehensible rules from a neural network and gene

expression programming (GEP).

In the first part, we use ANNs that achieve high classification

accuracy which was trained by constructive learning

algorithm.

In the second part, an approach has been used for a gene

expression algorithm to extract comprehensible rules from

trained neural network for classification problems. From the

features of instances and the labels of their classes we can use

GEP to encode the rules in the form of logic expression. The

system has been evaluated on some public domain data sets.

The computational results have shown that the system

extracted a very compact, comprehensible rule set without

overly reducing the accuracy rate, in comparison with the

accuracy rate of the rule set discovered by other methods.

Widespread experiments have been carried out in this study to

evaluate how well the proposed model performed on three

benchmark classification problems in comparison with the

other models. Finally, the results indicate that the proposed

model is the superior compared with other model.

11. REFERENCES
[1] Baesens, B., Setiono, R.; Mues, C., Vanthienen, J.

2003Using neural network rule extraction and decision

tables for credit-risk evaluation. Manage. Sci., 49, 312-

329.

[2] Jacobsson, H. 2005Rule extraction from recurrent

neural networks: A taxonomy and review. Neural

Comput.,17, 1223-1263.

[3] Kahramanli, H.; Allahverdi, N. 2009Rule extraction

from trained adaptive neural networks using artificial

immune systems. Expert Syst. Appl., 36, 1513-1522.

[4] Setiono, R.; Baesens, B.; Mues, C. 2009A note on

knowledge discovery using neural networks and its

application to credit screening, Eur. J. Operation. Res.,

192, 326-332.

[5] Tickle, A.B., Andrews, R.; Golea, M.; Diederich, J.

1998The truth will come to light: Directions and

challenges in extracting the knowledge embedded

within trained artificial neural networks. IEEE Trans.

Neural Netw.,9, 1057-1067.

[6] Setiono, R.; Leow, W.K. 2000FERNN: An algorithm

for fast extraction of rules from neural networks.Appl.

Intell.,12, 15-25.

[7] Baesens, B. T.,Gestel,V. S.,Viaene, M. Stepanova, J.

Suykens and Vanthienen, J. 2003Benchmarking state

of the art classification algorithms for credit scoring,

vol. 56, no. 6, 627-635.

[8] Johansson, U., Konig, R. and Niklasson, L.

2005Automatically balancing accuracy and

comprehensibility in predictive modeling.

[9] Thrun,S. e. a.,1991 The MONK's problems: A

performance comparison of different learning

algorithms, Pittsburgh, 91-197.

[10] Löfström,T. and Odqvist,P. 2004 RULE

EXTRACTION IN DATA MINING - FROM A

META LEARNING PERSPECTIVE.

[11] HumarK.,NovruzA., 2009"Rule extraction from trained

adaptive neural networks using artificial immune

systems", Expert Systems with Applications 36, 1513–

1522.

[12] LiMin. Fu, 1994 Rule generation from neural

networks, IEEE Transactions on Systems, Man and

Cybernetics, Vol. 24 No.8 , 1114-1124.

[13] Towell, G. and Shavlik,J. 1993TheExtraction of

Refined Rules From Knowledge Based Neural

Networks, Machine Learning, Vol. 131, 71-101.

[14] Setiono, R.,Wee,K. H. and Zurada,M. J. 2002

Extraction of Rules from artificial neural network for

nonlinear regression, IEEE Transaction Neural

Networks, Vol. 23 No. 23, 564-577.

[15] Krishnan,R.,Sivakumar,G. and Bhattacharya,P. 1999 A

search technique for rule extraction from trained neural

networks, Pattern Recognit. Lett., vol. 20, no. 3, Mar.,

273–280.

[16] Towell,G. G.,Shavlik,J. W. and Noordewier,M. O.

1990Refinement of approximate domain theories by

knowledge-based neural networks, in Proc. 8th Nat.

Conf. Artif. Intell., Boston, MA, 861–866.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 17, March 2014

26

[17] Thrun,S. B. 1994Extracting provably correct rules

from neural networks, in Technical Report IAI-TR-93-

5, Institut fur Informatik III Universitat Bonn.

[18] Craven,M. W. 1996 Extracting comprehensible models

from trained neural networks, Ph.D. Thesis, University

of Wisconsin, Madison.

[19] OlcayB., 2002Extracting decision tree from trained

neural networks, ACM SIGKDD International

Conference on Knowledge Discovery and Data

Mining, 456-461.

[20] Zhou, Z. H., Jiang, Y., Yang, Y. B. and Chen, S.F.

2003Extracting neural networks from trained neural

network Ensembles, AI Communications, Vol. 16

No.1, 3-15.

[21] Garcez, A., d’Avila,S., Broda, K., Gabbay, D.M.

2001Symbolic knowledge extraction from trained

neural networks: A sound approach, Artificial

Intelligence, Vol. 125, 155-207.

[22] Tickle, A.B., Orlowski, M., and Diederich, J.,

1996DEDEC: A Methodology for Extracting Rules

from Trained Artificial Neural Networks, Proceedings

of the Rule Extraction from Trained Artificial Neural

Networks Workshop.

[23] Bojarczuk,C. C., Lopes, H. S., Freitas, A.A. and

Michalk., 2004 A constrained-syntax genetic

programming system for discovering classification

rules: application to medial database. Artificial

Intelligence in Medicine, Volume 30, Issue 1, 27-48.

[24] Mitchell,M. MIT Press, 1996an Introduction to Genetic

Algorithms.

[25] Dudoit,S., Yang, Y. H., Callow, M. J. and Speed,T. P.

2002Statistical Methods for Identifying Differentially

Expressed Genes in Replicated cDNA Microarray

Experiments, StatisticaSinica, vol. 12, pages 111-139.

[26] Reiner,A., Yekutieli, D. and Benjamini, Y.

2003Identifying ifferentially Expressed Genes Using

False Discovery Rate Controlling Procedures,

Bioinformatics, vol. 19, no. 3 , pages 368-375.

[27] Efron,A.,Tibshirani,R.,Storey,J. D. and Tusher,V.

2001Empirical Bayes Analysis of a Microarray

Experiment, J. Am. Statistical Assoc., vol. 96, pages

1151-1160.

[28] Creighton,C. and Hanash,S. 2003Mining Gene

Expression Databases for Association rules,

Bioinformatics, vol. 19, no. 1, 79-86.

[29] Brown, M. P. S. et al., 2000Knowledge-Based

Analysis of Microarray Gene Expression Data by

Using Support Vector Machines,Proc. Nat’l Academy

of Sciences USA, vol. 97, no. 1, pages 262-267.

[30] Jiang, D., Tang,C. and Zhang, A. 2004Cluster Analysis

for Gene Expression Data: A Survey, IEEE Trans.

Knowledge and Data Eng., vol. 16, no. 11, (Nov.2004)

pages 1370-1386.

[31] Pan,F. et al.,2003 “Carpenter: Finding Closed Patterns

in Long Biological Datasets,” Proc. Ninth ACM

SIGKDD Int’l Conf. Knowledge Discovery and Data

Mining (KDD ’03).

[32] Cong ,G. et al., 2004Farmer: Finding Interesting Rule

Groups in Microarray Datasets, Proc. ACM SIGMOD

Int’l Conf. Management of Data (SIGMOD ’04).

[33] Cong , G. et al., 2005Mining Top-k Covering Rule

Groups for Gene Expression Data, Proc. ACM

SIGMOD Int’l Conf. Management of Data (SIGMOD

’05).

[34] Wang,H. C. and Lee,Y.S. 2005 Gene Network

Prediction from Microarray Data by Association Rule

and Dynamic Bayesian Network, Proc. Int’l Conf.

Computational Science and Its Applications (ICCSA),

pages 309-317.

[35] Shang,X. Q., Zhao, Q. and Li,Z. H. 2009Mining High-

Correlation Association Rules for Inferring Gene

Regulation Networks, Proc. 11th Int’l Conf. Data

Warehousing and Knowledge Discovery (DaWaK

’09),pages 244-255.

[36] Pandey,G., Atluri, G.,Steinbach,M. and Kumar, V.

2008Association Analysis Techniques for Discovering

Functional Modules from Microarray Data, Nature

Precedings.

[37] Marghny. H. M, Minamoto,T. and Niijima,K.

1990”Rules extraction by constructive learning of

neural networks and hidden unit clustering”, Lecture

Notes in Artificial Intelligence, 1721, Springer, Proc.

of the Second International Conference on Discovery

Science, pages 343-344.

[38] Marghny. H. M, and Niijima,K. 2000”Extracting rules

from neural network by removing unnecessary

connections”, Proc. of the Second ICSC Symposium

on Neural Computation, pages 322-328.

[39] Marghny. H. M, 2011 Rules extraction from

constructively trained neural networks based on genetic

algorithms

[40] WEKA at http://www.cs.waikato.ac.nz/~ml/wek.

[41] Marghny. H. M, and Niijima,K., 2000 ” Redundant

connections effect on the error rate for the neural

networks”, Proc. of the Seventh International

Conference on Neural Computation Processing, pages

981-985.

IJCATM : www.ijcaonline.org

