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ABSTRACT 

Logic expressions are widely used in specifications and in 

programs. Testing criteria which covers logic expressions 

implies a high probability of detecting faults. Fault-based test 

suite prioritization of test cases has been considered in this 

study.Test cases are generated from logic expressions in 

irredundant normal form(IDNF) derived from specifications 

or source code by applying Minimal-MUMCUT. The 

proposed approach directly utilizes the theoretical knowledge 

of fault-detecting ability of test cases. The  effectiveness of 

prioritization techniques  has been validated by an empirical 

study done on bench mark expressions  using two different 

metrics APFD, and FATE.  

Keywords 
MUMCUT, MUTP, MNFP, CUTPNFP, Fault detection, 
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1. INTRODUCTION 
Boolean expressions are central aspect of  programs and 

specifications. Given n variables in expression 2n distinct 

testcases are required for exhaustive testing .This is expensive 

even when n is modestly large.The possible solution is to 

select a small subset of all  possible test cases which  can 

effectively detect most of the common faults. 

In the past decade, may testing criteria have been proposed for 

software characterized by complex logical decisions, such as 

those in safety-critical software[1],[2].[3]. In such cases, it is 

imperative that the logical decisions be  adequately tested for 

the occurrence of plausible faults. In recent years, more 

sophisticated coverage criteria have been advocated, like BOR 

(Boolean OpeRator Testing Strategy),BMIS(Basic 

Meaningful Impact Strategy),modified condition/decision 

coverage (MC/DC) [1],[2],[4] and the MUMCUT 

criteria[5].Compliance of the MC/DC criterion has been 

mandated by Federal Aviation Administration for the 

approval of airborne software. MC/DC was „„developed to 

address the concerns of testing Boolean expressions and can 

be used to guide the selection of test cases at all levels of 

specification, from initial requirements to source code‟‟ [1]. 

While MC/DC is effective in fault detection, it also consumes 

a great deal of testing resources [2],[6].  

MUMCUT strategy is to generate test cases that can guarantee 

detection of seven types of single faults provided that the 

original expression is in irredundant disjunctive normal 

form(IDNF)[6]. In this strategy, there is no restriction on the 

number and occurance of variables in the given Boolean 

expressions. Minimal-MUMCUT [7] that improves the 

MUMCUT strategy by considering the feasibility problem of 

the three testing constituents of the MUMCUT strategy. It 

reduces the test suite size as compared to MUMCUT without 

compromising any fault detection capability. Thus, the extra 

tests required by the MUMCUT criterion are of little, if any, 

value based on the theoretical and empirical studies conducted  

[7]. 

In this study test cases generated by Minimal-MUMCUT are 

prioritized according to rate of fault detection and an 

algorithm is proposed for the same.The effectiveness of 

proposed approach is validated by APFD by comparing it 

with baseline approach.  

2. PREMILINARY AND PREVIOUS 

WORK 
This section covers the basics of previous work, to introduce 

the notation and terminologies to be used in this paper, as well 

as the main ideas that motivated this work. Section 2.1 

presents Minimal-MUMCUT strategy for generating test 

cases from logical expressions . In Section 2.2, seven different 

types of single faults generated from irredundant disjunctive 

normal form(IDNF) of original expression and hierarchy of 

fault classes supported by Minimal-MUMCUT test cases for 

specification-based testing is presented. Test case 

prioritization technique and  well-known metric APFD and 

FATE for evaluating the   effectiveness of prioritized test 

cases is outlined in Section 2.3.  

2.1 Minimal MUMCUT Strategy 
The amalgamation of MUTP, MNFP and CUTPNFP 

strategies is referred to  as the MUMCUT strategy[6]: 

MUTP: A test set T is said to satisfy the MUTP strategy (or 

simply the U strategy) if, for every i, T contains UTPs of the 

ith term pi of S such that all possible truth values (that is, 0 

and 1) of every variable not occurring in pi are covered. Such 

a test set T is called a Multiple Unique True Point (MUTP) 

test set. 

MNFP: A test set T is said to satisfy the MNFP strategy (or 

simply the N strategy) if, for every i and j, T contains NFPs of 

the jth literal of the ith term pi so that all possible truth values 

(that is, 0 and 1) of every variable not occurring in pi are 

covered. Such a test set T is called a Multiple Near False 

Point (MNFP) test set.  

CUTPNFP: A test set T is said to satisfy the CUTPNFP 

strategy (or simply the C strategy) if, for every i and j, as far 

as possible, T contains a UTP 𝑡  of the ith term pi and a NFP 𝑓  

of the jth literal of pi such that 𝑡  and 𝑓  differ only in the 

corresponding truth value of the jth literal of pi. Such a test set 

T is called a  Corresponding Unique True Point Near False 

Point (CUTPNFP) test set. 
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According to Minimal-MUMCUT, if MUTP criterion is 

infeasible,then prioritzed test set will be MUTP(U) test cases 

followed by overlapping NFPs.Overlapping NFPs is a set 

covering combinatorial optimize test cases. For example : 

(a&b)|(b&!c)|(!b&c) MUTPs for this Boolean expression are : 

111,010,001,101. In this expression (a&b) and (b&!c)terms 

are  MUTP infeasible and only(!b&c) term is MUTP feasible 

which covers both values 0 and 1 for missing literal a.The 

NFPs for the expression (a&b)|(b&!c)|(!b&c) 

011,101,000,010,100 but the overlapping NFPs are 100(b of 

a&b and c of !b&c),000(b of b&!c),011(a of a&b and b of 

!b&c and c of b&!c). 

MUTP criterion is infeasible: Test Set = MUTP + NFP 

If CUTPNFP criterion is infeasible then prioritized test set 

will be MUTP test cases followed by CUTPNFP. For 

example: (a&b)|(b&!c)|(!b&c) CUTPNFP criterion is 

infeasible  for this Boolean expression. CUTPNFPs test cases 

for above Boolean expression are 111,011,100,010,000,001. 

CUTPNFP criterion is infeasible :Test Set = 

MUTP+CUTPNFP 

If MUTP criteria is feasible then prioritized test set will be 

MUTP(U) test cases followed by CUTPNFP(C) followed by 

MNFP(N) test cases. 

MUTP feasible:Test Set =MUTP+PCUTPNFP+MNFP 

Table 1 shows total number of test cases generated by 

Minimal MUMCUT,feasibility criteria of MUTP and 

CUTPNFP and total number of single fauts generated of 

seven types mentioned in Section 2.2 

Table 1. Criteria Feasibility for Boolean Expressions 

 

S.

N 

Predicate Test 

Case 

faults 

detect

-ed 

MUTP 

Criteria 

CUTPN-

FP 

Criteria 

1 (a&!b&d)| 

(a&!c&d)| e) 

9 93 Not 

Feasible 

Feasible 

2 (a&b)|(a&c)| 

(b&c) 

6 56 Not 

Feasible 

Feasible 

3 (a&b&c)| 

(d&e) 

 

7 68 Feasible Feasible 

4 (a&b)|(b&!c)| 

(!b&c) 

7 53 Not 

Feasible 

Not 

Feasible 

5 (!a&b)|(c&d) 6 46 Feasible Feasible 

 

2.2. Fault Hierarchy 
A fault is an error in the original Boolean expression.A faulty 

implementation is referred to as single-fault expression if (1) 

it differs from the original expression by one syntactic 

change; and (2) it is not equivalent to the original expression. 

This study considers the following classes of simple faults for 

logical decisions. A decision S in n variables can always be 

written in disjunctive normal form (DNF) as a sum of product. 

Consider the following Boolean expression for example: 

𝑆 = 𝑎𝑏 + 𝑐𝑑 + 𝑒 

Table 2. Types of Faults 

Fault Description Example 

Expression 

Negation 

Fault (ENF) 

The expression or sub-

expression is negated 
𝑎𝑏 + 𝑐𝑑 + e 

Term 

Negation 

Fault (TNF) 

A term is negated 𝑎𝑏 + 𝑐𝑑 + 𝑒 

Term 

Omission 

Fault (TOF) 

A term is omitted 𝑐𝑑 + 𝑒 

Operator 

Reference 

Fault (ORF) 

An OR operator(+) is 

implemented as the 

AND operator or vice 

versa 

𝑎𝑏. 𝑐𝑑 + 𝑒    or    

𝑎 + 𝑏 + 𝑐𝑑 + 𝑒    

Literal 

Negation 

Fault (LNF) 

A literal is negated 𝑎𝑏 + 𝑐𝑑 + 𝑒     

Literal 

Omission 

Fault (LOF) 

A literal is omitted 𝑏 + 𝑐𝑑 + 𝑒        

Literal 

Insertion 

Fault (LIF) 

A literal is inserted 𝑎𝑏𝑐 + 𝑐𝑑 + 𝑒     

Literal 

Reference 

Fault (LRF) 

A literal is 

implemented as 

another literal 

𝑎𝑐 + 𝑐𝑑 + 𝑒 

 

Lau and Yu‟s Fault Hierarchy modified is displayed in Fig.1  

based on how criterion feasibility affects fault detection as 

indicated by Kaminski and Ammann [7]. A solid arrow from a 

source fault to a destination fault indicates that if a test detects 

a source fault, it also detects a corresponding destination fault. 

When the MUTP criterion is infeasible, a test set detecting all 

LIFs is not guaranteed to detect all LRFs. Thus the solid 

arrow between the LIF and LRF in Lau and Yu‟s hierarchy is 

changed to a dashed arrow. In Lau and Yu‟s hierarchy no 

arrow exists between the LRF and LOF. A dashed arrow is 

added to represent that when guaranteeing detection of all 

LIFs does not guarantee detection of all LRFs (due to MUTP 

infeasibility), adding tests to detect the undetected LRFs will 

detect all corresponding LOFs (unless the PCUTPNFP 

criterion is infeasible). The reason is that when the MUTP 

criterion is infeasible but the PCUTPNFP criterion is feasible, 

a UTP will not detect an LRF but a corresponding NFP will. 

Since the Minimal-MUMCUT criterion always requires 

MUTP tests, the LIF is guaranteed to be detected. Since the 

Minimal-MUMCUT requires (1) PCUTPNFP tests when the 

MUTP criterion is infeasible and the PCUTPNFP criterion is 

feasible and (2) MNFP tests when the PCUTPNFP criterion is 

infeasible, LRF detection is guaranteed. 
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Fig.1: Fault Hierarchy Based on Infeasibility[7] 

 

A MUTP test set guarantees to detect single faults of the 

classes 

ENF, TNF, TOF, ORF(+), LNF and LIF [6],[9]. 

A MNFP test set guarantees to detect single faults of the 

classes 

ENF, TNF, ORF(.), LNF and LOF [6],[9]. 

Chen and Lau [6] proved that, when a CUTPNFP test set is 

combined with a MUTP and a MNFP test set, the resulting 

test set will always detect all the faults in Table1. 

2.3 Test Case Prioritization  
Test case prioritization techniques schedule test cases in an 

execution order according to some criterion.Test case 

prioritization problem is defined[8] as follows: 

Given: T, a test suite; PT, the set of permutations of T; f, a 

function from PT to the real numbers. 

Problem: Find T‟ belongs to PT such that (for all T”) (T” 

belongs to PT) (T” ≠ T‟) [f (T‟) ≥ f(T”)]. 

Here, PT represents the set of all possible prioritizations 

(orderings) of T and f is a function that, applied to any such 

ordering, yields an award value for that ordering. 

The performance of the prioritization technique used is known 

as effectiveness It is necessary to assess effectiveness of the 

ordering of the test suite. Effectiveness will be measured by 

the rate of faults detected. The following metrics are used to 

calculate the level of effectiveness: 

2.3.1 Average Percentage Of Faults Detected 

(Apfd) Metric 
APFD (Average Percentage Fault Detected) metric is a 

measure of how rapidly a prioritized test suite detects faults, 

which measures the weighted average of percentage of faults 

detected over the life of a test suite. [13] ,[8].The APFD used 

in this paper is calculated by taking the weighted average of 

the number of faults detected during the run of the test suite. 

APFD can be calculated using the following notations: 

Let T - The test suite under evaluation 

m - the number of faults contained in the program under test P 

n - The total number of test cases and 

TFi - The position of the first test in T that exposes fault i. 

 

APFD = 1- 
𝑇𝐹1+𝑇𝐹2+𝑇𝐹3+𝑇𝐹4+𝑇𝐹5………..𝑇𝐹𝑖

𝑚∗𝑛
 + 

1

2∗𝑛
 

 

APFD can be calculated when prior knowledge of faults is 

available. APFD values ranges from 0 to 100; higher value 

implies faster (better) fault detection rates. 

2.3.2 Fault Adequate Test Set Size (Fate) Metric 
A different effectiveness metric, called Fault-Adequate Test 

set sizE (FATE) is defined as the size of a minimal fault-

adequate subset of the prioritized test suite[11]. For a fault-

adequate test suite of size n, the FATE value ranges between 0 

and n.A lower FATE value is preferred as it implies earlier 

detection of all target faults. For a fair comparison of test 

suites of different sizes, the value of FATE may be 

normalized by expressing it as a percentage of the size of the 

whole (unprioritized) fault-adequate test suite. A normalized 

FATE (abbreviated as nFATE) value always ranges between 

0% and 100%.  

2.3.3 Prioritization using Mumcut  
By definition, a MUMCUT test set consists of points 

satisfying 

the three component strategies: MUTP (U), MNFP (N) and 

CUTPNFP (C).These points are reffered as U-points, Npoints 

and C-points, respectively. The U, N and C strategies 

guarantee to detect faults of different classes, this knowledge 

has been employed to prioritizing a MUMCUT test cases and 

it has empirically proved that out of six combinations of U,N 

and C that are CNU,CUN,NCU,NUC,UCN,UNC, the UCN 

order gives better rate of fault detection[15].  

3. PROPOSED WORK 
In the proposed paper for prioritizing the test cases generated 

following steps are followed: 

1. Single faults of seven types mentioned in Section 2.2, are 

generated using JAVA eclipse and JAVA collection 

framework. 

2. For the given expression Minimal MUMCUT test cases are 

generated and feasibility criteria is tested. 

3. Test cases are arranged according to the algorithm given in 

Section 3.1 

4. The effectiveness of the prioritized test suite is assessed by 

calculating APFD and comparing it with Baseline approach. 

3.1 Algorithm For Fault Based 

Prioritization Of Minimal Mumcut Tests 

Input: Test suite T and  number of faults detected by a test 

case  

Output: Prioritized Test suite T‟. 

1. Begin 

2. Set T‟ empty 

3.   for each term X do 

4.         If MUTP criteria is infeasible for X 

Prioritize Multiple Unique True Points (U) 

followed by overlapping NFPs(N) 

5.    for each literal x in term X 

 

6.         If CUTPNFP criteria is feasible for x 

    LIF 

   TOF 

ORF+ 

   LRF 

   LNF 

   LOF 

ORF. 

  TNF 

  ENF 



International Journal of Computer Applications (0975 – 8887)  

Volume 89 – No 16, March 2014 

36 

Prioritize Unique True Points (U) 

followed by CUTPNFP(C) 

7.    end for 

 

8.   else  

Prioritize Mutiple Unique True Points (U) followed 

by overlapping  NFPs(N) followed by CUTPNFPs  

9.   end for 

10. End  

 

4. EXPERIMENTS AND RESULTS 
Tables 3(a),(b),(c),(d) shows the number of faults detected  by 

a test case in the test suite for the Boolean expression 

(a&b&c)|(d&e). Fault F17 is referred as equivalent fault as it 

is generating same original expression after faulty 

implementation. 

 

 
 

Table 3(a). Fault Detected by the test cases for Predicate (a&b&c)|(d&e). 

 

 F

1 

F

2 

F

3 

F

4 

F

5 

F

6 

F

7 

F

8 

F

9 

F1

0 

F1

1 

F1

2 

F1

3 

F1

4 

F1

5 

F1

6 

F1

7 

F1

8 

F1

9 

F2

0 

F2

1 

t1    ×  ×      ×  ×  ×      × 

t2     ×  ×      ×  ×   ×    ×  

t3     ×  ×       ×  ×    ×    

t4    ×  ×      × ×  ×     ×   

t5   × ×  × × ×   ×  × ×          

t6   ×   × ×   ×  × × × ×         

t7  × ×  × ×  ×   × × × × ×        

 

Table 3(b). Fault Detected by the test cases for Predicate (a&b&c)|(d&e). 

 

 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 F33 F34 F35 F36 F37 F38 F39 F40 

t1     × × ×     ×    ×    × 

t2      × × ×      ×    ×    

t3     ×    × ×            

t4  × ×     × ×            

t5      ×   ×  × ×          

t6        ×  ×         × × × 

t7      ×   ×     × × ×     

 

Table 3(c). Fault Detected by the test cases for Predicate (a&b&c)|(d&e). 

 

 F41 F42 F43 F44 F45 F46 F47 F48 F49 F50 F51 F52 F53 F54 F55 F56 F57 F58 F59 

t1           × ×  × × ×  × × × 

t2   ×          × ×  × × ×  × × 

t3    × ×   × ×             

t4   ×  ×    ×            

t5     × × ×       ×        

t6        × ×  ×           

t7       ×  × ×        ×   

 

Table 3(d). Fault Detected by the test cases for Predicate (a&b&c)|(d&e). 

 

 F60 F61 F62 F63 F64 F65 F66 F67 F68 F69 

t1   ×         

t2   ×          

t3       × × ×  × × 

t4    × ×  × × ×  × 

t5     ×        

t6           ×  

t7         ×   

 

For the (a&b&c)|(d&e) predicate MUTP criteria is feasible for 

all terms and CUTPNFP criteria is feasible for all literals. 

m= no. of faults = 68 

n = no. of test cases = 7 

So putting the values of  m , n ,TFi(The position of the first 

test in T that exposes fault i) in the following equation : 

 

APFD = 1- 
𝑇𝐹1+𝑇𝐹2+𝑇𝐹3+𝑇𝐹4+𝑇𝐹5………..𝑇𝐹𝑖

𝑚∗𝑛
 + 

1

2∗𝑛
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APFD = 1-   
5+5+1+5+1+5+7+6+5…………………………3+3

7∗68
   + 

1

2∗7
 

APFD = 0.641 

APFD = 64.1% 

The value of FATE metric is 7 since it is required to execute 

all the test cases to detect all the faults.Similarly Table 4 

shows  values of metrics APFD and FATE for some number 

of Boolean expressions. 

 

Table 4. Values of APFD and FATE 

 

S

N

. 

PREDICATE APFD of 

Proposed 

Appraoch 

APFD of 

Baseline 

Appraoch 

FATE 

1 (a&!b&d)| 

(a&!c&d)| e) 

67.63% 54.5% 9 

2 (a&b)|(a&c)| 

(b&c) 

56.33% 57.4% 6 

3 (a&b&c)| 

(d&e) 

64.1% 58% 7 

4 (a&b)|(b&!c)| 

(!b&c) 

58.1% 58% 7 

5  (!a&b) |(c&d) 

 

61.3% 60% 6 

 
Table 4 shows the comparison between APFD values obtained 

from proposed approach and baseline approach. The proposed 

approach gives better Average Percentage of FaultsDetected 

during life time of a test suite. 

4.1 Comparison Of Proposed Approach 

With Baseline  
The comparison is drawn between APFD value of Boolean 

expression (a&b&c)|(d&e) using UCN order and baseline 

approach, which shows that value of APFD obtained using 

UCN order is more than baseline approach. The baseline 

approach uses concept of binary number to arrange test cases 

in serial order. For Boolean expression (a&b&c)|(d&e) the 

order of test cases is:  

t3-00111- (7 in binary) 

t5-01101-(13) 

t7-10110-(22) 

t4-11011-(27) 

t6-11010-(28) 

t1-11101-(29) 

t2-11110-(30) 

 

 
 

Fig 3:Graph for Boolean expression (a&b&c)|(d&e) using 

UTPs followed by Overlappinf NFPs Order with 64.1% 

APFD 

 
 

Fig 4 : Graph for Boolean expression (a&b&c)|(d&e) 
using BaseLine Technique with 58% APFD 

 

The proposed order of prioritized test cases yield a higher 

average APFD where MUTP criteria is feasible than those 

prioritized with baseline approach. A normalized FATE value 

for all prioritized test cases is 100% ,FATE metric shows that 

all test cases of Minimal-MUMCUT are required to detect all  

eight classes of single faults. 

5. CONCLUSION & FUTURE WORK 
This paper proposed an algorithm for Prioritization of 

Minimal MUMCUT test cases in order to improve regression 

testing.In proposed study the experiments were done on some 

expressions where MUTP feasible expressions provide higher 

value of APFD metric. In this study effectiveness has been 

done for prioritized test cases with the help of APFD(Average 

Percentage Fault Detection) and FATE(Fault Adequate test 

set sizE) metrics.However,it is guaranteed that if even a single 

test is removed from a Minimal-MUMCUT test set, fault 

detection will be sacrificed for the fault types in Lau and Yu‟s 

fault hierarchy[6].In future the experiment need to be 

conducted on the Boolean expression having more no of 

literals and order of prioritization need to be validated for high 

rate of fault detection. 
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