
International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 16, March 2014

33

Fault based Test Suite Prioritization based on

Minimal MUMCUT Strategy

Usha Badhera

Assistant Proffesor
Banasthali Vidyapith

Jaipur, India

Annu Maheshwari
M.tech Scholar

Banasthali Vidyapith
Jaipur, India

ABSTRACT

Logic expressions are widely used in specifications and in

programs. Testing criteria which covers logic expressions

implies a high probability of detecting faults. Fault-based test

suite prioritization of test cases has been considered in this

study.Test cases are generated from logic expressions in

irredundant normal form(IDNF) derived from specifications

or source code by applying Minimal-MUMCUT. The

proposed approach directly utilizes the theoretical knowledge

of fault-detecting ability of test cases. The effectiveness of

prioritization techniques has been validated by an empirical

study done on bench mark expressions using two different

metrics APFD, and FATE.

Keywords
MUMCUT, MUTP, MNFP, CUTPNFP, Fault detection,

APFD, FATE.

1. INTRODUCTION
Boolean expressions are central aspect of programs and

specifications. Given n variables in expression 2n distinct

testcases are required for exhaustive testing .This is expensive

even when n is modestly large.The possible solution is to

select a small subset of all possible test cases which can

effectively detect most of the common faults.

In the past decade, may testing criteria have been proposed for

software characterized by complex logical decisions, such as

those in safety-critical software[1],[2].[3]. In such cases, it is

imperative that the logical decisions be adequately tested for

the occurrence of plausible faults. In recent years, more

sophisticated coverage criteria have been advocated, like BOR

(Boolean OpeRator Testing Strategy),BMIS(Basic

Meaningful Impact Strategy),modified condition/decision

coverage (MC/DC) [1],[2],[4] and the MUMCUT

criteria[5].Compliance of the MC/DC criterion has been

mandated by Federal Aviation Administration for the

approval of airborne software. MC/DC was „„developed to

address the concerns of testing Boolean expressions and can

be used to guide the selection of test cases at all levels of

specification, from initial requirements to source code‟‟ [1].

While MC/DC is effective in fault detection, it also consumes

a great deal of testing resources [2],[6].

MUMCUT strategy is to generate test cases that can guarantee

detection of seven types of single faults provided that the

original expression is in irredundant disjunctive normal

form(IDNF)[6]. In this strategy, there is no restriction on the

number and occurance of variables in the given Boolean

expressions. Minimal-MUMCUT [7] that improves the

MUMCUT strategy by considering the feasibility problem of

the three testing constituents of the MUMCUT strategy. It

reduces the test suite size as compared to MUMCUT without

compromising any fault detection capability. Thus, the extra

tests required by the MUMCUT criterion are of little, if any,

value based on the theoretical and empirical studies conducted

[7].

In this study test cases generated by Minimal-MUMCUT are

prioritized according to rate of fault detection and an

algorithm is proposed for the same.The effectiveness of

proposed approach is validated by APFD by comparing it

with baseline approach.

2. PREMILINARY AND PREVIOUS

WORK
This section covers the basics of previous work, to introduce

the notation and terminologies to be used in this paper, as well

as the main ideas that motivated this work. Section 2.1

presents Minimal-MUMCUT strategy for generating test

cases from logical expressions . In Section 2.2, seven different

types of single faults generated from irredundant disjunctive

normal form(IDNF) of original expression and hierarchy of

fault classes supported by Minimal-MUMCUT test cases for

specification-based testing is presented. Test case

prioritization technique and well-known metric APFD and

FATE for evaluating the effectiveness of prioritized test

cases is outlined in Section 2.3.

2.1 Minimal MUMCUT Strategy
The amalgamation of MUTP, MNFP and CUTPNFP

strategies is referred to as the MUMCUT strategy[6]:

MUTP: A test set T is said to satisfy the MUTP strategy (or

simply the U strategy) if, for every i, T contains UTPs of the

ith term pi of S such that all possible truth values (that is, 0

and 1) of every variable not occurring in pi are covered. Such

a test set T is called a Multiple Unique True Point (MUTP)

test set.

MNFP: A test set T is said to satisfy the MNFP strategy (or

simply the N strategy) if, for every i and j, T contains NFPs of

the jth literal of the ith term pi so that all possible truth values

(that is, 0 and 1) of every variable not occurring in pi are

covered. Such a test set T is called a Multiple Near False

Point (MNFP) test set.

CUTPNFP: A test set T is said to satisfy the CUTPNFP

strategy (or simply the C strategy) if, for every i and j, as far

as possible, T contains a UTP 𝑡 of the ith term pi and a NFP 𝑓

of the jth literal of pi such that 𝑡 and 𝑓 differ only in the

corresponding truth value of the jth literal of pi. Such a test set

T is called a Corresponding Unique True Point Near False

Point (CUTPNFP) test set.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 16, March 2014

34

According to Minimal-MUMCUT, if MUTP criterion is

infeasible,then prioritzed test set will be MUTP(U) test cases

followed by overlapping NFPs.Overlapping NFPs is a set

covering combinatorial optimize test cases. For example :

(a&b)|(b&!c)|(!b&c) MUTPs for this Boolean expression are :

111,010,001,101. In this expression (a&b) and (b&!c)terms

are MUTP infeasible and only(!b&c) term is MUTP feasible

which covers both values 0 and 1 for missing literal a.The

NFPs for the expression (a&b)|(b&!c)|(!b&c)

011,101,000,010,100 but the overlapping NFPs are 100(b of

a&b and c of !b&c),000(b of b&!c),011(a of a&b and b of

!b&c and c of b&!c).

MUTP criterion is infeasible: Test Set = MUTP + NFP

If CUTPNFP criterion is infeasible then prioritized test set

will be MUTP test cases followed by CUTPNFP. For

example: (a&b)|(b&!c)|(!b&c) CUTPNFP criterion is

infeasible for this Boolean expression. CUTPNFPs test cases

for above Boolean expression are 111,011,100,010,000,001.

CUTPNFP criterion is infeasible :Test Set =

MUTP+CUTPNFP

If MUTP criteria is feasible then prioritized test set will be

MUTP(U) test cases followed by CUTPNFP(C) followed by

MNFP(N) test cases.

MUTP feasible:Test Set =MUTP+PCUTPNFP+MNFP

Table 1 shows total number of test cases generated by

Minimal MUMCUT,feasibility criteria of MUTP and

CUTPNFP and total number of single fauts generated of

seven types mentioned in Section 2.2

Table 1. Criteria Feasibility for Boolean Expressions

S.

N

Predicate Test

Case

faults

detect

-ed

MUTP

Criteria

CUTPN-

FP

Criteria

1 (a&!b&d)|

(a&!c&d)| e)

9 93 Not

Feasible

Feasible

2 (a&b)|(a&c)|

(b&c)

6 56 Not

Feasible

Feasible

3 (a&b&c)|

(d&e)

7 68 Feasible Feasible

4 (a&b)|(b&!c)|

(!b&c)

7 53 Not

Feasible

Not

Feasible

5 (!a&b)|(c&d) 6 46 Feasible Feasible

2.2. Fault Hierarchy
A fault is an error in the original Boolean expression.A faulty

implementation is referred to as single-fault expression if (1)

it differs from the original expression by one syntactic

change; and (2) it is not equivalent to the original expression.

This study considers the following classes of simple faults for

logical decisions. A decision S in n variables can always be

written in disjunctive normal form (DNF) as a sum of product.

Consider the following Boolean expression for example:

𝑆 = 𝑎𝑏 + 𝑐𝑑 + 𝑒

Table 2. Types of Faults

Fault Description Example

Expression

Negation

Fault (ENF)

The expression or sub-

expression is negated
𝑎𝑏 + 𝑐𝑑 + e

Term

Negation

Fault (TNF)

A term is negated 𝑎𝑏 + 𝑐𝑑 + 𝑒

Term

Omission

Fault (TOF)

A term is omitted 𝑐𝑑 + 𝑒

Operator

Reference

Fault (ORF)

An OR operator(+) is

implemented as the

AND operator or vice

versa

𝑎𝑏. 𝑐𝑑 + 𝑒 or

𝑎 + 𝑏 + 𝑐𝑑 + 𝑒

Literal

Negation

Fault (LNF)

A literal is negated 𝑎𝑏 + 𝑐𝑑 + 𝑒

Literal

Omission

Fault (LOF)

A literal is omitted 𝑏 + 𝑐𝑑 + 𝑒

Literal

Insertion

Fault (LIF)

A literal is inserted 𝑎𝑏𝑐 + 𝑐𝑑 + 𝑒

Literal

Reference

Fault (LRF)

A literal is

implemented as

another literal

𝑎𝑐 + 𝑐𝑑 + 𝑒

Lau and Yu‟s Fault Hierarchy modified is displayed in Fig.1

based on how criterion feasibility affects fault detection as

indicated by Kaminski and Ammann [7]. A solid arrow from a

source fault to a destination fault indicates that if a test detects

a source fault, it also detects a corresponding destination fault.

When the MUTP criterion is infeasible, a test set detecting all

LIFs is not guaranteed to detect all LRFs. Thus the solid

arrow between the LIF and LRF in Lau and Yu‟s hierarchy is

changed to a dashed arrow. In Lau and Yu‟s hierarchy no

arrow exists between the LRF and LOF. A dashed arrow is

added to represent that when guaranteeing detection of all

LIFs does not guarantee detection of all LRFs (due to MUTP

infeasibility), adding tests to detect the undetected LRFs will

detect all corresponding LOFs (unless the PCUTPNFP

criterion is infeasible). The reason is that when the MUTP

criterion is infeasible but the PCUTPNFP criterion is feasible,

a UTP will not detect an LRF but a corresponding NFP will.

Since the Minimal-MUMCUT criterion always requires

MUTP tests, the LIF is guaranteed to be detected. Since the

Minimal-MUMCUT requires (1) PCUTPNFP tests when the

MUTP criterion is infeasible and the PCUTPNFP criterion is

feasible and (2) MNFP tests when the PCUTPNFP criterion is

infeasible, LRF detection is guaranteed.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 16, March 2014

35

Fig.1: Fault Hierarchy Based on Infeasibility[7]

A MUTP test set guarantees to detect single faults of the

classes

ENF, TNF, TOF, ORF(+), LNF and LIF [6],[9].

A MNFP test set guarantees to detect single faults of the

classes

ENF, TNF, ORF(.), LNF and LOF [6],[9].

Chen and Lau [6] proved that, when a CUTPNFP test set is

combined with a MUTP and a MNFP test set, the resulting

test set will always detect all the faults in Table1.

2.3 Test Case Prioritization
Test case prioritization techniques schedule test cases in an

execution order according to some criterion.Test case

prioritization problem is defined[8] as follows:

Given: T, a test suite; PT, the set of permutations of T; f, a

function from PT to the real numbers.

Problem: Find T‟ belongs to PT such that (for all T”) (T”

belongs to PT) (T” ≠ T‟) [f (T‟) ≥ f(T”)].

Here, PT represents the set of all possible prioritizations

(orderings) of T and f is a function that, applied to any such

ordering, yields an award value for that ordering.

The performance of the prioritization technique used is known

as effectiveness It is necessary to assess effectiveness of the

ordering of the test suite. Effectiveness will be measured by

the rate of faults detected. The following metrics are used to

calculate the level of effectiveness:

2.3.1 Average Percentage Of Faults Detected

(Apfd) Metric
APFD (Average Percentage Fault Detected) metric is a

measure of how rapidly a prioritized test suite detects faults,

which measures the weighted average of percentage of faults

detected over the life of a test suite. [13] ,[8].The APFD used

in this paper is calculated by taking the weighted average of

the number of faults detected during the run of the test suite.

APFD can be calculated using the following notations:

Let T - The test suite under evaluation

m - the number of faults contained in the program under test P

n - The total number of test cases and

TFi - The position of the first test in T that exposes fault i.

APFD = 1-
𝑇𝐹1+𝑇𝐹2+𝑇𝐹3+𝑇𝐹4+𝑇𝐹5………..𝑇𝐹𝑖

𝑚∗𝑛
 +

1

2∗𝑛

APFD can be calculated when prior knowledge of faults is

available. APFD values ranges from 0 to 100; higher value

implies faster (better) fault detection rates.

2.3.2 Fault Adequate Test Set Size (Fate) Metric
A different effectiveness metric, called Fault-Adequate Test

set sizE (FATE) is defined as the size of a minimal fault-

adequate subset of the prioritized test suite[11]. For a fault-

adequate test suite of size n, the FATE value ranges between 0

and n.A lower FATE value is preferred as it implies earlier

detection of all target faults. For a fair comparison of test

suites of different sizes, the value of FATE may be

normalized by expressing it as a percentage of the size of the

whole (unprioritized) fault-adequate test suite. A normalized

FATE (abbreviated as nFATE) value always ranges between

0% and 100%.

2.3.3 Prioritization using Mumcut
By definition, a MUMCUT test set consists of points

satisfying

the three component strategies: MUTP (U), MNFP (N) and

CUTPNFP (C).These points are reffered as U-points, Npoints

and C-points, respectively. The U, N and C strategies

guarantee to detect faults of different classes, this knowledge

has been employed to prioritizing a MUMCUT test cases and

it has empirically proved that out of six combinations of U,N

and C that are CNU,CUN,NCU,NUC,UCN,UNC, the UCN

order gives better rate of fault detection[15].

3. PROPOSED WORK
In the proposed paper for prioritizing the test cases generated

following steps are followed:

1. Single faults of seven types mentioned in Section 2.2, are

generated using JAVA eclipse and JAVA collection

framework.

2. For the given expression Minimal MUMCUT test cases are

generated and feasibility criteria is tested.

3. Test cases are arranged according to the algorithm given in

Section 3.1

4. The effectiveness of the prioritized test suite is assessed by

calculating APFD and comparing it with Baseline approach.

3.1 Algorithm For Fault Based

Prioritization Of Minimal Mumcut Tests

Input: Test suite T and number of faults detected by a test

case

Output: Prioritized Test suite T‟.

1. Begin

2. Set T‟ empty

3. for each term X do

4. If MUTP criteria is infeasible for X

Prioritize Multiple Unique True Points (U)

followed by overlapping NFPs(N)

5. for each literal x in term X

6. If CUTPNFP criteria is feasible for x

 LIF

 TOF

ORF+

 LRF

 LNF

 LOF

ORF.

 TNF

 ENF

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 16, March 2014

36

Prioritize Unique True Points (U)

followed by CUTPNFP(C)

7. end for

8. else

Prioritize Mutiple Unique True Points (U) followed

by overlapping NFPs(N) followed by CUTPNFPs

9. end for

10. End

4. EXPERIMENTS AND RESULTS
Tables 3(a),(b),(c),(d) shows the number of faults detected by

a test case in the test suite for the Boolean expression

(a&b&c)|(d&e). Fault F17 is referred as equivalent fault as it

is generating same original expression after faulty

implementation.

Table 3(a). Fault Detected by the test cases for Predicate (a&b&c)|(d&e).

 F

1

F

2

F

3

F

4

F

5

F

6

F

7

F

8

F

9

F1

0

F1

1

F1

2

F1

3

F1

4

F1

5

F1

6

F1

7

F1

8

F1

9

F2

0

F2

1

t1 × × × × × ×

t2 × × × × × ×

t3 × × × × ×

t4 × × × × × ×

t5 × × × × × × × ×

t6 × × × × × × × ×

t7 × × × × × × × × × ×

Table 3(b). Fault Detected by the test cases for Predicate (a&b&c)|(d&e).

 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 F33 F34 F35 F36 F37 F38 F39 F40

t1 × × × × × ×

t2 × × × × ×

t3 × × ×

t4 × × × ×

t5 × × × ×

t6 × × × × ×

t7 × × × × ×

Table 3(c). Fault Detected by the test cases for Predicate (a&b&c)|(d&e).

 F41 F42 F43 F44 F45 F46 F47 F48 F49 F50 F51 F52 F53 F54 F55 F56 F57 F58 F59

t1 × × × × × × × ×

t2 × × × × × × × ×

t3 × × × ×

t4 × × ×

t5 × × × ×

t6 × × ×

t7 × × × ×

Table 3(d). Fault Detected by the test cases for Predicate (a&b&c)|(d&e).

 F60 F61 F62 F63 F64 F65 F66 F67 F68 F69

t1 ×

t2 ×

t3 × × × × ×

t4 × × × × × ×

t5 ×

t6 ×

t7 ×

For the (a&b&c)|(d&e) predicate MUTP criteria is feasible for

all terms and CUTPNFP criteria is feasible for all literals.

m= no. of faults = 68

n = no. of test cases = 7

So putting the values of m , n ,TFi(The position of the first

test in T that exposes fault i) in the following equation :

APFD = 1-
𝑇𝐹1+𝑇𝐹2+𝑇𝐹3+𝑇𝐹4+𝑇𝐹5………..𝑇𝐹𝑖

𝑚∗𝑛
 +

1

2∗𝑛

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 16, March 2014

37

APFD = 1-
5+5+1+5+1+5+7+6+5…………………………3+3

7∗68
 +

1

2∗7

APFD = 0.641

APFD = 64.1%

The value of FATE metric is 7 since it is required to execute

all the test cases to detect all the faults.Similarly Table 4

shows values of metrics APFD and FATE for some number

of Boolean expressions.

Table 4. Values of APFD and FATE

S

N

.

PREDICATE APFD of

Proposed

Appraoch

APFD of

Baseline

Appraoch

FATE

1 (a&!b&d)|

(a&!c&d)| e)

67.63% 54.5% 9

2 (a&b)|(a&c)|

(b&c)

56.33% 57.4% 6

3 (a&b&c)|

(d&e)

64.1% 58% 7

4 (a&b)|(b&!c)|

(!b&c)

58.1% 58% 7

5 (!a&b) |(c&d)

61.3% 60% 6

Table 4 shows the comparison between APFD values obtained

from proposed approach and baseline approach. The proposed

approach gives better Average Percentage of FaultsDetected

during life time of a test suite.

4.1 Comparison Of Proposed Approach

With Baseline
The comparison is drawn between APFD value of Boolean

expression (a&b&c)|(d&e) using UCN order and baseline

approach, which shows that value of APFD obtained using

UCN order is more than baseline approach. The baseline

approach uses concept of binary number to arrange test cases

in serial order. For Boolean expression (a&b&c)|(d&e) the

order of test cases is:

t3-00111- (7 in binary)

t5-01101-(13)

t7-10110-(22)

t4-11011-(27)

t6-11010-(28)

t1-11101-(29)

t2-11110-(30)

Fig 3:Graph for Boolean expression (a&b&c)|(d&e) using

UTPs followed by Overlappinf NFPs Order with 64.1%

APFD

Fig 4 : Graph for Boolean expression (a&b&c)|(d&e)
using BaseLine Technique with 58% APFD

The proposed order of prioritized test cases yield a higher

average APFD where MUTP criteria is feasible than those

prioritized with baseline approach. A normalized FATE value

for all prioritized test cases is 100% ,FATE metric shows that

all test cases of Minimal-MUMCUT are required to detect all

eight classes of single faults.

5. CONCLUSION & FUTURE WORK
This paper proposed an algorithm for Prioritization of

Minimal MUMCUT test cases in order to improve regression

testing.In proposed study the experiments were done on some

expressions where MUTP feasible expressions provide higher

value of APFD metric. In this study effectiveness has been

done for prioritized test cases with the help of APFD(Average

Percentage Fault Detection) and FATE(Fault Adequate test

set sizE) metrics.However,it is guaranteed that if even a single

test is removed from a Minimal-MUMCUT test set, fault

detection will be sacrificed for the fault types in Lau and Yu‟s

fault hierarchy[6].In future the experiment need to be

conducted on the Boolean expression having more no of

literals and order of prioritization need to be validated for high

rate of fault detection.

0

20

40

60

80

100

120

T1 T2 T3 T4 T5 T6 T7

P
e

rc
e

n
ta

ge
 o

f
Fa

u
lt

s
D

e
te

ct
e

d

Executed Test Cases

Test case Order t1,t2,t3,t4,t5,t6,t7

0
20
40
60
80

100
120

T3 T5 T7 T4 T6 T1 T2P
er

ce
n

ta
g

e
o

f
F

a
u

lt
s

D
et

ec
te

d

Executed test cases

Test Case Order t3,t5,t7,t4,t6,t1,t2

Fault…

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 16, March 2014

38

6. REFERENCES
[1] Chilenski, J.J., Miller, S.P., 1994. Applicability of

modified condition/decision coverage to software

testing. Software Engineering Journal 9 (5), 193–

229.

[2] Dupuy, A., Leveson, N., 2000. An empirical

evaluation of the MC/DC coverage criterion on the

HETE-2 satellite software. In: Proceedings of

Digital Aviation Systems Conference (DASC 2000).

[3] Chilenski, J.J., 2001. An investigation of three

forms of the modified condition decision coverage

(MCDC) criterion. Tech. Rep. DOT/ FAA/AR-

01/18, Federal Aviation Administration, US

Department of Transportation, Washington, DC.

[4] Jones, J.A., Harrold, M.J., 2003. Test-suite

reduction and prioritization for modified

condition/decision coverage. IEEE Transactions on

Software Engineering 29 (3), 195–209.

[5] Yu Y.T.,Lau M.F., Chen T.Y.,2005 “Automatic

generation of test cases from Boolean specifications

using the MUMCUT strategy” Journal of Systems

and Software 79(6), 820–840.

[6] Lau M.F., Chen T.Y,2001 “Test Case Selection

strategies based on Boolean Specifications”

Software Testing, Verification and Reliability,11(3),

165-180

[7] Kaminski, G., & Ammann, P., 2009, “Using a fault

hierarchy to improve the efficiency of DNF logic

mutation testing” In Software Testing Verification

and Validation,ICST'09. International Conference

on (pp. 386-395). IEEE

[8] Elbaum S.,Malishevsky A.G.,Rothermel

G.,2002,“Test case prioritization: a family of

empirical studies”, IEEE Transactions on Software

Engineering 28 (2) , 159–182.

[9] Yu Y.T.,Lau M.F., 2006,A comparison of MC/DC,

MUMCUT and several other coverage criteria for

logical decisions, Journal of Systems and Software

79 (5),577–590.

[10] Chen Z.Y., Fang C.R.,XU B.W.,2012,“ Comparing

logic Coverage Criteria on test Case Prioritization”.

[11] Yu Y.T., Lau M.F., 2012, “Fault based Test Suite

Prioritizaton for Specification based Testing”,

Information and Software technology 54, 179-202

[12] Malishevsky A.G., Rothermel G. and Elbaum S.

,2002,“Modeling the Cost-Benefits Tradeoffs for

Regression Testing Techniques” Proceedings of the

International Conference on Software Maintenance

(ICSM‟02).

[13] Malishevsky A. G.,Ruthruff J. R., Rothermel G.

,Elbaum S. ,2006, “Costcognizant Test Case

Prioritization”.

[14] Elbaum S.,Rothermel G., Kanduri S.,Malishevsky

A.G.,2004, “Selecting a Cost-Effective Test Case

Prioritization Technique”.

[15] Balance A. W., Vilkomir S., Jenkins W., 2012,

“Effectiveness of Pair-wise Testing for Software

with Boolean Inputs”, IEEE Fifth International

Conference on Software Tesing, Verification and

Validation.

[16] Yu Y.T.,Lau M.F., 2002 “Prioritization of test cases

in MUMCUT test sets: an empirical

study”,Proceedings of International Conference on

Reliable Software Technologies, pp. 245–256.

IJCATM : www.ijcaonline.org

