
International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 16, March 2014

10

Performance Evaluation of Machine Learning

Techniques using Software Cost Drivers

Manas Gaur

Department of Computer Engineering, Delhi Technological University
Delhi, India

ABSTRACT
There is a tremendous rise in cost of software, used in

organizations. The cost of software ranges from hundred

thousand to millions of dollars. The prediction of the software

cost beforehand is the challenging area as the rough estimates

and the actual cost varies with large differences. The

traditional methods are being used since birth of software

engineering. These methods based on current project needs,

defines the cost based on appropriate weights assigned to

scale factors and cost drivers. Application of artificial

intelligence in software project planning has given a new

methodology for Software Cost Estimation (SCE) that has

improved, prediction accuracy. This methodology named

Machine Learning Techniques (MLTs) lays emphasis on,

similarity to past projects and correlation in the data (training

data).Our research work has considered 10 projects along with

their costs based on the cost drivers. Using Machine Learning

Techniques (MLTs), the research tries to predict the cost,

based on the cost drivers. The performance of MLTs was

analyzed using root means square error and squared error.

Keywords
Fuzzy Logic, Decision Tree, NNPO, Association Rules,

Linear Regression, Perceptron, Naïve Bayes, Neural Network

1. INTRODUCTION
The global software market was estimated to be $120 billion

in 1990, $151.2 billion in 1998, and $240 billion in 2000 and

is expected to be $300 billion by 2014. Such tremendous rise

is unquestionably due to decrease in the cost of hardware

resources which forces the software industry to design million

dollar software. Another feature that forces the rise in the

software development is the low cost of personnel in software

industry. US has seen rise of about 19% in the software cost

for four consecutive years. To effectively design software we

need accurate and precise estimation of the software

resources. Software engineering has laid down principles for

effective software development that provides high quality

software within budget [7]. Software engineering inculcates

software project planning, software risk management,

software estimation and software quality. The estimate the

software cost, there are few software cost components that

have to address precisely such as:-Hardware and software

cost, Travel and Training cost, Effort cost (the dominant

factor in S/w projects), Salaries of the engineer involved in

the project, Social and insurance cost., Effort cost must take

overhead into account, Cost of building, Cost of networking

and communication, Cost of shared facilities.

Along with the software cost components there are some

software pricing factors which must taken into consideration

before estimation such as: Market Opportunity, Cost estimate

Uncertainty, Non-linear relationship between cost estimation

parameters, Technology advancement, High impact due to

scale factors and cost drivers, Contractual terms, Requirement

Volatility, Financial Health [7]. The algorithmic model used

in the software engineering provide an economical approach

to software cost estimation but suffers from weaknesses such

as high variation in the cost estimation this may pose

problems for the manager to estimate the resources precisely,

models are based on early measurements therefore do not take

into account recent advancement in technology like

programming, new algorithms, new principle and research in

software engineering, high dependence on cost drivers, human

bias and less concern with project developed in past. Machine

learning is a concept of artificial intelligence applied to the

field of software engineering to enhance the estimation

process of the software [5]. In machine learning trends in

software project and correlation in data is identified,

identification of important attributes that majorly affect the

software cost, normalization to enhance investigation area are

few methodologies used in the machine learning paradigm.

Further discussion in this research covers machine learning

techniques along the process flow chart and comparison of the

performance result.

2. LITERATURE SURVEY
Malhotra [5] analyzed machine learning methods in order to

develop models to predict software development effort. The

results proved that linear regression MSP and M5rules are

effective methods for predicting software development effort.

Venkatachalam [1] stated in his research that an artificial

neural network approach can be used to model the software

cost estimation expertise and results were compared with the

COCOMO model. Iman Attarzadeh [6] proposed Fuzzy logic

COCOMO II model. Evaluation of the model was carried out

in term of Mean of Magnitude of Relative Error (MMRE) and

Prediction (PRED). FL-COCOMO II showed 8.03%

improvement in terms of estimation accuracy using MMRE

when compared with COCOMO. Using fuzzy logic accuracy

in estimation, understandability can be improved which

improves software estimates. Efi Papatheocharous [12]

address the issue of software cost estimation using an

approach to modeling and prediction using artificial neural

network (ANN) and input sensitivity analysis (ISA). The

validation process includes only highly ranked attributes. The

accuracy of the model was same as that of neural network.

ANN and ISA is an effective approach for those software

projects where subset of selected factors didn‟t compromise

the accuracy of the predicted attribute values. Bill Samson [2]

discussed that software cost modeling activity is a hit and try

activity where statistical method results in low prediction

accuracy. Some experiments were carried out using neural

network CMAC or albus perceptron highlighting some of the

problems that arise when MLTs are applied in SCE.

Experimental results were compared with conventional

regression analysis; improved accuracy of predicted values is

possible. Bilge Baskeles [11] evaluated the machine learning

models against the public data set and found out that use of

any one model cannot always yields out best results.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 16, March 2014

11

3. PROBLEM LITERATURE

3.1 Machine Learning Techniques
Machine Learning Techniques (MLT) or soft computing is a

concept of artificial intelligence that perfectly blends with

software engineering estimation process [4]. Machine learning

system efficiently learns how to estimate from training data of

the completed projects. There are many advantages of

Machine learning process, to name a few:

 Adaptive Learning

 Self Organization

 Real time operation

 Fault tolerance via redundant information coding

 No expert is required

 No maintenance is required

 Simplicity of input variables

 Easier to depict and understand

Machine learning took over traditional SCE approaches due to

deficiency in estimation made by traditional algorithmic

models such as:

 A slow adaptation to rapidly changing business

requirements

 A tendency to be over budget

 A tendency to be behind schedule

 Difficult to create a complete set of requirements up

front.

 Heavy documentation

 Extensive planning

 Rigorous reuse

The machine learning techniques discussed and compared as a

part of this research are: Neural Networks(NN), Neural

Network with Parameter Optimization(NNPO), Fuzzy Logic

trained Neural Network(FLNN), Decision Tree(DT), Linear

Regression(LR), Perceptron and Association rules to find

pattern in the software cost. [4] Association rules in SCE are

not concerned with performance analysis, on the contrary it is

used to find correlation and frequent pattern in software cost

matrix.

Fig 1: Procedure for applying MLTs on Software Cost

Dataset

3.1.1 Neural Network (NN)
 The neural network trained using back propagation

algorithm. The NN is composed of layer which contains

neurons. The first layer is the input layer consisting of input

variables, the output layer constitutes the output variables and

the relation between the two is maintained by the hidden

neurons which play the role of detecting high level features

and generalization. The back propagation in NN is a recursive

algorithm to improve the learning capability of NN. The

sigmoid function is a transfer function used in NN for

classification problems [1]. The sigmoid (“S”) curve

categorizes the input data into low, normal and high values.

The sigmoid function is a special case of logistic function and

represented by the equation: 𝐹 𝐼 = 1/(1 + 𝑒−𝐼)

(5)

Where I is the internal activation.

 ∆𝑤𝑗𝑖 𝑛 = 𝛼∆𝑤𝑗𝑖 𝑛 − 1 + 𝜇𝛿𝑗 𝑛 𝑦𝑖(𝑛) (6)

 Δwji(n) refers the change in weight, which is a dependent

variable on sum of α times previous weights and product of

learning rate µ, error term δj(n) and the input term yi(n).

3.1.2 Neural Network with Parameter

Optimization (NNPO)
NNPO is a process of the modifying the results obtained

through neural net. In the parameter optimization process we

optimize the parameters of main concern in the NN. In our

process we took learning rate and learning momentum a two

main parameter to be optimized as they majorly affect the NN

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 16, March 2014

12

working through back propagation.[8] Learning rate is defined

a NN training parameter that controls the size of the weights

and bias changes during learning. It is defined in the range of

(0, 1). Learning Momentum simply adds a fraction of

previous weights to the current one. It is defined to prevent

the system from converging to local minimum or a saddle

point. A high value of momentum can overshoot the training

process but might decrease the convergence time, a low value

can slow down the training process. The value of momentum

is defined in the range (0, 1). In our research process, while

optimizing the learning rate and momentum we obtained

121(11 for Learning rate and 11 for learning momentum)

permutation that would run for 500 training cycles.[8] The

output showed a significant reduction in the error as compared

to NN. For larger projects the change was tremendous of the

order of 1.2 to 2.4 points of error difference. The important

parameters that can be optimized to improve NN results are:

Hidden layers, Training Set (last column should be the data to

be predicted), Target set (that data to be predicted) and

Epochs (the number of training set data to be used in back

propagation).

3.1.3 Fuzzy logic trained Neural Network (FLNN):
Fuzzy logic technique is a superset of predicate logic which

states that there is no clear rule to demarcate the data as valid

and invalid. Software cost estimation data is ambiguous,

vague, obscure and highly sensitive to cost drivers and scale

factors [3.] The data is so complex, even K means produce

incorrect clusters. Fuzzy logic with its powerful linguistic

representation using membership functions, fuzzy clustering,

can signify imprecision in input and output thereby providing

more expert knowledge about the variation and correlation in

data [6]. The entire code to train NN using fuzzy rules was

carried out in MATLAB. We defined sugeno rules for the

input variable using Gaussian membership function based on

cluster centers derived using sub clustering in matlab. The

output variables were made functions of linear type. The

fuzzy inference rules generated are used to train the neural

network and significant change in the error was observed

showing improvement in results of FLNN as compared to NN.

3.1.4 Decision Tree

Decision Tree learning uses a decision tree as a procedure

model which maps observation about an item to conclusions

about the item‟s target value. In these tree structures, leaves

represent class labels and branches represent conjunctions of

features that lead to those class labels. Decision tree can be

made work top-down or bottom-up [4]. Decision tree can be

used to determine gini impurity, information gain from the

input data set. Decision tree can be used to derive

performance correlation in the dataset. Gini Impurity is a

measure of how often a randomly chosen element from the set

would be incorrectly labeled if it were randomly labeled

according to the distribution of the labels in the subset.

𝐺. 𝐼 𝑓 = fi(1 − fi)m
i=1 = 1 − fi2m

i=1 (7)

Information gain is defined as the entropy from information

theory. An entropy typically changes when we use a node in

the decision tree to partition the training instances into smaller

subsets. A measure of change in entropy is information gain.

𝐼. 𝐺 𝑓 = log2 𝑓𝑖𝑚
𝑖=1 (8)

The performance analysis of the decision tree is based on the

information gain derived for this research work. The result

shows significant improvement over earlier used MLTs. The

flow chart shows the flow of work carried out to derive the

results

3.1.5 Naïve Bayes
 Bayesian classifiers are statistical classifiers. They can

predict class membership probabilities, such as the probability

that a given sample belongs to a particular class. Bayesian

classifier is based on Bayes‟s theorem. Naïve Bayesian

classifiers assume that the effect of an attribute value on a

given class is independent of the values of the other attributes

[9]. This assumption is called class conditional independence.

It is made to simplify the computation involved and, in this

sense, is considered “naïve”. The use of Laplace correction to

prevent high influence of zero probabilities [10]. The

classification generated using naive bayes have shown

significant improvement over the classification results of NN.

It has also shown high accuracy in classification results for

large software project‟s datasets.

𝐵𝑎𝑦𝑒𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃 𝐴𝑖 𝐵 =
𝑃 𝐵 𝐴𝑖 .𝑃(𝐴𝑖)

 𝑃 𝐵 𝐴𝑗 .𝑃(𝐴𝑗)𝑗
 (9)

3.1.6 Linear Regression
Regression is a machine learning technique used to fit an

equation to a dataset. Using,

𝑦 = 𝑚𝑥 + 𝑏 (10)

Appropriate values for m and b to predict the values of y

based on given values of x. For our research we take y=cost

and x=cost drivers. Since work of software cost estimation

contains large values therefore modifying the regression

equation as [5]

 𝑦𝑖𝑚
𝑖=1 = 𝑚 ∗ 𝑥𝑖𝑚

𝑖=1 + 𝑏 (11)

Where yi (S/W cost in dollars) is the target sets column with i

attributes and xi (cost drivers) is the train sets column with i

attributes. LR technique can also generate weights to show the

dependency of input attributes on the output attribute.

3.1.7 Association Rules for Software Size

Estimation
Associative Models are being used to find patterns in large

projects containing the nominal data. The 2 main capabilities

of associative model are: firstly, the predictive use of

association rules, secondly, management of quantitative

attributes [4]. The aim is to induce class association rules that

allow predicting software size from attributes obtained in

early stages of the project. In this application area, most of the

attributes are continuous; therefore, they should be discretized

before generating the rules [4, 6]. Discretization is a data

mining pre processing task having a special importance in

association rule mining since it has a significant influence on

the quality and the predictive precision of the induced rules

[4].

3.1.8 Software cost estimation using Perceptron

One of the goals of Artificial Intelligence is to device system

that exhibits adaptive learning. Rosenblatt‟s perceptron

models a human neuron by taking a number of weighted

inputs (cost drivers), summing them and giving an output of 1

if the sum is greater than some threshold value and a 0

otherwise [2]. Since a perceptron can be „trained‟ by

presenting it with training set of input/output pairs and

adjusting the weights of the input until the desired output is

achieved for every pair in the training set. This process This

process is just the statistical one of finding a linear

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 16, March 2014

13

discriminant. [2] It is the simplest kind of feed forward

network. It takes training set as input and improves the

example set using rounds and learning rate which servers as

its parameter. It helps in training NN by providing optimize

weights to inputs.

4. MODEL DESCRIPTION
Input the Data set containing the cost driver and their values

for the past projects and the cost drivers with their values for

the present project. Our target output is the prediction of the

cost prices using the method of cross validation with machine

learning techniques.

4.1. Flows for the Neural Network MLT

1. Input the dataset

2. Perform the process of classification or clustering

by evaluating the performance in cycles.

3. Perform 9:1 cross validation on the data set.

4. Define the number of hidden layers for the neural

network.

5. Train the Network.

6. Analyze the performance of the model using root

means square error, mean square error.

7. Retrain by changing the epochs.

4.2. Flows for NNPO
In this model the process is similar as described above but in

cycles we try to optimize the learning factor and learning

momentum. The learning factor define the capability of the

model to learn and learning momentum defines the rate with

which model adapts to new environment.

4.3. Flows for FLNN
1. Input the Dataset.

2. Define the training and target data set

3. Perform sub clustering to generate the cluster

centers range for the attributes.

4. Define the membership functions for output and

input.

5. Generate the rules

6. Perform defuzzification

7. Performance analysis by testing the model with

training data and testing data.

4.4. Flows for Decision Tree
1. Input the Dataset.

2. Define the class label in the dataset.

3. Check to see if the dataset type in numeric, if yes

converts it to nominal type.

4. Perform Normalization on the dataset.

5. Discreteize of the dataset based on frequency.

6. Apply the cross validation process with training and

testing dataset.

7. Apply the Decision tree model to evaluate the gini

impurity, information gain.

8. Evaluate the performance of the model.

4.5. Flows for Naïve Bayes Network
1. Input the dataset

2. Perform 9:1 split validation

3. Generate the classes based on training dataset.

4. Test the classes on the testing dataset.

5. Evaluate the classification using class precision

percentage

6. Remove the classes with less than minimum

threshold.

7. Repeat the process.

8. Analyze the performance of the model.

4.6. Flows for Linear Regression
1. Retrieve the dataset

2. Identify the class label attribute

3. Convert all the attributes to numeric data types.

4. Normalize the data set

5. Perform linear regression in matlab with parallel

testing in cycles

6. A linear regression model provides weights of the

attributes to predict the class label which will

enhance the process in next cycle.

7. Analyze the performance.

 4.7. Flows of Perceptron
1. Retrieve the dataset

2. Normalize the dataset

3. Discreteize the dataset based on frequency, binning

etc.

4. Polynominal to binominal classification with

parallel perceptron learning

5. The weight of the attributes generated marks their

influence over the “predict label “attribute.

6. Weights can be used to train other MLT‟s.

7. Analyze the performance.

5. RESULT AND ANALYSIS
The software cost estimation was made using different

machine learning techniques and the evaluation criteria used

was root means square error and square error. The error is

defined as the difference between the quantity to be estimated

and the actual value. The difference occurs due to randomness

or the estimator does not take into account factors that could

produce more accurate estimates. Root Means Square Error:

RMSE is a meaningful measure of error as it is a measure of

variability of the difference. [2] More technically we can say,

it states the spread of y values over the predicted y value.

Square error is defined as the squared value of the root means

square error.

 𝑅𝑀𝑆𝐸 =
 (𝑝𝑦𝑖 −𝑦𝑖)2𝑚

𝑖=1

 𝑚
2 (12)

m: total # observations, pyi: predicted y value of ith

observation and yi: actual y value of the ith observations.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 16, March 2014

14

𝑆𝐸 =
 𝑝𝑦𝑖 − 𝑦𝑖 2𝑚

𝑖=1

𝑚
 (13)

The square error shows more precise error in prediction than

RMSE for values with +/- 0.0 error range.

Table 1. Example Dataset

Cost Drivers Value of

past

project

Numeri

c Value

Value of

Present

project

Numeric

Value

Software

Cost (in $)

Size of Application Low 0.92 High 1.10 11956.52

Complexity of Project Nominal 1.00 High 1.14 13630.43

Virtual Machine Volatility Nominal 1.00 Low 0.87 11858.48

Memory Constraints Nominal 1.00 High 1.07 12688.57

Application Experience High 0.91 Nominal 1.00 13943.49

Run time Performance

Constraint

High 1.11 High 1.29 16204.59

Required Development

Schedule

Nominal 1.00 High 1.05 17014.82

Analyst Capability Low 1.15 High 0.88 13020.04

Virtual Machine Experience Very Low 1.22 Nominal 1.00 10672.16

Programming Lang

Experience

Low 1.09 Nominal 1.00 9790.97

Modem Programming

Practice

Low 1.09 Low 1.20 10779.05

Use of Software Tools Low 1.09 Nominal 1.00 9889.04

Programmer Capability Low 1.14 High 1.00 8674.6

Table 2. Normalized Form of Dataset PP (Past Project), PrP (Present Project) CD (COST DRIVER)

PP_CD PrP_CD Norm_Cost

0.0 0.5 0.4

0.3 0.6 0.6

0.3 0.0 0.4

0.3 0.5 0.5

0.0 0.3 0.6

0.6 1.0 0.9

0.3 0.4 1.0

0.8 0.0 0.5

1.0 0.3 0.2

0.6 0.3 0.1

0.6 0.8 0.3

0.6 0.3 0.1

0.7 0.3 0.0

5.1 Neural Network and NNPO

Fig 2: Neural network structure for software project

The input defines the input attributes that are cost drivers of

past and present project and actual software cost. The output

defines the predicted software cost. The Neural network

required 1 hidden layer, 4 hidden neurons and a total of 8

neurons for complete cost estimation. The RMSE for the

neural net for the software project was found to be (0.099,

0.119) and when we performed parameter optimization taking

learning rate and learning momentum as the parameter to be

optimized we see a significant change in the RMSE values

that is for NNPO RMSE is 0.071. Optimized values for

learning rate of NN are 0.7 and learning momentum is 0.1

shows that NN when trained using above input values, error in

estimation is low. Similarly using calculated hidden layer for

NN has improved the results of NN

𝐻𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟𝑠: # 𝑟𝑜𝑤𝑠 <
2

3
 # 𝑟𝑜𝑤𝑠 + # 𝑟𝑜𝑤𝑠 < 2 ∗

𝑟𝑜𝑤𝑠. (14)

When the Neural Net is trained with hidden layers in the

range (14) the accuracy is improved and NN is trained with

low training error.

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 16, March 2014

15

5.2 Fuzzy logic trained NN (FLNN)

Fig 3: FLNN graph showing mapping of FIS output on

training data

The training data is the actual cost and the FIS output is the

predicted cost using fuzzy logic. The close mapping of values

shows that NN is better trained using Fuzzy logic. The RMSE

error of FLNN is 0.136 which shows much improvement over

Decision Tree, Naïve Bayes and Perceptron. . A membership

function µ(X) describes the membership of the elements x of

the base set X in the fuzzy set A. A membership function is

defined for those sets of data where precise classification is

not possible; hence membership domain is defined based on

cluster centers [6]. The “index” on the x axis is the Epoch rate

to train the neural network. The membership function graph is

Gaussian type depicting 4 cluster centers (2 for each input

attribute) generated from the software project dataset

5.3 Decision Tree

Fig 4: A decision tree classifies the dataset, root node as

past project data and leaves as present project

The Decision tree Network is a classification model like NN

used to classify the data in the dataset. The dataset before

being operated by the decision tree have to be converted into

nominal data set so that they can be classified based on yes/no

questions [11]. The leaves of the tree show the class label and

the splitting attribute taken was past projects data as the

information gain was high. The decision tree can be used to

derive gini impurity and information gain [11]. Our

classification is based on information gain output parameter of

the decision tree. The correlation in the dataset is also brought

out by the decision tree and the correlation correction can be

analyzed using apply model and performance analysis done

using rapid miner. The performance of Decision tree was

found worse as compared to other machine learning model

this is due to lack of understanding the heterogeneous and

non-linear data in software cost modeling.

5.4 Naïve Bayes Classifier (NBC)

Table 3.Naive Bayes Confusion Matrix

 True range

1

True range

2

Class

precision

Pred. range

1

7 4 63.54

Pred. range

2

1 1 50.00

Class recall 87.50 20.00

Naïve bayes classifier classifies the information based on

Bayesian probability as shown in figure 6. A Bayesian

probability is considered to be an evidential probability in

which evidences that is cost drivers and actual software cost

data is analyzed to predict the cost. The Bayesian theorem is

an extension of propositional logic (true/false) that enable to

reason uncertainty which exists in S/W cost [8]. In naïve

bayes classifier, hypothesis is created which is renewed in the

light of new, relevant data. The true range defined in the table

is the actual value. The prediction range is defined as

(Pred. Range 1)Negative (∞,0.500] and (Pred. range 2)

Positive (∞, 0.500]. A recall of 20% defines lower rate of

irrelevant instances. Accuracy of the result achieved is 62%.

5.5 Linear Regression (LR)
Linear regression is another machine learning technique used

in SCE. The RMSE for linear regression shows much

improvement than NN, naïve bayes classifier, FLNN. The

linear regression uses the concept of curve fitting using linear

equation intercept form. LR technique finds its application in

forecasting, prediction. Given a variable y and a number of

variables X1, X2, X3….Xn that may be related to y LR

technique can be applied to deduce the relationship between

Xi and y. This relationship is shown in terms of weights. P

values <0.05 define acceptable discrimination of the dataset.

Greedy algorithm did not provide promising results for Past

project driver and worked correctly only for present project

cost driver.

Based on M5 prime algorithm Past project has high influence

then present project.

Table 4.Linear Regression Results

5.6 Perceptron in SCE
A perceptron is also a classifying network used in software

cost estimation. The main objective of perceptron is

classifying the information and assigns weight to the attributes

in each classified range [2]. The weight is nothing but the

relationship between the input attribute and output attribute.

The relationship can be used to train the neural net when

coded in MATLAB or perceptron can itself be used to predict

software after normalization of the data set.

Feature

selection

LR

coefficient

Std.

error

T test

statistics

p-

value

M5 (PrP)

primes

0.341 0.495 0.688 0.052

Greedy 0.368 0.362 1.016 0.048

M5

(PaP)prime

-0.358 0.481 -0.744 0.048

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 16, March 2014

16

Fig 5: Perceptron trained NN and weights of attributes for

each classification

Present project cost drivers have high weights as compared to

past project as demonstrated by perceptron.

5.7 Association Rules Mining

Table 5. Association Rules: ITEMSET 1  ITEMSET 2

Itemset 1 Itemset 2 Support Confidence

Past Project

cost Driver

Present

Project cost

Drivers

0.846 0.912

Present

Project cost

Drivers

Past Project

cost Driver

0.634 0.772

Association Rules is a rule induction technique of data mining

applied to software engineering to generate rules that is

correlation in data set to determine support and confidence.

The support of an item set X is defined as the proportion of

transaction in the dataset which contain the item set.

Confidence of a rule is defined as:

𝐶𝑜𝑛𝑓 𝑋 → 𝑌 =
𝑠𝑢𝑝𝑝 𝑋∪𝑌

𝑠𝑢𝑝𝑝 (𝑋)
 (15)

The result of association rule mining in software project can

be applied after discretization by frequency, FP item set and

then association rule mining is performed. Form the figure 6 it

is clear that for software cost estimation past projects have

high influence factor then the present project. On careful

simulation we obtained confidence of 0.9when past project

data was taken as label and confidence of 0.7 when present

data was taken as label. This conclusion gets stronger in the

consequent sub-section of cost prediction based on past

project data and present project data.

5.8 Graphical representation of predicted

cost
We have carried out the research of comparing the machine

learning models in software cost estimation. We collected cost

drivers values used in past projects and cost drivers values to

be used in present projects. The present projects are similar in

requirements to past project with variations in behavior and

quality. For example: UI used in past project was command

prompt based whereas in new UI it is application based, so the

cost driver rose from low to high in new project. Similar

characteristics were taken into consideration to predict the

cost based on available data.

Fig 6: software cost predicted using Naïve bayes and Decision Tree respectively

Fig 7: software cost predicted using Perceptron and Neural Network PO respectively

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 16, March 2014

17

Fig 8: software cost predicted using Linear Regression

Table 6. Comparison Between Past and Present Cost Drivers using Machine Learning Techniques

S.no Machine Learning Model Performance Past Cost

Drivers

Performance Present Cost

Drivers

1. Neural Network RMSE:0.099 SE:0.013 RMSE:0.119

SE:0.097

2. Neural Network with Parameter

optimization

RMSE:0.071

SE: 0.008

RMSE: 0.09

SE: 0.011

3. Fuzzy Logic Neural Network RMSE:0.136 SE:0.110 RMSE: 0.142

SE: 0.116

4. Decision Tree RMSE: 0.307

SE: 0. 194

RMSE:0.376

SE: 0.204

5. Naïve Bayes Classifier RMSE:0.186 SE:0.107 RMSE: 0.211

SE:0.126

6. Perceptron RMSE:0.148 SE:0.114 RMSE:0.201

SE: 0.119

7. Linear Regression technique RMSE:0.09

SE: 0.01

RMSE: 0.108

SE: 0.017

Fig 9: Error in prediction when Model was used on the dataset (RMSE values)

6. CONCLUSION AND FUTURE WORK
Some of the software projects in organizations suffer from

over budget or failure. This happens due to inaccurate

measures to estimate the costs. The algorithmic models were

foundation for the estimation but there considered the current

project to estimate, considering today‟s development

environment we emphasize on re-engineering or re-use

engineering. So we need those estimation models which can

predict the cost from historical data. Estimation using

machine learning technique focuses on prediction based on

rules generated from the training data, back propagation

neural network with updates the weights which signifies the

importance of each attribute, curve fitting based prediction.

Our research focuses on finding one model that provides least

prediction error when applied to project, irrespective of their

class. We considered a neural network , tried to improve it by

optimization of parameters, generated fuzzy rules to train

neural network, naïve bayes network classifier which detect

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 16, March 2014

18

the class based on true range and class precision, linear

regression and perceptron model that was used to enhance the

capability of NN. Based on the performance result obtained

for various machine learning technique neural network with

parameter optimization MLT was proved to be a versatile

technique is software cost estimation with minimum Root

Mean Sq. error (RMSE).

More similar type of studies must be carried out with large

projects will different attributes to get better accuracy. Scale

factors can also be used for estimation. In new generation

software development we have TCP based GUI, Plug in based

GUI and Application based GUI, so we can try to develop

cost drivers values for each subclass attributes so as to get

more detailed estimation and performance of the models can

be well tested.

7. REFERENCES
[1] Venkatachalam, A.R 1993 Software Cost Estimation

Using Artificial Neural Networks, Proceedings of

International Joint Conference on Neural Network, pp.

987-990.

[2] Samson, Bill 1997 Software cost estimation using an

Albus perceptron (CMAC), Information and Software

technology ELSEVIER, pp. 55-60,1997.

[3] Boehm, B.W, 1981 Software Engineering Economics,

Software Engineering Books, Prentice Hall.

[4] Krishnamurthy, S. and Fisher, D. 1995 Machine Learning

Approaches to Estimating Software Development Effort,

IEEE transaction on Software Engineering, pp. 126-137.

[5] Malhotra, Ruchika, Kaur, Arvinder and Singh, Yogesh

2010 Machine Learning Methods for Software Effort

Prediction, ACM SIGSOFT Software Engineering Notes,

pp. 1-6.

[6] Attarzadeh, Iman and Hock Ow, Siew, 2011 Improving

Estimation Accuracy of the COCOMO II Using an

Adaptive Fuzzy Logic Model, IEEE International

Conference on Fuzzy Systems, pp. 2458-2464.

[7] Agarwal, K.K and Singh, Yogesh, 2005 Software

Engineering, Software Engineering Books, New Age

International Publishers.

[8] Rish, I, 2001 An empirical study of naïve Bayes

classifier, IJCAI workshop on empirical methods in

artificial intelligence, pp. 41-46.

[9] Kabir, Md Faisal, 2011 Enhanced Classification

Accuracy on Naïve Bayes Data Mining Models,

International Journal of Computer Application, pp. 9-16.

[10] Idri, Ali and Elyassami, Sanaa , 2011 Applying Fuzzy

ID3 Decision Tree for Software Effort Estimation,

International Journal of Computer Science Issues, pp.

131-138.

[11]Baskeles, Bilge, 2007 Software Effort Estimation Using

Machine Learning Methods, IEEE 22nd Symposium on

Computer and Information Sciences, pp. 1-6.

[12] Papatheocharous, Efi, 2012 Software Cost Modelling and

Estimation Using Artificial Neural Network Enhanced

Input Sensitivity Analysis, Journal of Universal

Computer Science, pp. 1-30.

IJCATM : www.ijcaonline.org

