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ABSTRACT 
Severe thunderstorm is a seasonal and mesoscale atmospheric 

event. The sudden increase in wind speed and the other 

weather features during this event have various destructive 

effects on the people. Correct forecasting with enough lead 

time is very important to minimize the damages occurring in 

day-to-day life. In this paper, artificial neural network 

technique has been applied to predict the severe thunderstorm. 

Multilayer Perceptron (MLP) has been applied on the weather 

parameters of moisture difference, adiabatic lapse rate and 

vertical wind shear which were recorded by the radiosonde-

rawind (RSRW) in the early morning at 06.00 am local time. 

MLP classified and predicted „severe storm‟ and „no storm‟ 

days in this work correctly nearly up to 70% having around 12 

hours lead time.      

General Terms 
Pattern Recognition, Squall, Mesoscale. 

Keywords 
Artificial Neural Network, Multilayer Perceptron, RSRW, 

Severe Thunderstorm and Wind-shear. 

1. INTRODUCTION 
Severe local thunderstorm is the extreme weather convective 

phenomenon. It is accompanied with very strong surface 

wind, lightning, thunder, smart shower, and sometimes with 

hailstones. The strong surface wind is known as squall, which 

is a sudden and sharp increase in the wind speed of 45 

kilometers or more per hour during a short time interval of 

minimum 1 minute, [1]. Such type of thunderstorm is 

generated by the small-scale convection of cumulonimbus 

cloud. In small-scale convection, air is accelerated upward 

under the buoyancy provided by the release of latent heat 

during condensation on the cloud particles, [2]. The intensities 

of convection depend not alone upon the degree of 

atmospheric instability, but the manner by which the 

instability is created and released, and the particular character 

of the circulation in the resulting storm, [3]. There occur 

severe thunder-squalls and hailstorms in India, including 

Nor‟westers of North-East India, Bangladesh and Assam in 

the pre-monsoon period, [4]. The jet stream in the upper 

troposphere (500-mb) flows over these regions as strong 

westerlies [4]. Ludlam in 1963 showed the distribution of 

areas in the subtropical regions of the world where severe 

squall-storms occur. There is an equator-ward advancing cold 

fronts which are probably closely associated with the storm 

outbreaks, [2]. The favorable condition for storm generation is 

the distribution of potential temperature for deep convection, 

the field of vertical motion (or low level convergence), and a 

„triggering mechanism‟, [2]. Storms are forecast to occur 

where there is a combination of favorable circumstances, and 

their severity can be assessed by the application of parcel 

theory, [2]. Superposition of upper-level divergence over 

lower-level convergence is the favorable process for 

convective storm generation, [3].   

Severe squall-storms can cause destructions of various 

dimensions, like uprooting of trees, electric polls, electro-

cuttings, damages of weak structures and crops, blockage of 

roads and railway traffic, [5]. The effects of Nor‟wester have 

tremendous impacts just after the occurrence of the event. The 

remedial measures must be taken when meteorological 

departments issue the forecast of these events. Correct 

forecast having enough lead-time is very important factor to 

save the people from the catastrophy caused by such natural 

disaster. Thunderstorm forecasting is a challenging job due to 

the dynamic nature of the atmosphere, [6]. To predict severe 

thunderstorms, different weather variables from surface level 

to the various heights of the upper air are necessary. The 

atmospheric data are observed during the whole day at 

different time intervals. In the present work, the weather data 

which are considered are moisture difference, dry adiabatic 

lapse rate and vertical wind shear at different geo-potential 

levels of the atmosphere. Moisture difference and adiabatic 

lapse rate are the measure of instability of the atmosphere, [7]. 

Wind shear is an important parameter to measure the potential 

of severity and duration of squall line. In this paper our main 

aim is to observe how much correct forecast can be done 

using these three upper air parameters with 10 to 12 hours 

lead time. The upper air data were collected at the location of 

Kolkata (22.3
o

N/88.3
o

E), situated in North-East India during 

the period of 18 years from 1990 to 2008 for the months of 

March-April-May (MAM). These three months are known as 

pre-monsoon months in North-East India. The upper air 

weather variables which have been considered for analysis 

here were observed by radiosonde and rawindsonde (RSRW) 

in the morning time at around 06.00 local time (00.00UTC).    

The neural network of appropriate complexity is trained to 

recognize the underlying directional pattern of the storm, 

without formulating complex equations which are quite often 

restrained by the model limitations [8]. The main features of 

ANN are its ability to map input data to output data to any 

degree of non-linearity [9]. Neural Network is a 

generalization of traditional statistical methods for non-linear 

regression and classification [10]. The objective is to develop 

a learning algorithm for a multilayer feed-forward neural 

http://en.wikipedia.org/wiki/Wind_shear
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network, so that it can be trained to capture the mapping 

implicit in the given set of input-output pattern pairs [11]. 

Multi layer perceptron (MLP) and K-nn techniques have been 

applied by Chakrabarty2 et al., 2013 to predict squall-storms 

occurring in Kolkata using only two types of weather 

variables such as adiabatic lapse rate and moisture difference 

from surface level to five different geopotential heights of the 

atmosphere with around 12 hours lead time, resulting 91% 

accuracy in forecast. Neural network classifiers have been 

attractive alternatives to conventional classifiers by numerous 

researchers, [12] and it is also studied in the fields of speech 

and image recognition. Here in this work, neural network-

Multi-Layer-Perceptron (MLP) has been applied on the 

weather variables for the prediction of „squall-storm‟ or „no 

squall-storm‟ days. 

2. DATA 

2.1 Data Collection 
All the weather data were collected from India Meteorological 

Department, Govt. of India during the period of 18 years 

(1990-2008) for the months of March-April-May. The data 

considered for analysis here are both for the days when squall-

storms occurred and for some of the days when squall-storms 

did not occur. The numbers of „squall-storm‟ days are 69 and 

„no squall-storm‟ days are 270. The whole data-points have 

been divided into six sets, taking one set as testing set and 

remaining sets as training set. In each set squall and no-squall 

data has been arranged in 1:4 orders. Each set has been 

considered as test set and the remaining as training set for six 

different datasets. 

2.2 Data Description 
Three atmospheric parameters have been considered here for 

the analysis. These are moisture difference, dry adiabatic 

lapse rate and vertical wind shear. We have discussed about 

these three variables in the following sub-sections. 

 

2.2.1. Moisture Difference  

The moisture difference has been considered at (i) surface 

level ( 1x ), and then at different geo-potential heights of the 

upper air, such as at (ii) 1000 hpa ( 2x ), (iii) 850 hpa ( 3x ), 

(iv) 700 hpa ( 4x ), and (v) 600 hpa ( 5x ) which are measured 

at approximately 75 meters, 1500 meters, 3100 meters, and 

4500 meters respectively from mean sea level (MSL).  

Moisture difference (MD=T-Td) is the difference between dry 

bulb temperature (T) and dew point temperature (Td) of the 

atmosphere. This moisture difference profile indicates the 

measurement of humidity from the surface to the upper 

atmosphere of 4.5 kilometers height, from MSL, signifying 

the amount of saturation in the atmosphere in the morning on 

the „squall-storm‟ days as well as on the „no storm‟ days.  

 

2.2.2. Adiabatic Lapse Rate:  
Dry adiabatic lapse rates at different geo-potential heights are 

determined by dry bulb temperature difference between 

consecutive two levels     (d T / d Z), which are considered as 

five input parameters (predictors), such as  (i) surface and 850 

hpa (approximately surface to 1500 meters), denoted by 6x , 

(ii) 850 hpa and 700 hpa (approximately 1500 to 3100 

meters), denoted by 7x , (iii) 700 hpa and 600 hpa 

(approximately 3100 to 4500 meters), denoted by 8x , (iv) 

600 hpa and 400 hpa (approximately 4500 to 7500 meters), 

denoted by 9x , and (v) 400 hpa and 300 hpa (approximately 

7500 to 9600 meters), denoted by 10x , [6].  The more the 

conditional instability remains in the atmosphere, more 

moisture would be carried out to the upper atmosphere from 

the surface level to form thunderclouds, [13]. The conditional 

instability can be evaluated by the dry adiabatic lapse rate of 

the atmosphere, [7]. 

 

2.2.3. Wind-shear:  
The wind shear at four different geopotential heights of the 

atmosphere are considered as three input variables 

(predictors), represented by ,, 1211 xx and 13x . The wind 

shear has been calculated by the difference in wind speed 

between two consecutive heights of the upper air with respect 

to the difference between those respective heights (dw/dx). 

The altitudes in the upper air at which wind shears have been 

calculated are (i) 900 hpa and 700 hpa (approximately 980 

meters to 2500 meters, say x11), (ii) 700 hpa and 500 hpa 

(approximately 2500 meters to 12340 meters, say x12) and (iii) 

500 hpa and 200 hpa (approximately 12340 meters to 35000 

meters, say x13). In low to medium shear environments, 

mature thunderstorms will contribute modest amount of 

downdrafts, enough to turn will aid in creating a leading edge 

lifting mechanism - the gust front. In high shear environments 

created by  

opposing low level jet winds and synoptic winds, updrafts and 

consequent downdrafts can be much more intense (common in 

super cell mesocyclones). Linear theory predicts that an 

initially axisymmetric updraft interacts with a shear flow in a 

way that produces a favorable vertical pressure gradient, [14] 

to produce severe thunderstorms. 

 

3. METHODOLOGY 
Artificial Neural Network (ANN) has been applied here for 

correct prediction of „squall-storm‟ and „no squall-storm‟ 

days. Multilayer Perceptron (MLP) technique has been 

adopted in this work.   

 

Multilayer Perceptron (MLP) 

 A three layered MLP network has been designed here. There 

is one hidden layer along with an input layer and an output 

layer (Figure 1). The input layer consists of thirteen input 

nodes which are weather variables. These thirteen variables 

are moisture differences, adiabatic lapse rates and vertical 

wind–shears. First five input data represent moisture 

differences at different heights of the upper air denoted by x1, 

x2, x3, x4 and x5. Input variables x6, x7, x8, x9 and x10 represent 

adiabatic lapse rates at several geo-potential levels of the 

atmosphere. The remaining three input variables i.e., x11, x12 

and x13 represent vertical wind-shears at various geo-potential 

heights. Fourteenth variable is considered as a „bias‟ term 

having value „1‟. The number of hidden nodes considered in 

the hidden layer varies from 8 to 14. Each 3-layered MLP 

network has been run to get the outputs. The output layer 

consists of two nodes Y1k and Y2k, which denote „squall 

storm‟ and „no squall storm‟ events respectively.   
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Fig 1: A three layered 14-8-2 MLP network 

 

3.1. Learning Phase 
In the learning phase of the Multilayer Perceptron, the value 

1, 0 for nodes Y1k and Y2k respectively in the output layer 

would mean that the input is a „squall storm‟ data point and 0, 

1 for nodes Y1k and Y2k respectively would mean the 

observation corresponds to „no storm‟ day. Each unit of each 

layer is connected to each unit of the next layer by the 

connection weights. A sigmoid function, which is a nonlinear 

activation function, is widely used as a transfer function. 

There are two ways of learning the weights of an MLP: Batch 

mode learning and On-line learning. Here, Batch-mode 

method of learning the weights is followed. 

3.2 Feed-forward Stage 

In this stage each node (say i) in a layer is joined to each node 

(say j) in the next layer by a connection weight represented by 

W
ij
. The weight values are chosen in the range from -0.5 to 

0.5. Let x
i 
be the i-th input node in the  

input layer. Let a node in the hidden layer is y
j
. Then the total 

input received for the j-th node in the hidden layer is    𝑌𝑗 =
 𝑋𝑖

𝑛
𝑖=1 𝑊𝑖𝑗                                                             (1)                                    

The output from the j-th node of the hidden layer is Y
j 

. A 

transfer function is used to obtain this. This is a nonlinear 

activation function. 

𝑌𝑗 =
1

1+exp ⁡(−𝑌𝑗 )
                                                                  (2) 

   

This is valid for every layer. 

 

 

 

 

 

 

 

3.3. Error 
 The error function is the mean square error, which is 

expressed by,  

 𝐸 =
 (𝑒𝑗−𝑜𝑗 )22

𝑗=1

2
                                                               (3) 

The expected output (e
j
) for every point in the training set is 

known. For a particular observation, the actual (calculated) 

output value for the j-th node in the output layer is o
j
. This 

error is to be minimized during the training phase by the back 

propagation. Iteration is continued until the error is minimized 

around 0.005 to 0.001. 

 

3.4. Back Propagation Phase  
The performance of the back propagation learning law 

depends on the initial setting of the weights, learning rate 

parameter, output function of the units, presentation of the 

training data. Modification of the weights using back 

propagation is done by learning the given set of training 

patterns in the iterative manner several times. Learning rate 

parameter η plays a crucial role in the back propagation 

learning. In this paper, the value of η is assumed as 0.01. The 

back propagation basically uses gradient descent technique to 

minimize the error and to change the weights. The objective is 

to determine the weights update for each presentation of an 

input-output pattern pair. Since given data may be used 

several times during training, let us use the index m to indicate 

the presentation step for the training pair at step m. For 

training a multilayer feed-forward neural network, we use the 

following estimate of the gradient descent along the error 

surface to determine the increment in the weight connecting 

the units j and i. 

 

∆𝑊𝑖𝑗  𝑚 = −𝜂
𝜕𝐸 𝑚 

𝜕𝑊𝑖𝑗
                                                       (4)                            

3.5. Modification of weights  
The weight update is given by,  

 

𝑊𝑖𝑗  𝑚 + 1 = 𝑊𝑖𝑗  𝑚 + ∆𝑊𝑖𝑗  𝑚             (5)  

 

The modified weights are used in test dataset for the 

validation of the outputs. In some cases, large number of 

iteration or unsatisfactory test set produces large error value. 

In such cases, the architecture of MLP is to be changed by 

changing the number of nodes in the hidden layer. So several 

3 layered MLPs are to be studied. The different 3-layered 

architectures of MLPs which were used in this study are 14-8-

2, 14-9-2, 14-10-2, 14-11-2, 14-12-2 14-13-2, and 14-14-2 

with different combinations of training and testing data sets. 
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4. RESULT 
Results using 3 layered MLP in batch mode process is shown 

in table 1 and table 2. 

 

Table 1. Results of three layered MLP using different 

models 

Design 

of the 

network 

No. of 

correctly 

classified 

and % of 

accurate 

points for 

‘squall 

storm’ 

days in 

test data 

set 

Number of 

correctly 

classified 

and % of 

accurate 

points for 

‘no squall-

storm’ 

days in the 

test 

dataset. 

 

Total number 

of correctly 

classified and 

% of accurate 

points in the 

test dataset.  

Datasets of both 

‘squall-storm’ 

and ‘no squall-

storm’ days 

considered.  

 

SET I Total no. 

of squall 

days = 17 

Total no. 

of no 

squall days 

= 27 

Total no. of days  

= 44 

14-8-2 3, 17.64% 26, 96.29% 29, 65.90% 

14-9-2 3, 17.64% 26, 96.29% 29, 65.90% 

14-10-2 4, 23.52% 24, 88.88% 28, 63.63% 

14-11-2 2, 11.76% 25, 92.59% 27, 61.36% 

14-12-2 3, 17.64% 25, 92.59% 28, 63.63% 

14-13-2 4, 23.52% 25, 92.59% 29, 65.90% 

14-14-2 4, 23.52% 25, 92.59% 29, 65.90% 

SET II Total no. 

of squall 

days = 17 

Total no. 

of no 

squall days 

= 28 

Total no. of days  

= 45 

14-8-2 5, 29.41% 27, 96.42% 32, 71.11% 

14-9-2 1, 5.88% 27, 96.42% 28, 62.22% 

14-10-2 9, 52.94% 22, 78.57% 31, 68.88% 

14-11-2 5, 29.41% 26, 92.85% 31, 68.88% 

14-12-2 2, 11.76% 27, 96.42% 29, 64.44% 

14-13-2 2, 11.76% 25, 89.28% 27, 60% 

14-14-2 3, 17.64% 27, 96.42% 30, 66.66% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Results of three layered MLP using different 

models 

Design 

of the 

network 

No. of 

correctly 

classified 

and % of 

accurate 

points for 

‘squall 

storm’ 

days in 

test data 

set 

Number of 

correctly 

classified 

and % of 

accurate 

points for 

‘no squall-

storm’ days 

in the test 

dataset. 

 

Total number 

of correctly 

classified and 

% of accurate 

points in the 

test dataset.  

Datasets of both 

‘squall –storm’ 

and ‘no squall-

storm’ days 

considered.  

 

SET III Total no. 

of squall 

days = 17 

Total no. of 

no squall 

days = 27 

Total no. of days  

= 44 

14-8-2 5, 31.25% 25, 89.28% 30,68.18% 

14-9-2 9, 56.25% 24, 85.71% 33, 75% 

14-10-2 2, 12.5% 27, 96.42% 29, 65.90% 

14-11-2 3, 18.75 25, 89.28% 28, 63.63% 

14-12-2 6, 37.5% 23, 82.14% 29, 65.90% 

14-13-2 4, 25% 26,92.85% 30,68.18% 

14-14-2 4, 25% 26, 96.42% 31, 70.45% 

SET IV Total no. 

of squall 

days = 16 

Total no. of 

no squall 

days = 28 

Total no. of days  

= 44 

14-8-2 6, 35.29% 25, 89.28% 31, 68.88% 

14-9-2 2, 11.76% 25, 89.28% 27, 60% 

14-10-2 6, 35.29% 25, 89.28% 25, 55.55% 

14-11-2 4, 23.52% 22, 78.57% 26, 57.77% 

14-12-2 4, 23.52% 25, 89.28% 29, 64.44% 

14-13-2 3, 17.64% 23, 82.14% 29, 64.44% 

14-14-2 4, 23.52% 25, 89.28% 29, 64.44% 

SET V Total no. 

of squall 

days = 16 

Total no. of 

no squall 

days = 28 

Total no. of days  

= 44 

14-8-2 5, 31.25% 26, 92.85% 31, 68.88% 

14-9-2 1, 6.25% 28, 100% 27, 60% 

14-10-2 6, 35.29% 25, 89.28% 31, 68.88% 

14-11-2 3, 17.64% 23, 82.14% 26, 59.09% 

14-12-2 4, 23.52% 25, 89.28% 29, 65.90% 

14-13-2 3, 17.64% 25, 89.28% 28, 63.63% 

14-14-2 4, 23.52% 26, 92.85% 30, 68.18% 

SET VI Total no. 

of squall 

days = 16 

Total no. of 

no squall 

days = 28 

Total no. of days  

= 44 

14-8-2 7, 43.75% 26, 92.85% 33, 75% 

14-9-2 3, 17.64% 27, 96.42% 30, 68.18% 

14-10-2 2, 12.5% 28, 100% 30, 68.18% 

14-11-2 4, 23.52% 26, 92.85% 30, 68.18% 

14-12-2 3, 17.64% 25, 89.28% 28, 63.63% 

14-13-2 3, 17.64% 27, 96.42% 30, 68.18% 

14-14-2 3, 17.64% 26, 92.85% 29, 65.90% 
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Table 3. Misclassification rates of different MLP models 

 

Design 

of the 

network 

Miss- 

classification 

rate of 

„squall class‟ 

Miss- 

classification 

rate of „no-

squall class‟ 

Total Miss- 

classification 

rate 

14-8-2 0.7 0.02 0.29 

14-9-2 0.8 0.05 0.38 

14-10-2 0.7 0.09 0.34 

14-11-2 0.78 0.11 0.35 

14-12-2 0.77 0.09 0.34 

14-13-2 0.8 0.09 0.34 

14-14-2 0.77 0.06 0.32 

 

It is observed from Table-1 and Table-2 that 14-8-2 model of 

MLP on an average yields the most satisfactory result 

comparing with the other 6 models of MLP. Total number of 

data accurately classified by 14-8-2 MLP classifier is nearly 

70%, and misclassification rate is 0.29 (Table-3). 

Chakrabarty1 et al. (2013) predicted squall-storm using wind 

shear parameter from rawind data. Chakrabarty2 et al. (2013) 

also now casted severe thunderstorm by the weather 

parameters of moisture difference and adiabatic lapse rate 

from radiosonde data. In both the cases, artificial neural 

network- MLP has been used.      

5. CONCLUSION 
Generally, radiosonde-rawind (RSRW) data are required to 

predict thunderstorm event in a conventional way. In this 

paper, artificial neural network (ANN) has been applied to 

determine the two separate classes “squall-storm‟ and „no 

storm‟. Here, ANN-MLP classified approximately 70% of the 

whole data of „squall-storm‟ days and „no storm‟ days in a 

correct manner. Different types of 3-layered MLP 

architectures were used. Here, the best MLP classifier is 

revealed as 14-8-2. The misclassification rate is minimum 

with respect to the other MLP structures used here.   
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