
International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 10, March 2014

24

D-Apriori: An Algorithm to Incorporate Dynamism in

Apriori Algorithm

S. Bagga
M.Tech student in Department of Computer

Science & Engineering
DIT, Dehradun (U.K.), India

N. Badal
Assistant Professor in the Department of

Computer Science & Engineering at KNIT,
Sultanpur (U.P.), India

ABSTRACT
Apriori algorithm mines the data from the large scale data

warehouse using association rule mining. In this paper a new

algorithm named as Dynamic Apriori (D-Apriori) algorithm is

presented. The proposed D-Apriori algorithm incorporates the

dynamism in classical Apriori for efficiently mining the frequent

itemsets from a large scale database. With the help of

experimental results, it is shown that the D-Apriori algorithm

performs better than the existing Apriori algorithm with respect

to execution time for the dynamic behavior of data itemset.

Keywords
Association rule mining, frequent itemset, frequent patterns,

Apriori, D-Apriori.

1. INTRODUCTION
One of the most powerful technology used to help companies to

focus on the important information from the collected data about

the behavior of their customers is Data Mining [9,10,12,13]. Data

mining contains data analysis tools to find patterns and

relationship from large set of data.

For data mining many techniques have been introduced. One of

the most important techniques is association rule mining [1].

Association rule mining is used to find the association between

the objects. In association rule mining, frequent itemsets plays an

important role to find the frequent patterns. Frequent pattern

defines how often the objects occur together in the database.

The best association rule mining algorithm is Apriori algorithm

[15]. Apriori algorithm is used to find the frequent itemset from

the database. Still there is a limitation that existing Apriori

algorithm does not support the dynamic nature of frequent

itemset. Therefore, there is a requirement to incorporate

dynamism in existing Apriori algorithm. This paper proposed the

new algorithm coined as Dynamic Apriori (D-Apriori) algorithm

to overcome the drawback of existing Apriori algorithm that is

for the large set of database multiple scan of database is required.

In the next section background is presented followed by the new

proposed algorithm and experimental result for the proposed

algorithm.

2. BACKGROUND
The basic working of the Apriori algorithm is illustrated in this

section. The limitations of existing Apriori algorithm are also

mentioned in the same section.

Apriori algorithm is the first algorithm of association rule mining

introduced by Agarwal R. et. al. in [1, 2]. Steps of classical

Apriori algorithm are described as follows-

i. First step of the algorithm is to count the support of

each item separately from the sample database presented

in table I. Table 1 contains 2 column- transaction ID (TID)
and items. Table 2 contains the support count of each

item.

Table 1: Sample Database item

Table 2: Support of each

ii. Next step eliminates the items which have support

count less than the minimum support. Let the minimum

support count be 5. Now the list of 2-pairs of frequent

itemsets is generated and is presented in table 3.

In table 2 all the items are frequent so all the items are

used in this step.

 Table 3: 2-pairs of Frequent Itemsets

TID ITEMS

1 {1,2,3,4}

2 {1,2,3,4,5}

3 {2,3,4}

4 {2,3,5}

5 {1,2,4}

6 {1,3,4}

7 {2,3,4,5}

8 {1,3,4,5}

9 {3,4,5}

10 {1,2,3,5}

ITEMS SUPPORT

1 6

2 7

3 9

4 8

5 6

ITEMS SUPPORT

{1,2} 4

{1,3} 5

{1,4} 5

{1,5} 3

{2,3} 6

{2,4} 5

{2,5} 4

{3,4} 7

{3,5} 6

{4,5} 4

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 10, March 2014

25

iii. In the next step the items having support count less than

minimum support are discarded and are described in table 4. The

items {1,2},{1,5},{2,5}and {4,5} are discarded from table 4.

Table 4: Frequent Itemsets

iv. Now the list of 3-pairs of frequent itemset is generated

and is represented in table 5.

Table 5: 3-pair of Frequent Itemsets

v. In table 5, support count is less than minimum support for

all the itemsets, so 3-pairs of frequent itemset are not required.

Existing Apriori algorithm is also implemented in matlab which

is presented by Badal N. et. al. in [3].

Other then Apriori algorithm, there are other algorithms which

are used for the mining of frequent itemsets such as Trie [5, 6, 7,

8, 14], FP-Growth [11] and VS-Apriori algorithm [4].

Limitations of existing work:

The classical Apriori algorithm works well for the static nature of

data itemset. If at the time of execution a new data itemset is

introduced then the user has to restart the Apriori algorithm

again. Classical algorithm does not support dynamic nature of the

Apriori algorithm. Therefore dynamic nature of the frequent

itemset is the major drawback with the existing Apriori

algorithm.

D-APRIORI Algorithm
To overcome the limitations of existing Apriori algorithm, the

new algorithm D-Apriori is introduced in this section. In D-

Apriori algorithm the transactions can be added to the existing

database at run time.

In this algorithm, the user can enter the n number of queries and

the attributes used in each query. The queries and the

corresponding attributes are stored in the matrix form in matlab.

Then the existing Apriori algorithm is applied on the matrix

created.

Working of D-Apriori algorithm is represented with the help of

flow chart in figure 3.1 and is described as follows-

Flow Chart

Figure 3.1: Flow Chart of D-Apriori Algorithm

First of all input number of attributes n. Then enter the

names of n attributes a1, a2…..an . Next input the number

of queries k followed by the names of k queries q1, q2… qk.

Now input the value 1 if attribute is used in the query

otherwise input 0. After this the matrix is created which

will contain the values entered above. Then the each

column of the matrix is multiplied with the other columns

of the matrix including itself.

These values are stored in the new matrix. Now the

threshold value is entered and the sum of each column is

compared with the threshold value. The sum of column

less then threshold value is discarded. The columns which

are repeated (example a1a2 and a2a1) and the columns

which are multiplied to itself are also discarded. Finally

the user gets the matrix which contains only frequent

itemsets.

In D-Apriori algorithm, four cases occurs-

Case 1: No Queries No Attributes (NQNA)

In this case NQNA, if the user does not want to enter more

queries and attributes then the final matrix is created with

the existing attributes and queries which is similar to the

existing Apriori algorithm.

Case 2: More Queries No Attributes (MQNA)

In the case of MQNA, if the user wants to enter more

queries and no new attribute then the user has to input the

ITEMS SUPPORT

{1,3} 5

{1,4} 5

{2,3} 6

{2,4} 5

{3,4} 7

{3,5} 6

ITEMS SUPPORT

{1,3,4} 4

{2,3,4} 4

{3,4,5} 4

Enter no. of attributes (n)

Enter attributes (a1... an)

Enter no. of queries (k)

Enter queries (q1…. qk)

Ɐ k: Ɐ n Input „1‟ if attribute is

used and „0‟ if not used

Want to enter

more queries?

Enter query (k+1)

Enter attribute (n+1)

Want to enter

more attributes?

Final Matrix

1(yes)

1(yes)

0(no)

0(no)

 k+1: Ɐ n Input „1‟ if attribute

is used and „0‟ if not used

k+1: n+1 Input „1‟ if attribute

is used and „0‟ if not used .

Ɐ k: n+1 „0‟ is placed

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 10, March 2014

26

values „1‟ or „0‟ for the existing attributes. If „1‟ is entered then

attribute is used otherwise attribute is not used.

Case 3: No Queries More Attributes (NQMA)

Case NQMA is not applicable because it is taken into

consideration that user does not performs any error. For the

existing queries, new attribute is entered only when the user has

missed the particular attribute for the given queries.

Case 4: More Queries More Attributes (MQMA)

The last case MQMA is applicable only when the user wants to

enter more attributes for the new query. The user has to input the

value „1‟ or „0‟ only for the new attribute. For the existing

attributes the value for all the query is placed „0‟ automatically.

The user has not to enter this value.

Working of D-Apriori algorithm is illustrated with the help of

example-

Input number of attributes- 2

Enter attributes-A1

Enter attributes-A2

Input number of queries-3

Enter queries-Q1

Enter queries-Q2

Enter queries-Q3

Input the value "1" if attribute is used, "0" if attribute is

not used.

For query (1) (Q1) of attribute (1) (A1)-1

For query (1) (Q1) of attribute (2) (A2)-1

For query (2) (Q2) of attribute (1) (A1)-1

For query (2) (Q2) of attribute (2) (A2)-1

For query (3) (Q3) of attribute (1) (A1)-1

For query (3) (Q3) of attribute (2) (A2)-1

Want to enter more queries? [1] [0]-1
Enter queries-Q4

For query (4) (Q4) of attribute (1) (A1)-1

For query (4) (Q4) of attribute (2) (A2)-1

Want to enter more attributes for the same query? [1] [0] -1

Enter attributes-A3

For query (4) (Q4) of attribute (3) (A3)-1

The matrix formed from the above data is presented in figure 3.2-

Figure 3.2: Matrix containing attributes and queries

Now, each column of the matrix is multiplied and the result in

stored in new matrix. Also the sum of each column is calculated

which is presented in figure 3.3.

Figure 3.3: Matrix containing multiplication of columns and

sum

Enter the threshold value- 2

Now the column having the value of sum less than

threshold value is discarded. The columns which are

repeated (column A1A1, A2A1, A2A2, A3A1, A3A2 and

A3A3) are also discarded.

Next matrix contains the frequent itemsets presented in

figure 3.4.

Figure 3.4: Matrix containing frequent itemset

The frequent itemset is A1A2.

3 cases are generated from the above example-

Case 1: Figure 3.5 represents the final matrix created

when No Queries No Attributes (NQNA) case occurs.

Figure 3.5: Matrix containing existing queries and

attributes

Case 2: In figure 3.6, final matrix is created for the case

More Queries No Attributes (MQNA)

Figure 3.6: Matrix containing new query and

existing attributes

Case 3: Case (NQMA) is NOT APPLICABLE.

Case 4: Final matrix created for the case More Queries

More Attributes (MQMA) is presented in figure 3.7.

Figure 3.7: Matrix containing new query and new

attribute

Pseudo Code

The pseudo code of the proposed algorithm is presented.

Step1 is the candidate itemset of size k denoted by Ck.

Step 2 represents Lk, the frequent itemset of size k.

Step 3denotes the matrix A that contains the attributes of

the database.

 A1 A2 A3
 Q1 1 1 0
 Q2 1 1 0
 Q3 1 1 0
 Q4 1 1 1

 A1A1 A1A2 A1A3 A2A1 A2A2 A2A3 A3A1 A3A2
A3A3

Q1 1 1 0 1 1 0 0 0 0

Q2 1 1 0 1 1 0 0 0 0
Q3 1 1 0 1 1 0 0 0 0

Q4 1 1 1 1 1 1 1 1 1

SUM 4 4 1 4 4 1 1 1 1

 A1A2

 Q1 1

 Q2 1
 Q3 1

 Q4 1

SUM 4

 A1 A2
 Q1 1 1

 Q2 1 1

 Q3 1 1

 A1 A2
 Q1 1 1
 Q2 1 1
 Q3 1 1
 Q4 1 1

 A1 A2 A3
 Q1 1 1 0
 Q2 1 1 0
 Q3 1 1 0
 Q4 1 1 1

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 10, March 2014

27

Step 4 represents the matrix Q that contains the queries of the

database.

In step 5 matrix S contains the values of attributes occurred in

each query.

Step 6 denotes the set of frequent itemset L1.

In step 7 Lk is incremented until it is equal to zero.Ck+1

represents the candidate generated from Lk.

In step 8 the count of each candidate in Ck+1 is incremented.

In step 9 Lk+1 denotes the candidates with minimum support

count that are in Ck+1.

Figure 3.5: Pseudo Code of D-Apriori Algorithm

3. EXPERIMENTAL RESULT
The new D-Apriori algorithm is implemented in this section. D-

Apriori algorithm is being compared with the existing Apriori

algorithm with the help of sample database.

The proposed D-Apriori algorithm is implemented and compared

on Intel(R) Core(TM) i3-2350M CPU@ 2.30GHz, 4GBand

Matlab R2012a. Database connectivity is done using database

toolbox from Matlab. The sample database containing 5000

transactions is taken to compare the execution time of D-Apriori

algorithm and the existing Apriori algorithm.

In table 4.1, the comparison between the execution time and

number of transactions is presented considering threshold value

2.

TABLE 4.1: Comparison between Apriori algorithm and D-

Apriori algorithm

Figure 4.1 is presented with the help of table 4.1. Table 4.1

represents the execution time (in sec) for D-Apriori

algorithm and for existing Apriori algorithm.

Figure 4.1: Comparison between implementationof D-

Apriori algorithm and Apriori algorithm(execution

time vs. number of transactions)

Figure 4.1 shows that the D-Apriori algorithm performs

74.64% better than the existing Apriori algorithm only for

the large set of database.

 4. CONCLUSION AND FUTURE

SCOPE
The new presented D-Apriori algorithm improves the

efficiency of existing Apriori algorithm for the large set of

database. It is found that D-Apriori algorithm is best

suitable for those data itemsets which are dynamic in

nature. This algorithm reduces the execution time by

74.64% and is more reliable than classical Apriori

algorithm only for the large set of database.

Further, work may be extended to introduce the

intelligence with the selection of dynamic itemset as well

as to initiate the algorithm.

5. REFERENCES
[1] Agrawal R., Imielinski T., and Swami A., “Mining

Associations between seta of items in Massive

Databases”.In proc. Of the ACM-SIGMOD 1993 int‟l

conf. on Management of Data, Washingtom D.c

USA, 1993A, pp. 207-216.

[2] Agrawal R., and Srikant R., "Fast Algorithms for

Mining Association Rules", In Proc. VLDB 1994,

pp.487-499.

[3] Badal N., Bagga S. ,” Implementation of Apriori

Algorithm in MATLAB using Attribute Affinity

Matrix”, International Journal of Advanced Research

in Computer Science and Software Engineering”,

Vol. 4, No. 1, Jan. 2013, pp.10-15.

[4] Badal N. and Tripathi S., “Frequent Data Itemset

Mining Using VS_AprioriAlgorithms”,in

International Journal on Computer Science and

Engineering Vol. 02, No. 04, 2010, pp.1111-1118.

[5] Bentley J. L., “Multidimensional binary search trees

used for associative searching” in International

journal of Communications of the ACM, Vol. 19,

1975, pp. 509–517.

[6] Brin S., Motwani R., Ullman J. D., and S. Tsur,

“Dynamic data itemset counting and implication rules

for market basket data,” SIGMOD Rec., Vol. 26, No.

2, 1997, pp. 255–264.

Step 1. Ck: Candidate itemset of size k

Step 2. Lk : frequent itemset of size k
Step 3. A : Matrix containing attributes

Step 4. Q : Matrix containing queries

Step 5. S : Matrix containing the occurrence of
 attributes in each query

Step 6. L1 = {frequent items};

Step 7. for (k = 1; Lk != Ǿ ; k++) do begin
 Ck+1 = candidates generated from Lk;

Step 8. for each transaction t in database do

 increment the count of all candidates in
 Ck+1 that are contained in t

Step 9. Lk+1 = candidates in Ck+1 with min_support

Step 10. End
Step 11. return ÛkLk;

No. of

Transactions

Apriori Algorithm

(execution time in

sec.)

D-Apriori

Algorithm

(execution time in

sec.)

5 6.1 45.7

10 7.2 46.1

15 7.8 48.3

25 10.8 49.6

40 25.5 51.2

55 42.7 51.9

70 50.8 52.5

85 85.7 52.8

100 93.4 53.5

200 101.4 58.1

500 116.5 69.3

1000 149.9 84.7

3000 160.4 91.9

5000 178.7 105.6

International Journal of Computer Applications (0975 – 8887)

Volume 89 – No 10, March 2014

28

[7] Chan P. and Stolfo S., “Experiments in Multistrategy

Learning by Meta-Learning”, In Proc. of the second

International conference on Information And Knowledge

Management, 1993, pp. 314-323.

[8] Fredkin E.,”Trie memory”. Commun. ACM, Vol. 3, No. 9,

1960, pp. 490–499.

[9] Gopalan N., Sivalselvan B.,” Data mining Techniques and

Trends”, PHI Learning private limited, New Delhi 2009.

[10] Han J. and Kamber M.,"Data mining concepts and

techniques", Elsevier, 2nd Edition. Chapter5.

[11] Han J., Pei J., and Yin Y., “Mining frequent patterns without

candidate generation,” in SIGMOD Conference, 2000, pp.

1–12.

[12] Ian H. and Frank E., "Data Mining: Practical machine

learning tools and techniques", 2nd Edition, Morgan

Kaufmann, San Francisco, 2005.

[13] Jerome H. Friedman. Data Mining and Statistics: What's the

Connection? URL:http://stat.stanford.edu/~jhf/dm-stat.ps.Z

[14] Keleher P., Cox A. L., and Zwaenepoel W., “Lazy Release

Consistency for Software Distributed Shared Memory”. In

Proc. of the 19th Annual Int‟l Symposium on Computer

Architecture, 1992, pp. 13-21.

[15] Liu X. W. and He P. L., “The research of improved

association rules mining Apriori algorithm” Proceedings of

[16] 2004 International Conference on Machine Learning

and

[17] Cybernetics, Vol. 3, No, 26-29 Aug. 2004, pp: 1577 –

1579.

6. AUTHOR’S PROFILE
N. Badal is an Assistant Professor in the Department of

Computer Science & Engineering at KNIT, Sultanpur

(U.P.), INDIA. He received B.E. (1997) from

Bundelkhand Institute of Technology (BIET), Jhansi in

Computer Science & Engineering, M.E. (2001) in

Communication, Control and Networking from Madhav

Institute of Technology and Science (MITS), Gwalior and

PhD (2009) in Computer Science & Engineering from

Motilal Nehru National Institute of Technology (MNNIT),

Allahabad. He is Chartered Engineer (CE) from Institution

of Engineers (IE), India. He is a Life Member of IE, IETE,

ISTE and CSI-India. He has published about 35 papers in

International/National Journals, conferences and seminars.

His research interests are evinced at Distributed System,

Parallel Processing, GIS, Data Warehouse & Data mining,

Software engineering and Networking.

S. Bagga is an M.Tech student in the Department of

Computer Science & Engineering at DIT, Dehradun

(U.K.), INDIA. She received B.Tech (2011) from Lovely

Professional University (LPU), Jalandhar in Information

Technology.

IJCATM:www.ijcaonline.org

http://stat.stanford.edu/~jhf/dm-stat.ps.Z

